Introduction to Optimization Lecture 4: Gradient-based Optimization

September 29, 2017 TC2 - Optimisation Université Paris-Saclay

Dimo Brockhoff Inria Saclay – Ile-de-France

Course Overview

1	Mon, 18.9.2017	first lecture	
	Tue, 19.9.2017	groups defined via wiki	
		everybody went (actively!) through the Getting Started part of github.com/numbbo/coco	
2	Wed, 20.9.2017	lecture: "Benchmarking", final adjustments of groups everybody can run and postprocess the example experiment (~1h for final questions/help during the lecture)	
3	Fri, 22.9.2017	today's lecture "Introduction to Continuous Optimization"	
4	Fri, 29.9.2017	lecture "Gradient-Based Algorithms"	
5	Fri, 6.10.2017	lecture "Stochastic Algorithms and DFO"	
6	Fri, 13.10.2017	lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr." deadline for submitting data sets	
	Wed, 18.10.2017	deadline for paper submission	
7	Fri, 20.10.2017	final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"	
	Thu, 26.10.2017 / Fri, 27.10.2017	oral presentations (individual time slots)	
	after 30.10.2017	vacation aka learning for the exams	
	Fri, 10.11.2017	written exam	All deadlines:
			23:59pm Paris time

Details on Continuous Optimization Lectures

Introduction to Continuous Optimization

- examples (from ML / black-box problems)
- typical difficulties in optimization

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
 - first and second order conditions
 - convexity
- constraint optimization

Gradient-based Algorithms

- quasi-Newton method (BFGS)
- [DFO trust-region method]

Learning in Optimization / Stochastic Optimization

- CMA-ES (adaptive algorithms / Information Geometry)
- PhD thesis possible on this topic

method strongly related to ML / new promising research area

interesting open questions

Constrained Optimization

Equality Constraint

Objective:

Generalize the necessary condition of $\nabla f(x) = 0$ at the optima of f when f is in C^1 , i.e. is differentiable and its differential is continuous

Theorem:

Be *U* an open set of (E, || ||), and $f: U \to \mathbb{R}$, $g: U \to \mathbb{R}$ in C^1 . Let $a \in E$ satisfy

$$\begin{cases} f(a) = \inf \{f(x) \mid x \in \mathbb{R}^n, g(x) = 0\} \\ g(a) = 0 \end{cases}$$

i.e. *a* is optimum of the problem

If $\nabla g(a) \neq 0$, then there exists a constant $\lambda \in \mathbb{R}$ called *Lagrange multiplier*, such that

$$\nabla f(a) + \lambda \nabla g(a) = 0$$
 Euler – Lagrange equation

i.e. gradients of f and g in a are colinear

Geometrical Interpretation Using an Example

Exercise:

Consider the problem

inf
$$\{ f(x,y) \mid (x,y) \in \mathbb{R}^2, g(x,y) = 0 \}$$

 $f(x, y) = y - x^2$ $g(x, y) = x^2 + y^2 - 1 = 0$

- 1) Plot the level sets of f, plot g = 0
- 2) Compute ∇f and ∇g
- 3) Find the solutions with $\nabla f + \lambda \nabla g = 0$

equation solving with 3 unknowns (x, y, λ)

4) Plot the solutions of 3) on top of the level set graph of 1)

Interpretation of Euler-Lagrange Equation

Intuitive way to retrieve the Euler-Lagrange equation:

- In a local minimum a of a constrained problem, the hypersurfaces (or level sets) f = f(a) and g = 0 are necessarily tangent (otherwise we could decrease f by moving along g = 0).
- Since the gradients ∇f(a) and ∇g(a) are orthogonal to the level sets f = f(a) and g = 0, it follows that ∇f(a) and ∇g(a) are colinear.

