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Details on Continuous Optimization Lectures

Introduction to Continuous Optimization
= examples (from ML / black-box problems)
= typical difficulties in optimization

Mathematical Tools to Characterize Optima
= reminders about differentiability, gradient, Hessian matrix
" unconstraint optimization

= firstand second order conditions

= __convexity

= constraint optimization

Gradient-based Algorithms
= quasi-Newton method (BFGS)
DFO: trust-region method (Nelder-Mead)

Learning in Optimization / Stochastic Optimization
= CMA-ES (adaptive algorithms / Information Geometry)
= PhD thesis possible on this topic

method strongly related to ML / new promising research area
mterestlng open questions




CMA-ES in a Nutshell

Evolution Strategies (ES) A Search Template

The CMA-ES

Input: m € R", 0 € Ry, A

Initialize: C =1, andp. =0, p, =0,

Set: ce & 4/n, co m4/n, c1 = 2/0*, cp & /0% cr+cp < 1, do =1+ /B2,
and wi=;.x such that i, = «x—5 ~ 0.3 A

i=1""1

While not terminate

xi=m+oy, y; ~ Nj(0,C), fori=1,..., A sampling
m<— > ' wixin =m+oy, wherey, =31 wiyia update mean
pe (1 =co)pe + Mgy <1sym V' 1 — (1 — ce)®/iowyw  cumulation for C

Po — (1 —co)ps + \/1 — (1 = ¢o)*/ptw C—%yw cumulation for o

C+—(l—c;—¢,)C + crpep’ +a5F -\ RO PRI

T 4 T X exp (Q—Z (% - 1) Goal:

Understand the main principles
of this state-of-the-art algorithm.

Not covered on this slide: terminatic
encoding




Copyright Notice

Last slide was taken from
http://www.cmap.polytechnique. fr/~nikolaus.hansen/co

penhagen-cma-es.pdf (copyright by Nikolaus Hansen, one of

the main inventors of the CMA-ES algorithms)
In the following, | will borrow more slides from there and from
http://www.cmap.polytechnique. fr/~dimo.brockhoff/opt

imizationSaclay/2015/slides/20151106-
continuousoptIV.pdf

(by Anne Auger)

In the following and the online material in particular, | refer to
these pdfs as [Hansen, p. X] and [Auger, p. Y] respectively.
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Back to CMA-ES

Evolution Strategies (ES) A Search Template

The CMA-ES

Input: m € R", 0 € Ry, A

Initialize: C =1, andp. =0, p, =0,

Set: ce & 4/n, co m4/n, c1 = 2/0*, cp & /0% cr+cp < 1, do =1+ /B2,
and wi=;.x such that i, = «x—5 ~ 0.3 A

i=1""1

While not terminate

xi=m+oy, y; ~ Nj(0,C), fori=1,..., A sampling
m<— > ' wixin =m+oy, wherey, =31 wiyia update mean
pe (1 =co)pe + Mgy <1sym V' 1 — (1 — ce)®/iowyw  cumulation for C

Po — (1 —co)ps + \/1 — (1 = ¢o)*/ptw C—%yw cumulation for o

C+—(l—c;—¢,)C + crpep’ +a5F -\ RO PRI

T 4 T X exp (Q—Z (% - 1) Goal:

Understand the main principles
of this state-of-the-art algorithm.

Not covered on this slide: terminatic
encoding




CMA-ES: Stochastic Search Template

A stochastic blackbox search template to minimize f:R" - R
Initialize distribution parameters 6, set population size 41 € N
W hile happy do:

=  Sample distribution P(x|6) = x4, ...,x; € R"

= Evaluate x4,...,x;0n f

= Update parameters 6 « Fy(0,x4,...,%x3, f(x1), ..., f(x3))

