Introduction to Optimization

Lecture 3: Introduction to Continuous Optimization

September 22, 2017 TC2 - Optimisation Université Paris-Saclay

Dimo Brockhoff Inria Saclay – Ile-de-France

Course Overview

1	Mon, 18.9.2017	first lecture	
	Tue, 19.9.2017	groups defined via wiki	
		everybody went (actively!) through the github.com/numbbo/coco	e Getting Started part of
2	Wed, 20.9.2017	lecture: "Benchmarking", final adjustments of groups everybody can run and postprocess the example experiment (~1h for final questions/help during the lecture)	
3	Fri, 22.9.2017	today's lecture "Introduction to Continuous Optimization"	
4	Fri, 29.9.2017	lecture "Gradient-Based Algorithms"	
5	Fri, 6.10.2017	lecture "Stochastic Algorithms and DFO"	
6	Fri, 13.10.2017	lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr." deadline for submitting data sets	
	Wed, 18.10.2017	deadline for paper submission	
7	Fri, 20.10.2017	final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"	
	Thu, 26.10.2017 / Fri, 27.10.2017	oral presentations (individual time slots)	
	after 30.10.2017	vacation aka learning for the exams	
	Fri, 10.11.2017	written exam	All deadlines:

23:59pm Paris time

Details on Continuous Optimization Lectures

Introduction to Continuous Optimization

- examples (from ML / black-box problems)
- typical difficulties in optimization

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
 - first and second order conditions
 - convexity
- constraint optimization

Gradient-based Algorithms

- quasi-Newton method (BFGS)
- [DFO trust-region method]

Learning in Optimization / Stochastic Optimization

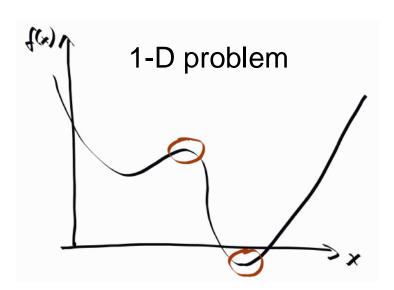
- CMA-ES (adaptive algorithms / Information Geometry)
- PhD thesis possible on this topic

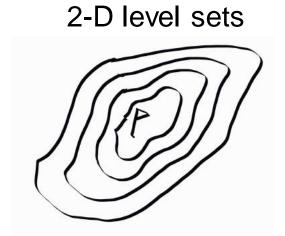
method strongly related to ML / new promising research area interesting open questions

Continuous Optimization

• Optimize
$$f$$
:
$$\begin{cases} \Omega \subset \mathbb{R}^n \to \mathbb{R} \\ x = (x_1, \dots, x_n) \to f(x_1, \dots, x_n) \end{cases}$$
$$\in \mathbb{R}$$
 unconstrained optimization

- Search space is continuous, i.e. composed of real vectors $x \in \mathbb{R}^n$





Reminder: Different Notions of Optimum

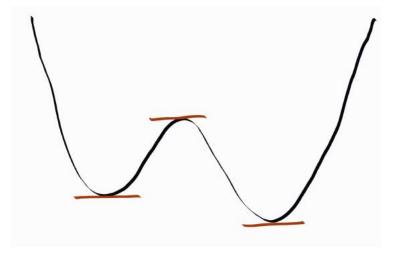
Unconstrained case

- local vs. global
 - local minimum x^* : \exists a neighborhood V of x^* such that $\forall x \in V$: $f(x) \ge f(x^*)$
 - global minimum: $\forall x \in \Omega$: $f(x) \ge f(x^*)$
- strict local minimum if the inequality is strict

Mathematical Characterization of Optima

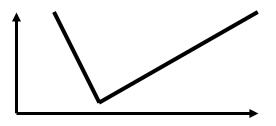
Objective: Derive general characterization of optima

Example: if $f: \mathbb{R} \to \mathbb{R}$ differentiable, f'(x) = 0 at optimal points



- generalization to $f: \mathbb{R}^n \to \mathbb{R}$?
- generalization to constrained problems?