Generalization to More than One Constraint

Theorem

- Assume $f: U \to \mathbb{R}$ and $g_k: U \to \mathbb{R}$ $(1 \le k \le p)$ are \mathcal{C}^1 .
- Let *a* be such that $\begin{cases}
 f(a) = \inf \{f(x) \mid x \in \mathbb{R}^n, \quad g_k(x) = 0, \quad 1 \le k \le p\} \\
 g_k(a) = 0 \text{ for all } 1 \le k \le p
 \end{cases}$
- If (∇g_k(a))_{1≤k≤p} are linearly independent, then there exist p real constants (λ_k)_{1≤k≤p} such that

$$\nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0$$

Lagrange multiplier

again: a does not need to be global but local minimum

The Lagrangian

- Define the Lagrangian on $\mathbb{R}^n \times \mathbb{R}^p$ as $\mathcal{L}(x, \{\lambda_k\}) = f(x) + \sum_{k=1}^p \lambda_k g_k(x)$
- To find optimal solutions, we can solve the optimality system $\begin{cases}
 \text{Find } (x, \{\lambda_k\}) \in \mathbb{R}^n \times \mathbb{R}^p \text{ such that } \nabla f(x) + \sum_{k=1}^p \lambda_k \nabla g_k(x) = 0 \\
 g_k(x) = 0 \text{ for all } 1 \le k \le p
 \end{cases}$ $\Leftrightarrow \begin{cases}
 \text{Find } (x, \{\lambda_k\}) \in \mathbb{R}^n \times \mathbb{R}^p \text{ such that } \nabla_x \mathcal{L}(x, \{\lambda_k\}) = 0 \\
 \nabla_{\lambda_k} \mathcal{L}(x, \{\lambda_k\})(x) = 0 \text{ for all } 1 \le k \le p
 \end{cases}$

Inequality Constraint: Definitions

Let $\mathcal{U} = \{x \in \mathbb{R}^n \mid g_k(x) = 0 \text{ (for } k \in E), g_k(x) \le 0 \text{ (for } k \in I)\}.$

Definition:

The points in \mathbb{R}^n that satisfy the constraints are also called *feasible* points.

Definition:

Let $a \in U$, we say that the constraint $g_k(x) \le 0$ (for $k \in I$) is *active* in *a* if $g_k(a) = 0$.

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):

Let *U* be an open set of (E, || ||) and $f: U \to \mathbb{R}$, $g_k: U \to \mathbb{R}$, all \mathcal{C}^1 Furthermore, let $a \in U$ satisfy

$$\begin{cases} f(a) = \inf(f(x) \mid x \in \mathbb{R}^n, g_k(x) = 0 \text{ (for } k \in E), g_k(x) \le 0 \text{ (for } k \in I) \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \le 0 \text{ (for } k \in I) \end{cases} \text{ also works again for } a \\ \text{being a local minimum} \end{cases}$$

Let I_a^0 be the set of constraints that are active in *a*. Assume that $(\nabla g_k(a))_{k \in E \cup I_a^0}$ are linearly independent.

Then there exist $(\lambda_k)_{1 \le k \le p}$ that satisfy

$$\begin{cases} \nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0\\ g_k(a) = 0 \text{ (for } k \in E)\\ g_k(a) \le 0 \text{ (for } k \in I)\\ \lambda_k \ge 0 \text{ (for } k \in I_a^0)\\ \lambda_k g_k(a) = 0 \text{ (for } k \in E \cup I) \end{cases}$$

© Anne Auger and Dimo Brockhoff, Inria

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):

Let *U* be an open set of (E, || ||) and $f: U \to \mathbb{R}$, $g_k: U \to \mathbb{R}$, all C^1 Furthermore, let $a \in U$ satisfy

$$\begin{cases} f(a) = \inf(f(x) \mid x \in \mathbb{R}^n, g_k(x) = 0 \text{ (for } k \in E), g_k(x) \le 0 \text{ (for } k \in I) \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \le 0 \text{ (for } k \in I) \end{cases}$$

Let I_a^0 be the set of constraints that are active in *a*. Assume that $(\nabla g_k(a))_{k \in E \cup I_a^0}$ are linearly independent.

Then there exist $(\lambda_k)_{1 \le k \le p}$ that satisfy

$$\begin{cases} \nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0\\ g_k(a) = 0 \text{ (for } k \in E)\\ g_k(a) \leq 0 \text{ (for } k \in I)\\ \lambda_k \geq 0 \text{ (for } k \in I_a^0)\\ \lambda_k g_k(a) = 0 \text{ (for } k \in E \cup I) \end{cases} \text{ either active constraint}$$

Descent Methods

General principle

- choose an initial point x_0 , set t = 1
- e while not happy
 - choose a descent direction $d_t \neq 0$
 - line search:
 - choose a step size $\sigma_t > 0$

• set
$$x_{t+1} = x_t + \sigma_t d_t$$

• set t = t + 1

Remaining questions

- how to choose d_t ?
- how to choose σ_t ?