For CMA-ES and evolution strategies in general:

sample distributions = multivariate Gaussian distributions




Sampling New Candidate Solutions (Offspring
Evolution Strategies

New search points are sampled normally distributed

x; ~m+ o N;(0,C) fori=1....,\

as perturbations of m, where x;,m € R", o e R, C € R*™*" |
where

@ the mean vector m € R” represents the favorite solution
@ the so-called step-size o € R, controls the step length

@ the covariance mairix C € R"" determines the shape of
the distribution ellipsoid

here, all new points are sampled with the same parameters

It remains to show how to adapt the parameters, but for now: normal
distributions

from [Auger, p. 10]




Excursion: Normal Distributions

Normal Distribution

1-D case

Standard Mormal Distribution
0.4

probability density of the 1-D standard normal
S N distribution N(U, ]_}

(expected (mean) value, variance) = (0,1)

A 1= L ()

2 0 2 4

General case

=
i

probability density
<]
na

.
=

=]
ES

> Normal distribution A/ (m, o)

(expected value, variance) = (m, o°)
- 2
density: pm.o(x) = \21_—;7 exp (—“2;;’- )

» A normal distribution is entirely determined by its mean value and
variance

» The family of normal distributions is closed under linear transformations:
if X is normally distributed then a linear transformation aX + b is also
normally distributed

» Exercice: Show that m + 0N (0,1) = N (m, o?)

from [Auger, p. 11]




Excursion: Normal Distributions

Normal Distribution

General case

A random variable following a 1-D normal distribution is determined by its

mean value m and variance o?2.

In the n-dimensional case it is determined by its mean vector and covariance
matrix

Covariance Matrix

If the entries in a vector X = (Xq,... ,X,,)T are random variables, each with
finite variance, then the covariance matrix X is the matrix whose (i, ) entries
are the covariance of (X, Xj)

Yij=cov(Xi,X;)=E [(X, = pi)(X — r“’J')]

where ;i = E(X;). Considering the expectation of a matrix as the expectation
of each entry, we have

¥ =E[(X —p)(X — )]

2 is symmetric, positive definite

from [Auger, p. 12]




Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution A/ (m, C) is uniquely determined by its

mean value m € R" and its symmetric positive definite n x n covariance matrix
C.

density: PA(m.C) (X) — {2:7)".-"'§|C|1.-"'2 EXP(_%(X o m)Tc_l(X o m))

fro__m [A_yggr,_lpb. 13]




Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution A/ (m, C) is uniquely determined by its

mean value m € R" and its symmetric positive definite n x n covariance matrix
C.

%

density: paqm.c)(x) = {zn)n.-’é|c|1.--"2 exp(—%(x —m)'C 1 (x — m))
The mean value m

» determines the displacement (translation)

» value with the largest density (modal value)

» the distribution is symmetric about the
distribution mean

N(m.C)=m+ N(0,C) v

from [Auger, p. 13]




Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N (m, C) is uniquely determined by its

mean value m € R" and its symmetric positive definite n x n covariance matrix
C.

density: paqm.c)(x) = {zn)n.--'é|c|1.-"2 exp(—%(x —m)'C 1 (x — m))

%

The mean value m

» determines the displacement (translation)
» value with the largest density (modal value)

» the distribution is symmetric about the
distribution mean

N(m.C)=m+ N(0,C) v
The covariance matrix C

» determines the shape

» geometrical interpretation: any covariance matrix can be uniquely
identified with the iso-density ellipsoid
(x eR"|(x —m)'C 7 (x —m) =1}

from [Auger, p. 13]




Covariance Matrix: Lines of Equal Density

...any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R"|(x — m)'C™}(x — m) =1}

Lines of Equal Density

N (m,o?1) ~ m+ oN(0.1)
one degree of freedom o
components are

independent standard
normally distributed

where | is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A x A/ (0,1) ~ N(U,AAT) holds for all
A.

from [Auger, p. 14]




Covariance Matrix: Lines of Equal Density

...any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R"|(x — m)'C™}(x — m) =1}