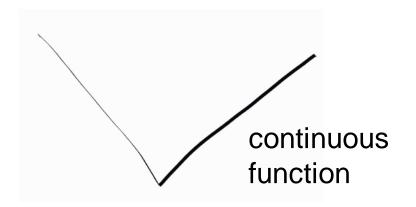
Remark: notion of optimum independent of notion of derivability

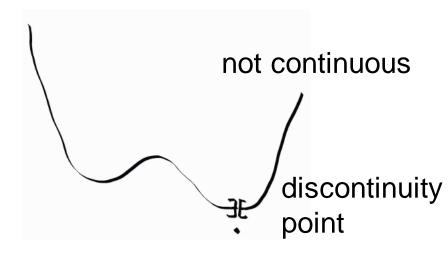


optima of such function can be easily approached by certain type of methods

Reminder: Continuity of a Function

 $f: (V, || ||_V) \to (W, || ||_W)$ is continuous in $x \in V$ if $\forall \epsilon > 0, \exists \eta > 0$ such that $\forall y \in V: ||x - y||_V \le \eta; ||f(x) - f(y)||_W \le \epsilon$





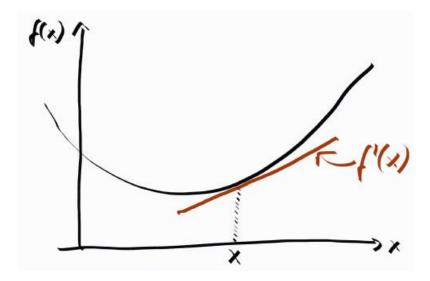
Reminder: Differentiability in 1D (n=1)

 $f: \mathbb{R} \to \mathbb{R}$ is differentiable in $x \in \mathbb{R}$ if

$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \text{ exists, } h \in \mathbb{R}$$

Notation:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$



The derivative corresponds to the slope of the tangent in x.

Reminder: Differentiability in 1D (n=1)

Taylor Formula (Order 1)

If f is differentiable in x then

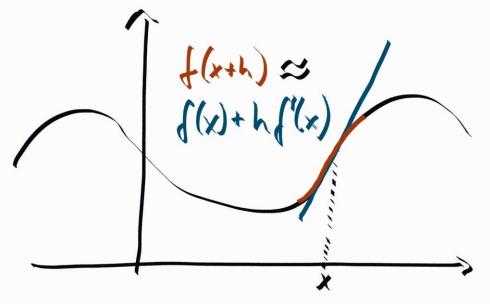
$$f(x + h) = f(x) + f'(x)h + o(||h||)$$

i.e. for h small enough, $h \mapsto f(x+h)$ is approximated by $h \mapsto f(x) + f'(x)h$

 $h \mapsto f(x) + f'(x)h$ is called a first order approximation of f(x + h)

Reminder: Differentiability in 1D (n=1)

Geometrically:



The notion of derivative of a function defined on \mathbb{R}^n is generalized via this idea of a linear approximation of f(x+h) for h small enough.

How to generalize this to arbitrary dimension?

Gradient Definition Via Partial Derivatives

In $(\mathbb{R}^n, || \ ||_2)$ where $||x||_2 = \sqrt{\langle x, x \rangle}$ is the Euclidean norm deriving from the scalar product $\langle x, y \rangle = x^T y$

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Reminder: partial derivative in x₀

$$f_{i}: y \to f(x_{0}^{1}, ..., x_{0}^{i-1}, y, x_{0}^{i+1}, ..., x_{0}^{n})$$

$$\frac{\partial f}{\partial x_{i}}(x_{0}) = f_{i}'(x_{0})$$

Exercise: Gradients

Exercise:

Compute the gradients of

- a) $f(x) = x_1$ with $x \in \mathbb{R}^n$
- b) $f(x) = a^T x$ with $a, x \in \mathbb{R}^n$
- c) $f(x) = x^T x (= ||\mathbf{x}||^2)$ with $x \in \mathbb{R}^n$

Exercise: Gradients

Exercise:

Compute the gradients of

- a) $f(x) = x_1$ with $x \in \mathbb{R}^n$
- b) $f(x) = a^T x$ with $a, x \in \mathbb{R}^n$
- c) $f(x) = x^T x (= ||\mathbf{x}||^2)$ with $x \in \mathbb{R}^n$

Some more examples:

- in \mathbb{R}^n , if $f(x) = x^T A x$, then $\nabla f(x) = (A + A^T) x$
- in \mathbb{R} , $\nabla f(\mathbf{x}) = f'(\mathbf{x})$

Gradient: Geometrical Interpretation

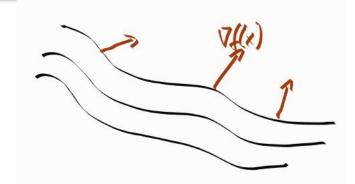
Exercise:

Let $L_c = \{x \in \mathbb{R}^n \mid f(x) = c\}$ be again a level set of a function f(x). Let $x_0 \in L_c \neq \emptyset$.

Compute the level sets for $f_1(x) = a^T x$ and $f_2(x) = ||x||^2$ and the gradient in a chosen point x_0 and observe that $\nabla f(x_0)$ is **orthogonal** to the level set in x_0 .

Again: if this seems too difficult, do it for two variables (and a concrete $a \in \mathbb{R}^2$ and draw the level sets and the gradients.

More generally, the gradient of a differentiable function is orthogonal to its level sets.



Differentiability in \mathbb{R}^n

Taylor Formula – Order One

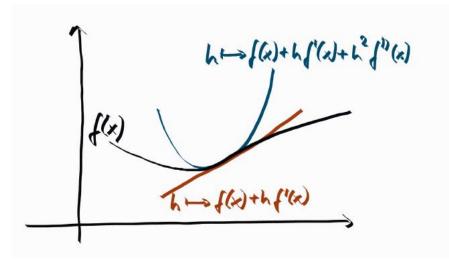
$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + (\nabla f(\mathbf{x}))^{T} \mathbf{h} + o(||\mathbf{h}||)$$

Reminder: Second Order Derivability in 1D

- Let $f: \mathbb{R} \to \mathbb{R}$ be a derivable function and let $f': x \to f'(x)$ be its derivative function.
- If f' is derivable in x, then we denote its derivative as f''(x)
- f''(x) is called the second order derivative of f.

Taylor Formula: Second Order Derivative

- If $f: \mathbb{R} \to \mathbb{R}$ is two times differentiable then $f(x+h) = f(x) + f'(x)h + f''(x)h^2 + o(||h||^2)$ i.e. for h small enough, $h \to f(x) + hf'(x) + h^2f''(x)$ approximates h + f(x+h)
- $h \to f(x) + hf'(x) + h^2f''(x)$ is a quadratic approximation (or order 2) of f in a neighborhood of x



■ The second derivative of $f: \mathbb{R} \to \mathbb{R}$ generalizes naturally to larger dimension.

Hessian Matrix

In $(\mathbb{R}^n, \langle x, y \rangle = x^T y)$, $\nabla^2 f(x)$ is represented by a symmetric matrix called the Hessian matrix. It can be computed as

$$\nabla^{2}(f) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \dots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

Exercise on Hessian Matrix

Exercise:

Let $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}, \mathbf{x} \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}$.

Compute the Hessian matrix of f.

If it is too complex, consider $f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ \mathbf{x} \to \mathbf{x}^T A \mathbf{x} \end{cases}$ with $A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$

Second Order Differentiability in \mathbb{R}^n

Taylor Formula – Order Two

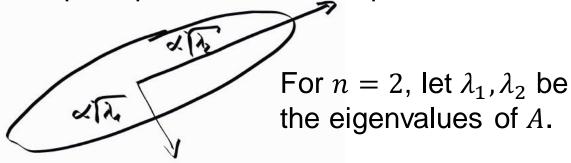
$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + \left(\nabla f(\mathbf{x})\right)^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T \left(\nabla^2 f(\mathbf{x})\right) \mathbf{h} + o(||\mathbf{h}||^2)$$

Back to III-Conditioned Problems

We have seen that for a convex quadratic function

$$f(x) = \frac{1}{2}(x - x_0)^T A(x - x_0) + b \text{ of } x \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}, A \text{ SPD, } b \in \mathbb{R}^n$$
:

1) The level sets are ellipsoids. The eigenvalues of *A* determine the lengths of the principle axes of the ellipsoid.