Gradient Descent

Rationale: $d_t = -\nabla f(x_t)$ is a descent direction

indeed for f differentiable

 $f(x - \sigma \nabla f(x)) = f(x) - \sigma ||\nabla f(x)||^2 + o(\sigma ||\nabla f(x)||)$ < f(x) for σ small enough

Step-size

- optimal step-size: $\sigma_t = \underset{\sigma}{\operatorname{argmin}} f(\mathbf{x}_t \sigma \nabla f(\mathbf{x}_t))$
- Line Search: total or partial optimization w.r.t. σ
 Total is however often too "expensive" (needs to be performed at each iteration step)

 Partial optimization: execute a limited number of trial steps until a loose approximation of the optimum is found. Typical rule for partial optimization: Armijo rule (see next slides)

Typical stopping criterium:

norm of gradient smaller than ϵ

Choosing the step size:

- Only to decrease *f*-value not enough to converge (quickly)
- Want to have a reasonably large decrease in f

Armijo-Goldstein rule:

- also known as backtracking line search
- starts with a (too) large estimate of σ and reduces it until f is reduced enough
- what is enough?
 - assuming a linear f e.g. $m_k(x) = f(x_k) + \nabla f(x_k)^T (x x_k)$
 - expected decrease if step of σ_k is done in direction d: $\sigma_k \nabla f(x_k)^T d$
 - actual decrease: $f(x_k) f(x_k + \sigma_k d)$
 - stop if actual decrease is at least constant times expected decrease (constant typically chosen in [0, 1])

The Actual Algorithm:

Input: descent direction **d**, point **x**, objective function $f(\mathbf{x})$ and its gradient $\nabla f(\mathbf{x})$, parameters $\sigma_0 = 10, \theta \in [0, 1]$ and $\beta \in (0, 1)$ **Output:** step-size σ

Initialize
$$\sigma: \sigma \leftarrow \sigma_0$$

while $f(\mathbf{x} + \sigma \mathbf{d}) > f(\mathbf{x}) + \theta \sigma \nabla f(\mathbf{x})^T \mathbf{d}$ do
 $\sigma \leftarrow \beta \sigma$
end while

Armijo, in his original publication chose $\beta = \theta = 0.5$. Choosing $\theta = 0$ means the algorithm accepts any decrease.

Graphical Interpretation

Graphical Interpretation

Graphical Interpretation

Newton Algorithm

Newton Method

- descent direction: $-[\nabla^2 f(x_k)]^{-1}\nabla f(x_k)$ [so-called Newton direction]
- The Newton direction:
 - minimizes the best (locally) quadratic approximation of f: $\tilde{f}(x + \Delta x) = f(x) + \nabla f(x)^T \Delta x + \frac{1}{2} (\Delta x)^T \nabla^2 f(x) \Delta x$
 - points towards the optimum on $f(x) = (x x^*)^T A(x x^*)$
- however, Hessian matrix is expensive to compute in general and its inversion is also not easy

quadratic convergence

(i.e.
$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = \mu > 0$$
)

Remark: Affine Invariance

Affine Invariance: same behavior on f(x) and f(Ax + b) for $A \in$ GLn(\mathbb{R}) = set of all invertible $n \times n$ matrices over \mathbb{R}

Newton method is affine invariant

```
See http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/
Lecture 6 Scribe Notes.final.pdf
```

- same convergence rate on all convex-quadratic functions
- Gradient method not affine invariant

Quasi-Newton Method: BFGS

 $x_{t+1} = x_t - \sigma_t H_t \nabla f(x_t)$ where H_t is an approximation of the inverse Hessian

Key idea of Quasi Newton:

successive iterates x_t , x_{t+1} and gradients $\nabla f(x_t)$, $\nabla f(x_{t+1})$ yield second order information

$$q_t \approx \nabla^2 f(x_{t+1}) p_t$$

where
$$p_t = x_{t+1} - x_t$$
 and $q_t = \nabla f(x_{t+1}) - \nabla f(x_t)$

Most popular implementation of this idea: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

default in MATLAB's fminunc and python's scipy.optimize.minimize

I hope it became clear...