Lines of Equal Density

N (m,o?1) ~m+oN(0.1) N (m,D?)~m+DN(0,1)
one degree of freedom o n degrees of freedom
components are components are

independent standard independent, scaled

normally distributed

where | is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A x N(0,1) ~ A (0,AA™) holds for all
A.

from [Auger, p. 14]




Covariance Matrix: Lines of Equal Density

...any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R"|(x — m)'C™}(x — m) =1}

Lines of Equal Density

N(m,o?l)~m+coN(0.1) N (m,D?)~m~+DAN(0.1)
one degree of freedom o

N(m.C)~ m+ CEN(0,1)
n degrees of freedom
components are

(n* + n)/2 degrees of freedom
components are components are
independent standard independent, scaled correlated
normally distributed

where | is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A x N(0,1) ~ A (0,AA™) holds for all
A.

from [Auger, p. 14]




Adaptation of Sample Distribution Parameters

Adaptation: What do we want to achieve?

New search points are sampled normally distributed

x;~m+ o N;(0,C) fori=1....,\

where x;, me R", c € R, C &€ R"™"

» the mean vector should represent the favorite solution

» the step-size controls the step-length and thus convergence
rate

should allow to reach fastest convergence rate possible
» the covariance matrix C € R"*" determines the shape of the
distribution ellipsoid

adaptation should allow to learn the “topography” of the problem
particulary important for ill-conditionned problems
C < H™! on convex quadratic functions

jrom__[Au ger, p. lﬁ]




Adaptation of the Mean




Plus and Comma Selection

Evolution Strategies (ES) The Normal Distribution

Evolution Strategies

Terminology
(1. # of parents, \: # of offspring

Plus (elitist) and comma (non-elitist) selection

(1t + A\)-ES: selection in {parents} U {offspring}
(1, A\)-ES: selection in {offspring}

(1+1)-ES
Sample one offspring from parent m

x=m+oN(0,C)

If x better than m select

m+<—Xx

o

from fHarsen,p: 35]




Non-Elitism and Weighted Recombination

Evolution Strategies (ES)

The (1/p1, A)-ES

Non-elitist selection and intermediate (weighted) recombination

Given the i-th solution pointx; = m + o N;(0.C) =m + oy;
N——’
=:Yi
Let x;., the i-th ranked solution point, such that f(x.,) < - < f(xa.0).

The new mean reads

[ H
m <— E WiXip\ = m—+ao E Wi Vi)

Y

Yw

where

P

. b L~
wp > > wy, >0, —Wi=1 s =t =g

The best 1 points are selected from the new solutions (non-elitistic)
and weighted intermediate recombination is applied.

from [Han?e:llgE VB 34]




Invariance Against Order-Preserving f-Transform

Invariance: Function-Value Free Property
f=nh . f=g10h f=g20h

N

function value
function value

function value

5 4 3 2 1 o 1 2 3 4 B ] & 3 2 L 2 1 S 3 L B

Three functions belonging to the same equivalence class

A function-value free search algorithm is invariant under the
transformation with any order preserving (strictly increasing) g.

Invariances make

e observations meaningful as a rigorous notion of generalization

e algorithms predictable and/or "robust”
from [Hansen, p. 37]




Invariance Against Translations in Search Spa

Evolution Strategies (ES)

Basic Invariance in Search Space

@ translation invariance
is true for most optimization algorithms

fx) < flx —a)

Identical behavior on f and f,

o ox—=flx), x=0) — x,
fu: x> flx—a), x=0 =x;+a

No difference can be observed w.r.t. the argument of f

from [Han en, p. 38]




Invariance Against Search Space Rotations

Evolution Strategies (ES)

Rotational Invariance in Search Space

@ invariance to orthogonal (rigid) transformations R, where RRT =1
e.g. true for simple evolution strategies

recombination operators might jeopardize rotational invariance

Flx) & f(Re) [

Identical behavior on f and fg

fioxefix), xF0=x,
R x> f(Rr), x79 =R"!(x))