2) The Hessian matrix of f equals to A.

Ill-conditioned convex quadratic problems are problems with large ratio between largest and smallest eigenvalue of *A* which means large ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Gradient Direction Vs. Newton Direction

Gradient direction: $\nabla f(x)$

Newton direction: $(H(x))^{-1} \cdot \nabla f(x)$

with $H(x) = \nabla^2 f(x)$ being the Hessian at x

Exercise:

Let again
$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T A \mathbf{x}, \mathbf{x} \in \mathbb{R}^2, A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}.$$

Plot the gradient and Newton direction of f in a point $x \in \mathbb{R}^n$ of your choice (which should not be on a coordinate axis) into the same plot with the level sets, we created before.

Optimality Conditions for Unconstrained Problems

Optimality Conditions: First Order Necessary Cond.

For 1-dimensional optimization problems $f \colon \mathbb{R} \to \mathbb{R}$

Assume *f* is differentiable

- x^* is a local optimum $\Rightarrow f'(x^*) = 0$ not a sufficient condition: consider $f(x) = x^3$
 - proof via Taylor formula: $f(\mathbf{x}^* + \mathbf{h}) = f(\mathbf{x}^*) + f'(\mathbf{x}^*)\mathbf{h} + o(||\mathbf{h}||)$
- points y such that f'(y) = 0 are called critical or stationary points

Generalization to *n*-dimensional functions

If $f: U \subset \mathbb{R}^n \mapsto \mathbb{R}$ is differentiable

• necessary condition: If x^* is a local optimum of f, then $\nabla f(x^*) = 0$ proof via Taylor formula

Second Order Necessary and Sufficient Opt. Cond.

If *f* is twice continuously differentiable

Necessary condition: if x^* is a local minimum, then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semi-definite

proof via Taylor formula at order 2

• Sufficient condition: if $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite, then x^* is a strict local minimum

Proof of Sufficient Condition:

Let $\lambda > 0$ be the smallest eigenvalue of $\nabla^2 f(x^*)$, using a second order Taylor expansion, we have for all h:

$$f(\mathbf{x}^* + \mathbf{h}) - f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T \nabla^2 f(\mathbf{x}^*) \mathbf{h} + o(||\mathbf{h}||^2)$$
$$> \frac{\lambda}{2} ||\mathbf{h}||^2 + o(||\mathbf{h}||^2) = \left(\frac{\lambda}{2} + \frac{o(||\mathbf{h}||^2)}{||\mathbf{h}||^2}\right) ||\mathbf{h}||^2$$

Convex Functions

Let U be a convex open set of \mathbb{R}^n and $f:U\to\mathbb{R}$. The function f is said to be convex if for all $x,y\in U$ and for all $t\in[0,1]$

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y)$$

Theorem

If f is differentiable, then f is convex if and only if for all x, y

$$f(y) - f(x) \ge (\nabla f(x))^{T} (y - x)$$

if n = 1, the curve is on top of the tangent

If f is twice continuously differentiable, then f is convex if and only if $\nabla^2 f(x)$ is positive semi-definite for all x.

Convex Functions: Why Convexity?

Examples of Convex Functions:

- $f(x) = a^T x + b$
- $f(x) = \frac{1}{2}x^TAx + a^Tx + b$, A symmetric positive definite
- the negative of the entropy function (i. e. $f(x) = -\sum_{i=1}^{n} x_i \ln(x_i)$)

Exercise:

Let $f: U \to \mathbb{R}$ be a convex and differentiable function on a convex open U.

Show that if $\nabla f(x^*) = 0$, then x^* is a global minimum of f

Why is convexity an important concept?