...what are the difficulties to cope with when solving numerical optimization problems

in particular dimensionality, non-separability and ill-conditioning ...what are gradient and Hessian

...what is the difference between gradient and Newton direction ...and that adapting the step size in descent algorithms is crucial.

Derivative-Free Optimization

Derivative-Free Optimization (DFO)

DFO = blackbox optimization

Why blackbox scenario?

- gradients are not always available (binary code, no analytical model, ...)
- or not useful (noise, non-smooth, ...)
- problem domain specific knowledge is used only within the black box, e.g. within an appropriate encoding
- some algorithms are furthermore function-value-free, i.e. *invariant* wrt. monotonous transformations of *f*.

Derivative-Free Optimization Algorithms

- (gradient-based algorithms which approximate the gradient by finite differences)
- coordinate descent
- pattern search methods, e.g. Nelder-Mead
- surrogate-assisted algorithms, e.g. NEWUOA or other trustregion methods
- other function-value-free algorithms
 - typically stochastic
 - evolution strategies (ESs) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 - differential evolution
 - particle swarm optimization
 - simulated annealing

Downhill Simplex Method by Nelder and Mead

While not happy do:

[assuming minimization of *f* and that $x_1, ..., x_{n+1} \in \mathbb{R}^n$ form a simplex]

- **1) Order** according to the values at the vertices: $f(x_1) \le f(x_2) \le \dots \le f(x_{n+1})$
- **2)** Calculate x_o , the centroid of all points except x_{n+1} .

3) Reflection

Compute reflected point $x_r = x_o + \alpha (x_o - x_{n+1}) (\alpha > 0)$

If x_r better than second worst, but not better than best: $x_{n+1} = x_r$, and go to 1)

4) Expansion

If x_r is the best point so far: compute the expanded point

$$x_e = x_o + \gamma (x_r - x_o)(\gamma > 0)$$

If x_e better than x_r then $x_{n+1} \coloneqq x_e$ and go to 1)

Else $x_{n+1} \coloneqq x_r$ and go to 1)

Else (i.e. reflected point is not better than second worst) continue with 5)

5) Contraction (here: $f(x_r) \ge f(x_n)$)

Compute contracted point $x_c = x_o + \rho(x_{n+1} - x_o) \ (0 < \rho \le 0.5)$

f
$$f(x_c) < f(x_{n+1})$$
: $x_{n+1} \coloneqq x_c$ and go to 1)

Else go to 6)

6) Shrink

 $x_i = x_1 + \sigma(x_i - x_1)$ for all $i \in \{2, ..., n + 1\}$ ($\sigma < 1$) and go to 1)

J. A Nelder and R. Mead (1965). "A simplex method for function minimization". Computer Journal. **7**: 308–313. doi:10.1093/comjnl/7.4.308

Nelder-Mead: Reflection

2) Calculate x_o , the centroid of all points except x_{n+1} .

3) Reflection

Compute reflected point $x_r = x_o + \alpha (x_o - x_{n+1}) (\alpha > 0)$

If x_r better than second worst, but not better than best: $x_{n+1} = x_r$, and go to 1)

Nelder-Mead: Reflection

2) Calculate x_o , the centroid of all points except x_{n+1} .

3) Reflection

Compute reflected point $x_r = x_o + \alpha (x_o - x_{n+1}) (\alpha > 0)$

If x_r better than second worst, but not better than best: $x_{n+1} = x_r$, and go to 1)

Nelder-Mead: Reflection

2) Calculate x_o , the centroid of all points except x_{n+1} .

3) Reflection

Compute reflected point $x_r = x_o + \alpha (x_o - x_{n+1}) (\alpha > 0)$

If x_r better than second worst, but not better than best: $x_{n+1} = x_r$, and go to 1)

4) Expansion

If x_r is the best point so far: compute the expanded point

$$x_e = x_o + \gamma (x_r - x_o)(\gamma > 0)$$

If x_e better than x_r then $x_{n+1} \coloneqq x_e$ and go to 1)

Else $x_{n+1} \coloneqq x_r$ and go to 1)

4) Expansion

If x_r is the best point so far: compute the expanded point

$$x_e = x_o + \gamma (x_r - x_o)(\gamma > 0)$$

If x_e better than x_r then $x_{n+1} \coloneqq x_e$ and go to 1)