45 No difference can be observed w.r.t. the argument of f

4Salomon 1996. "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A
survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278

5Hanseen 2000. Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies. Parallel Problem Solving from
Nature PPSN VI
from [Hansen, D 39]
29/ 81




Invariance Against Rigid Search Space Transform

Evolution Strategies (ES)

Invariance Under Rigid Search Space Transformations

= hRast flevel sets in dimension 2 f=h

for example, invariance under search space rotation
(separable < non-separable)

from [Hansen, p. 40




Invariance Against Rigid Search Space Transform

Evolution Strategies (ES) Invariance

Invariance Under Rigid Search Space Transformations

J =hrasto R Flevel sets in dimension 2 J=hoR

for example, invariance under search space rotation
(separable < non-separable)

from [Hansen, p. 41]
- 27/81




Invariance Against Rigid Search Space Transfor

Evolution Strategies (ES)

Invariance Under Rigid Search Space Transformations

J =hrasto R Flevel sets in dimension 2 J=hoR

for example, invariance uni _
(separable < non-separakb mainly Nelder-Mead and CMA-ES

have this property




Invariances: Summary

Evolution Strategies (ES)

Invariance

The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest number of hypotheses or axioms.
— Albert Einstein

@ Empirical performance results

» from benchmark functions
» from solved real world problems

are only useful if they do generalize to other problems

@ Invariance is a strong non-empirical statement about

generalization
generalizing (identical) performance from a single function to a whole

class of functions

consequently, invariance is important for the evaluation of search
algorithms

from fHanser, p: 43]
- 30/81




Step-Size Adaptation




Recap CMA-ES: What We Have So Far

Step-Size Control

Evolution Strategies

Recalling

New search points are sampled normally distributed |

xi ~m+ o N;i(0,C) fori=1.....A -
i . . ;‘,"a:'.".;'

as perturbations of m, where x;,;m € R", 0 € R, C € R"™" i
where

@ the mean vector m € R” represents the favorite solution
and m + > wix;
@ the so-called step-size o € R, controls the step length

@ the covariance matrix C € R™" determines the shape of
the distribution ellipsoid

The remaining question is how to update o and C.

from Hansen,p: 45]




Why At All Step-Size Adaptation?

Why Step-Size Control?

10° What do you think will happen for a
(1+1)-ES with constant step-size?
=
2 3
3 10 p
: )= 38
'qé =1
-6
=10 in [~0.2,0.8]"
for n = 10
_g | | | |
10 0 0.5 1 1.5 2

. . ;
function evaluations % 10

from [Auger, p. 22]




Why Step-Size Adaptation?

Why Step-Size Control?

100 R ........................ ....................... |
i ! random search
step-size too small | : :
) coﬁs1a tsiep—sizeé
E _3 : :
T 10 | ]
C : _ 2
s A : ) =3
- A N e R step-size too large— - — — — - — 1 .
U : : f:].
- : : :
= 10'6_ ...................... S L— ....... - ? . n
g | g in [—0.2,0.8]
5 5 for n =10
optimal step-size
(scale invariant) :
107° : : :
0 05 1 15 2
function evaluations % 10

from [Auger, p. 22]




Optimal Step-Size

Step-Size Control

Why Step-Size Control?
(5/5w,10)-ES, H. runs

-

— with optimal step-size I3

f(x)

..............................................................................

flo)=)
=1

forn = 10 and
x! € [-0.2,0.8]"

lm —x*|| =

10—5 i ) i i
400 600 800 1000 1200

function evaluations

i
0 200

with optimal step-size o

from [Hansen, p~47]




Optimal Step-Size vs. Step-Size Control

Step-Size Control

Why Step-Size Control?

— with optimal step-size |3
— with step-size control |]

f(x)

forn =10 and
x! € [-0.2,0.8]"

|2 — x*||

107

i i g
400 600 800 1200

function evaluations

with optimal versus adaptive step-size o with too small initial &

i
0 200

from fHanser, p: 48]
35/ 81




Optimal Step-Size vs. Step-Size Control

Step-Size Control

Why Step-Size Control?
(5/5w,10)-ES

10° - """"""""" """""" — with optimal step-size |3
f ; — with step-size control |

-  respective step-size

107 N AR e

f(x)

=

Y 17/ N N S SO SO
[ § : § f)=>

% | | s | | i=l
=107 P\ e AN e e 3
! : : ' | : ‘ forn = 10 and
= - 5 ; ; : ; x! € [-0.2,0.8]"
B NN R AN proseeeereee e ;
107 5 560 400 800 860 1000 1200

function evaluations

comparing number of f-evals to reach |jm| = 10=: 1210 ~ 1.5
from fHansen, p. 49]
~ 36/81




Adapting the Step-Size

Question:
How to actually adapt the step-size during the optimization?

Most common:

= 1/5 success rule

= Cumulative Step-Size Adaptation (CSA, as in standard CMA-ES)
= others possible (Two-Point Adaptation, self-adaptive step-size, ...)




One-Fifth Success Rule

One-fifth success rule

increase decrease o

from [Auger, p. 32]




One-Fifth Success Rule

One-fifth success rule

/f““‘“\\
Probability of success (ps) Probability of success (ps)
1/2 1/5 “too small’

from [Auger, p. 33]




One-Fifth Success Rule

One-fifth success rule

ps: # of successful offspring / # offspring (per generation)

1 Ps — ptarget) Increase o if Ps > Ptarget

T 4— T X ex = X
P (3 1 — Prarget Decrease o if ps < Ptarget

(14 1)-ES
Ptarget — 1/5

|\F offspring better parent

ps =1, 0 + o x exp(1/3)
ELSE

ps =0, 0 < 7/ exp(1/3)1/4

from [Auger, p. 34]




One-Fifth Success Rule

Why 1/57

Asymptotic convergence rate and probability of success of

scale-invariant step-size (1+1)-ES

0.5 ) ) )

........ P
c
ke
w e S -
C
i8]
E
F P S L -
™
E
(=11
‘@
k=3

e

CR

— (1+1)

min {CH“+H}|

i | = = -proba of success
T

04 i i i

8

sigma*dimension

10

sphere - asymptotic results, i.e. n = 0o (see slides before)

1/5 trade-off of optimal probability of success on the sphere and

corridor

from [Auger, p. 35]




Cumulative Step-Size Adaptation (CSA)

Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

Xi = m—+ay;
m < mMm+oYyw

Measure the length of the evolution path

the pathway of the mean vector m in the generation

sequence
decrease o increase o

from [Agge_r, p. 36]




Cumulative Step-Size Adaptation (CSA)

Path Length Control (CSA)

The Equations

Initialize m € R"”, o € R, evolution path p, = 0,
set ¢, ~4/n, d, =~ 1.

i

m <+ m+oy, Wwherey, =>"  wyi\

update mean

P (-a)p+yf1-(1-l  Viw Y

g

accounts for 1—c, accounts for w;

O 4 T X exp (CJ ( | 1 — 1)) update step-size

d, \ E[|NV(O,]I

>1 <= ||p-|| is greater than its expectation

from [Auger, p. 37]




Cumulative Step-Size Adaptation (CSA)

Step-size adaptation
What is achived

constant g

10°
S
T 107 )
5 f(x) = Zx,?
O i=1
% -6 \ step%—sizeﬁ .
S 10 Fo A : _______________________________ ] in [—0.2,0.8]”
. ; for n =10
optimal step—si l\ adapti\.fe
(scale invariant) Tl step-size G:
10 ) i .
0 500 1000 1500

function evaluations

Linear convergence

from [Auger, p. 38]




Covariance Matrix Adaptation




Recap CMA-ES: What We Have So Far

Evolution Strategies

Recalling

New search points are sampled normally

distributed T T
xj~m+aN;(0,C) fori=1.....\ . ,\*-r
1 - ‘-{-‘-:. .
as perturbations of m, where x;, mc R", c € R, . J
CeRr<n
where

» the mean vector m € R" represents the favorite solution
» the so-called step-size & € R controls the step length

» the covariance matrix C € R"" determines the shape
of the distribution ellipsoid

The remaining question is how to update C.

from [Auger, p. 40]




Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

m <« m+oyw., Yw =2 _1W¥ir Yi~N;i0C)

initial distribution, C = |

from [Auger, p. 41]




Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

m <« m+oyw., Yw =2 _1W¥ir Yi~N;i0C)

initial distribution, C = |

from [Auger, p. 41]




Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

m <« m-+oYwy. Yw= ',5":1Wf%‘:,\_-. y:NM(OC)

¥ w, movement of the population mean m (disregarding o)

from [Auger, p. 41]




Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

m <« m-+oYwy. Yw= ',5":1Wf%‘:,\_-. y:NM(OC)

mixture of distribution C and step y,,,
C+—08xC+02xy,yL

from [Auger, p. 41]




Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

m <« m-+oYwy. Yw= ',5":1Wf%‘:,\_-. y:NM(OC)

new distribution (disregarding o)

from [Auger, p. 41]




Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

fL

m <« m-+oYwy. Yw= =1 Wi Yix y:NM(OC)

new distribution (disregarding o)




Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

m <« m-+oYwy. Yw= ',5":1Wf%‘:,\_-. y:NM(OC)

movement of the population mean m

from [Auger, p. 41]




Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

m <« m+oyw., Yw =2 _1W¥ir Yi~N;i0C)

mixture of distribution C and step y,,,
C+08xC+02xynyL




Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

m < m-+oyy, yw:Z’f"lem:,\_-. y:NM(OC)

new distribution,

C+08xC+02xyuy}
the ruling principle: the adaptation increases the likelihood of

successful steps, y,, to appear again

from [Auger, p. 41]




Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

Initialize m € R”, and C = |, set o = 1, learning rate c.,, ~ 2/n?

While not terminate
X = m+ay;,_ yi NM(OC)?

L
m + m+4+ayy where yW:ZW;y;:)‘
i=1

C + (11— ceov)C+ Coovltw ywy$ where 11y, = =5 5> 1
—— 1 Wi

rank-one

from [Auger, p. 42]




Rank-One Update: Summary

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

'(: < (I — CCOV)(: + Ceov P‘«wyw.}’l

covariance matrix adaptation

@ learns all pairwise dependencies between variables
off-diagonal entries in the covariance matrix reflect the dependencies
@ conducts a principle component analysis (PCA) of steps y,,,

sequentially in time and space
eigenvectors of the covariance matrix C are the principle
components / the principle axes of the mutation ellipsoid

@ learns a new rotated problem representation L \/

components are mdep‘endent cmly)
in the new represeritation. ..

@ |learns a new (Mahalanobis) metric

variable metric method
@ approximates the inverse Hessian on quadratic functions

transformation into the sphere function
@ for ;. = 1: conducts a natural gradient ascent on the distribution A
entirely independent of the given coordinate system

fromTHanseér,
- 47/81

p. 71]



Evolution Path

Cumulation
The Evolution Path

Evolution Path

Conceptually, the evolution path is the search path the strategy takes over a
number of generation steps. It can be expressed as a sum of consecutive steps

of the mean m.
An exponentially weighted sum

of steps y,, is used

-4
peoxy (1-c)f" yl)
i=0 o~

-

exponentially

fading weights

The recursive construction of the evolution path (cumulation):

Pc < (l_cc)pc+\/l_(l_ct)2\fﬁw Yw
—_— y S~

decay factor normalization factor input =

m—mgid
el

where 1w = ﬁ cc < 1. History information is accumulated in the

from [Auger, p. 44]

evolution path.




Utilizing the Evolution Path

Cumulation
Utilizing the Evolution Path

We used y, y. for updating C. