Introduction to Optimization
 Lecture 3: Introduction to Continuous Optimization

September 22, 2017
TC2 - Optimisation
Université Paris-Saclay

Dimo Brockhoff
Inria Saclay - Ile-de-France

Course Overview

Details on Continuous Optimization Lectures

Introduction to Continuous Optimization

- examples (from ML / black-box problems)
- typical difficulties in optimization

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
- first and second order conditions
- convexity
- constraint optimization

Gradient-based Algorithms

- quasi-Newton method (BFGS)
[DFO trust-region method]
Learning in Optimization / Stochastic Optimization
- CMA-ES (adaptive algorithms / Information Geometry)
- PhD thesis possible on this topic
method strongly related to ML / new promising research area interesting open questions

Continuous Optimization

- Optimize $f:\left\{\begin{array}{c}\Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R} \\ x=\left(x_{1}, \ldots, x_{n}\right) \rightarrow f\left(x_{1}, \ldots, x_{n}\right)\end{array}\right.$
unconstrained optimization
- Search space is continuous, i.e. composed of real vectors $x \in \mathbb{R}^{n}$
- $n=\left\{\begin{array}{l}\text { dimension of the problem } \\ \text { dimension of the search space } \mathbb{R}^{n} \text { (as vector space) }\end{array}\right.$

2-D level sets

Reminder: Different Notions of Optimum

Unconstrained case

- local vs. global
- local minimum x^{*} : \exists a neighborhood V of x^{*} such that $\forall x \in \mathrm{~V}: f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}^{*}\right)$
- global minimum: $\forall x \in \Omega: f(x) \geq f\left(x^{*}\right)$
- strict local minimum if the inequality is strict

Mathematical Characterization of Optima

Objective: Derive general characterization of optima
Example: if $f: \mathbb{R} \rightarrow \mathbb{R}$ differentiable, $f^{\prime}(x)=0$ at optimal points

- generalization to $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$?
- generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

optima of such function can be easily approached by certain type of methods

Reminder: Continuity of a Function

$f:\left(V,\| \|_{V}\right) \rightarrow\left(W,\| \|_{W}\right)$ is continuous in $x \in V$ if
$\forall \epsilon>0, \exists \eta>0$ such that $\forall y \in V:\|x-y\|_{V} \leq \eta ;\|f(x)-f(y)\|_{W} \leq \epsilon$

not continuous

continuous function

Reminder: Differentiability in 1D (n=1)

$f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable in $x \in \mathbb{R}$ if

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \text { exists, } h \in \mathbb{R}
$$

Notation:
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

The derivative corresponds to the slope of the tangent in x.

Reminder: Differentiability in 1D (n=1)

Taylor Formula (Order 1)

If f is differentiable in x then

$$
f(x+h)=f(x)+f^{\prime}(x) h+o(\|h\|)
$$

i.e. for h small enough, $h \mapsto f(x+h)$ is approximated by $h \mapsto$ $f(x)+f^{\prime}(x) h$
$h \mapsto f(x)+f^{\prime}(x) h$ is called a first order approximation of $f(x+h)$

Reminder: Differentiability in 1D (n=1)

Geometrically:

The notion of derivative of a function defined on \mathbb{R}^{n} is generalized via this idea of a linear approximation of $f(x+h)$ for h small enough.

How to generalize this to arbitrary dimension?

Gradient Definition Via Partial Derivatives

- In $\left(\mathbb{R}^{n},\| \|_{2}\right)$ where $\|x\|_{2}=\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}$ is the Euclidean norm deriving from the scalar product $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\boldsymbol{x}^{T} \boldsymbol{y}$

$$
\nabla f(x)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right)
$$

- Reminder: partial derivative in x_{0}

$$
\begin{gathered}
\mathrm{f}_{\mathrm{i}}: y \rightarrow f\left(x_{0}^{1}, \ldots, x_{0}^{i-1}, y, x_{0}^{i+1}, \ldots, x_{0}^{n}\right) \\
\frac{\partial f}{\partial x_{i}}\left(x_{0}\right)=f_{i}^{\prime}\left(x_{0}\right)
\end{gathered}
$$

Exercise: Gradients

Exercise:

Compute the gradients of
a) $f(x)=x_{1}$ with $x \in \mathbb{R}^{n}$
b) $f(x)=a^{T} x$ with a, $x \in \mathbb{R}^{n}$
c) $f(x)=x^{T} x\left(=\|\mathrm{x}\|^{2}\right)$ with $x \in \mathbb{R}^{n}$

Exercise: Gradients

Exercise:

Compute the gradients of
a) $f(x)=x_{1}$ with $x \in \mathbb{R}^{n}$
b) $f(x)=a^{T} x$ with a, $x \in \mathbb{R}^{n}$
c) $f(x)=x^{T} x\left(=\|\mathrm{x}\|^{2}\right)$ with $x \in \mathbb{R}^{n}$

Some more examples:

- in \mathbb{R}^{n}, if $f(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}$, then $\nabla f(\boldsymbol{x})=\left(A+A^{T}\right) \boldsymbol{x}$
- in $\mathbb{R}, \nabla f(\boldsymbol{x})=f^{\prime}(\boldsymbol{x})$

Gradient: Geometrical Interpretation

Exercise:

Let $L_{c}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid f(\boldsymbol{x})=c\right\}$ be again a level set of a function $f(\boldsymbol{x})$. Let $\boldsymbol{x}_{0} \in L_{c} \neq \emptyset$.

Compute the level sets for $f_{1}(\boldsymbol{x})=\boldsymbol{a}^{T} \boldsymbol{x}$ and $f_{2}(\boldsymbol{x})=\|\boldsymbol{x}\|^{2}$ and the gradient in a chosen point x_{0} and observe that $\nabla f\left(\boldsymbol{x}_{\boldsymbol{0}}\right)$ is orthogonal to the level set in x_{0}.

Again: if this seems too difficult, do it for two variables (and a concrete $\boldsymbol{a} \in \mathbb{R}^{2}$ and draw the level sets and the gradients.

More generally, the gradient of a differentiable function is orthogonal to its level sets.

Differentiability in \mathbb{R}^{n}

Taylor Formula - Order One

$$
f(\boldsymbol{x}+\boldsymbol{h})=f(\boldsymbol{x})+(\nabla f(\boldsymbol{x}))^{T} \boldsymbol{h}+o(\|\boldsymbol{h}\|)
$$

Reminder: Second Order Derivability in 1D

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a derivable function and let $f^{\prime}: x \rightarrow f^{\prime}(x)$ be its derivative function.
- If f^{\prime} is derivable in x, then we denote its derivative as $f^{\prime \prime}(x)$
- $\quad f^{\prime \prime}(x)$ is called the second order derivative of f.

Taylor Formula: Second Order Derivative

- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is two times differentiable then

$$
f(x+h)=f(x)+f^{\prime}(x) h+f^{\prime \prime}(x) h^{2}+o\left(\|h\|^{2}\right)
$$

i.e. for h small enough, $h \rightarrow f(x)+h f^{\prime}(x)+h^{2} f^{\prime \prime}(x)$ approximates $h+f(x+h)$

- $h \rightarrow f(x)+h f^{\prime}(x)+h^{2} f^{\prime \prime}(x)$ is a quadratic approximation (or order 2) of f in a neighborhood of x

- The second derivative of $f: \mathbb{R} \rightarrow \mathbb{R}$ generalizes naturally to larger dimension.

In $\left(\mathbb{R}^{n},\langle x, y\rangle=x^{T} y\right), \nabla^{2} f(x)$ is represented by a symmetric matrix called the Hessian matrix. It can be computed as

$$
\nabla^{2}(f)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Exercise on Hessian Matrix

Exercise:

Let $f(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}, \boldsymbol{x} \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$.
Compute the Hessian matrix of f.
If it is too complex, consider $f:\left\{\begin{array}{c}\mathbb{R}^{2} \rightarrow \mathbb{R} \\ \boldsymbol{x} \rightarrow \boldsymbol{x}^{T} A \boldsymbol{x}\end{array}\right.$ with $A=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right)$

Second Order Differentiability in \mathbb{R}^{n}

Taylor Formula - Order Two

$$
f(\boldsymbol{x}+\boldsymbol{h})=f(\boldsymbol{x})+(\nabla f(\boldsymbol{x}))^{T} \boldsymbol{h}+\frac{1}{2} \boldsymbol{h}^{T}\left(\nabla^{2} f(\boldsymbol{x})\right) \boldsymbol{h}+o\left(\|\boldsymbol{h}\|^{2}\right)
$$

Back to III-Conditioned Problems

We have seen that for a convex quadratic function
$f(x)=\frac{1}{2}\left(x-x_{0}\right)^{T} A\left(x-x_{0}\right)+b$ of $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}, A \operatorname{SPD}, b \in \mathbb{R}^{n}$:

1) The level sets are ellipsoids. The eigenvalues of A determine the lengths of the principle axes of the ellipsoid.

2) The Hessian matrix of f equals to A.

III-conditioned convex quadratic problems are problems with large ratio between largest and smallest eigenvalue of A which means large ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Gradient Direction Vs. Newton Direction

Gradient direction: $\nabla f(x)$
Newton direction: $(H(\boldsymbol{x}))^{-1} \cdot \nabla f(\boldsymbol{x})$
with $H(\boldsymbol{x})=\nabla^{2} f(\boldsymbol{x})$ being the Hessian at \boldsymbol{x}

Exercise:

Let again $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}, \boldsymbol{x} \in \mathbb{R}^{2}, A=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right) \in \mathbb{R}^{2 \times 2}$.
Plot the gradient and Newton direction of f in a point $x \in \mathbb{R}^{n}$ of your choice (which should not be on a coordinate axis) into the same plot with the level sets, we created before.

Optimality Conditions for Unconstrained Problems

Optimality Conditions: First Order Necessary Cond.

For 1-dimensional optimization problems $f: \mathbb{R} \rightarrow \mathbb{R}$
Assume f is differentiable

- \boldsymbol{x}^{*} is a local optimum $\Rightarrow f^{\prime}\left(\boldsymbol{x}^{*}\right)=0$
not a sufficient condition: consider $f(x)=x^{3}$ proof via Taylor formula: $f\left(\boldsymbol{x}^{*}+\boldsymbol{h}\right)=f\left(\boldsymbol{x}^{*}\right)+f^{\prime}\left(\boldsymbol{x}^{*}\right) \boldsymbol{h}+o(\|\boldsymbol{h}\|)$
- points \boldsymbol{y} such that $f^{\prime}(\boldsymbol{y})=0$ are called critical or stationary points

Generalization to n-dimensional functions
If $f: U \subset \mathbb{R}^{n} \mapsto \mathbb{R}$ is differentiable

- necessary condition: If \boldsymbol{x}^{*} is a local optimum of f, then $\nabla f\left(\boldsymbol{x}^{*}\right)=0$
proof via Taylor formula

Second Order Necessary and Sufficient Opt. Cond.

If f is twice continuously differentiable

- Necessary condition: if \boldsymbol{x}^{*} is a local minimum, then $\nabla f\left(\boldsymbol{x}^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive semi-definite
proof via Taylor formula at order 2
- Sufficient condition: if $\nabla f\left(\boldsymbol{x}^{*}\right)=0$ and $\nabla^{2} f\left(\boldsymbol{x}^{*}\right)$ is positive definite, then \boldsymbol{x}^{*} is a strict local minimum

Proof of Sufficient Condition:

- Let $\lambda>0$ be the smallest eigenvalue of $\nabla^{2} f\left(x^{*}\right)$, using a second order Taylor expansion, we have for all \boldsymbol{h} :
- $f\left(\boldsymbol{x}^{*}+\boldsymbol{h}\right)-f\left(\boldsymbol{x}^{*}\right)=\nabla f\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{h}+\frac{1}{2} \boldsymbol{h}^{T} \nabla^{2} f\left(\boldsymbol{x}^{*}\right) \boldsymbol{h}+o\left(\|\boldsymbol{h}\|^{2}\right)$

$$
>\frac{\lambda}{2}\|\boldsymbol{h}\|^{2}+o\left(\|\boldsymbol{h}\|^{2}\right)=\left(\frac{\lambda}{2}+\frac{o\left(\|\boldsymbol{h}\|^{2}\right)}{\|\boldsymbol{h}\|^{2}}\right)\|\boldsymbol{h}\|^{2}
$$

Convex Functions

Let U be a convex open set of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}$. The function f is said to be convex if for all $\boldsymbol{x}, \boldsymbol{y} \in U$ and for all $t \in[0,1]$

$$
f((1-t) \boldsymbol{x}+t \boldsymbol{y}) \leq(1-t) f(\boldsymbol{x})+t f(\boldsymbol{y})
$$

Theorem

If f is differentiable, then f is convex if and only if for all $\boldsymbol{x}, \boldsymbol{y}$

$$
\begin{aligned}
f(\boldsymbol{y})-f(\boldsymbol{x}) & \geq(\nabla f(x))^{T}(\boldsymbol{y}-\boldsymbol{x}) \\
\text { if } n & =1, \text { the curve is on top of the tangent }
\end{aligned}
$$

If f is twice continuously differentiable, then f is convex if and only if $\nabla^{2} f(x)$ is positive semi-definite for all \boldsymbol{x}.

Convex Functions: Why Convexity?

Examples of Convex Functions:

- $f(\boldsymbol{x})=a^{T} \boldsymbol{x}+b$
- $f(x)=\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}+a^{T} \boldsymbol{x}+b, A$ symmetric positive definite
- the negative of the entropy function (i. e. $\left.f(x)=-\sum_{i=1}^{n} x_{i} \ln \left(x_{i}\right)\right)$

Exercise:

Let $f: U \rightarrow \mathbb{R}$ be a convex and differentiable function on a convex open U. Show that if $\nabla f\left(\boldsymbol{x}^{*}\right)=0$, then \boldsymbol{x}^{*} is a global minimum of f

Why is convexity an important concept?