Else $x_{n+1} \coloneqq x_r$ and go to 1)

4) Expansion

If x_r is the best point so far: compute the expanded point

$$x_e = x_o + \gamma (x_r - x_o)(\gamma > 0)$$

If x_e better than x_r then $x_{n+1} \coloneqq x_e$ and go to 1)

Else $x_{n+1} \coloneqq x_r$ and go to 1)

4) Expansion

If x_r is the best point so far: compute the expanded point

$$x_e = x_o + \gamma (x_r - x_o)(\gamma > 0)$$

If x_e better than x_r then $x_{n+1} \coloneqq x_e$ and go to 1)

Else $x_{n+1} \coloneqq x_r$ and go to 1)

2) Calculate x_o , the centroid of all points except x_{n+1} .

5) Contraction (here: $f(x_r) \ge f(x_n)$) Compute contracted point $x_c = x_o + \rho(x_{n+1} - x_o)$ ($0 < \rho \le 0.5$) If $f(x_c) < f(x_{n+1})$: $x_{n+1} \coloneqq x_c$ and go to 1) Else go to 6)

2) Calculate x_o , the centroid of all points except x_{n+1} .

5) Contraction (here: $f(x_r) \ge f(x_n)$) Compute contracted point $x_c = x_o + \rho(x_{n+1} - x_o)$ ($0 < \rho \le 0.5$) If $f(x_c) < f(x_{n+1})$: $x_{n+1} \coloneqq x_c$ and go to 1) Else go to 6)

2) Calculate x_o , the centroid of all points except x_{n+1} . **6)** Shrink

 $x_i = x_1 + \sigma(x_i - x_1)$ for all $i \in \{2, ..., n + 1\}$ and go to 1)

2) Calculate x_o , the centroid of all points except x_{n+1} . **6)** Shrink

 $x_i = x_1 + \sigma(x_i - x_1)$ for all $i \in \{2, ..., n + 1\}$ and go to 1)

Nelder-Mead: Standard Parameters

- reflection parameter : $\alpha = 1$
- expansion parameter: $\gamma = 2$
- contraction parameter: $\rho = \frac{1}{2}$
- shrink paremeter: $\sigma = \frac{1}{2}$

some visualizations of example runs can be found here: https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method

stochastic algorithms

Stochastic Search Template

A stochastic blackbox search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$ Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While happy do:

- Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- Evaluate x_1, \dots, x_{λ} on f
- Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, ..., x_{\lambda}, f(x_1), ..., f(x_{\lambda}))$

• All depends on the choice of *P* and F_{θ}

deterministic algorithms are covered as well

• In Evolutionary Algorithms, *P* and F_{θ} are often defined implicitly via their operators.

Generic Framework of an Evolutionary Algorithm

Nothing else: just interpretation change

© Anne Auger and Dimo Brockhoff, Inria

TC2: Introduction to Optimization, U. Paris-Saclay, Sept. 29, 2017

CMA-ES in a Nutshell

Evolution Strategies (ES) A Se

A Search Template

The CMA-ES

Input: $\boldsymbol{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, λ Initialize: $\mathbf{C} = \mathbf{I}$, and $\boldsymbol{p_c} = \mathbf{0}$, $\boldsymbol{p_\sigma} = \mathbf{0}$, Set: $c_{\mathbf{c}} \approx 4/n$, $c_{\sigma} \approx 4/n$, $c_1 \approx 2/n^2$, $c_{\mu} \approx \mu_w/n^2$, $c_1 + c_{\mu} \leq 1$, $d_{\sigma} \approx 1 + \sqrt{\frac{\mu_w}{n}}$, and $w_{i=1...\lambda}$ such that $\mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \approx 0.3 \lambda$

While not terminate

$$\begin{aligned} \mathbf{x}_{i} &= \mathbf{m} + \sigma \, \mathbf{y}_{i}, \quad \mathbf{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda \\ m \leftarrow \sum_{i=1}^{\mu} w_{i} \, \mathbf{x}_{i:\lambda} &= \mathbf{m} + \sigma \, \mathbf{y}_{w} \quad \text{where } \mathbf{y}_{w} = \sum_{i=1}^{\mu} w_{i} \, \mathbf{y}_{i:\lambda} \\ p_{\mathbf{c}} \leftarrow (1 - c_{\mathbf{c}}) \, p_{\mathbf{c}} + \mathbf{1}_{\{ \| p_{\sigma} \| < 1.5\sqrt{n} \}} \sqrt{1 - (1 - c_{\mathbf{c}})^{2}} \sqrt{\mu_{w}} \, \mathbf{y}_{w} \\ p_{\sigma} \leftarrow (1 - c_{\sigma}) \, p_{\sigma} + \sqrt{1 - (1 - c_{\sigma})^{2}} \sqrt{\mu_{w}} \, \mathbf{C}^{-\frac{1}{2}} \mathbf{y}_{w} \\ \mathbf{C} \leftarrow (1 - c_{1} - c_{\mu}) \, \mathbf{C} + c_{1} \, p_{\mathbf{c}} p_{\mathbf{c}}^{\mathrm{T}} + c_{\mu} \sum_{i=1}^{\mu} w_{i} \, \mathbf{y}_{i:\lambda} \mathbf{y}_{i:\lambda}^{\mathrm{T}} \\ \mathbf{U} \text{pdate } \mathbf{C} \\ \sigma \leftarrow \sigma \times \exp\left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\| p_{\sigma} \|}{\mathbf{E} \| \mathcal{N}(\mathbf{0},\mathbf{I}) \|} - 1\right)\right) \end{aligned}$$

Not covered on this slide: termination, restarts, useful output, boundaries and encoding

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

16/81

CMA-ES in a Nutshell

Evolution Strategies (ES) A Se

A Search Template

The CMA-ES

Input: $\boldsymbol{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, λ Initialize: $\mathbf{C} = \mathbf{I}$, and $\boldsymbol{p_c} = \mathbf{0}$, $\boldsymbol{p_\sigma} = \mathbf{0}$, Set: $c_{\mathbf{c}} \approx 4/n$, $c_{\sigma} \approx 4/n$, $c_1 \approx 2/n^2$, $c_{\mu} \approx \mu_w/n^2$, $c_1 + c_{\mu} \leq 1$, $d_{\sigma} \approx 1 + \sqrt{\frac{\mu_w}{n}}$, and $w_{i=1...\lambda}$ such that $\mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \approx 0.3 \lambda$

While not terminate

$$\begin{aligned} \mathbf{x}_{i} &= \mathbf{m} + \sigma \mathbf{y}_{i}, \quad \mathbf{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda & \text{sampling} \\ \mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_{i} \mathbf{x}_{i:\lambda} &= \mathbf{m} + \sigma \mathbf{y}_{w} \quad \text{where } \mathbf{y}_{w} = \sum_{i=1}^{\mu} w_{i} \mathbf{y}_{i:\lambda} & \text{update mean} \\ \mathbf{p}_{c} \leftarrow (1 - c_{c}) \mathbf{p}_{c} + \mathbf{1}_{\{||\mathbf{p}_{\sigma}|| < 1.5\sqrt{n}\}} \sqrt{1 - (1 - c_{c})^{2}} \sqrt{\mu_{w}} \mathbf{y}_{w} & \text{cumulation for } \mathbf{C} \\ \mathbf{p}_{\sigma} \leftarrow (1 - c_{\sigma}) \mathbf{p}_{\sigma} + \sqrt{1 - (1 - c_{\sigma})^{2}} \sqrt{\mu_{w}} \mathbf{C}^{-\frac{1}{2}} \mathbf{y}_{w} & \text{cumulation for } \sigma \\ \mathbf{C} \leftarrow (1 - c_{1} - c_{\mu}) \mathbf{C} + c_{1} \mathbf{p}_{c} \mathbf{p}_{c}^{\mathrm{T}} + c_{\sigma} \sum_{i=1}^{\mu} w_{i} \mathbf{y}_{i:\lambda} & \text{update mean} \\ \sigma \leftarrow \sigma \times \exp\left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{||\mathbf{p}_{\sigma}||}{\mathbf{E}||\mathcal{N}(\mathbf{0},\mathbf{I})||} - 1\right)\right) & \mathbf{Goal of next lecture:} \end{aligned}$$

Not covered on this slide: terminatic encoding

Understand the main principles of this state-of-the-art algorithm.

16/81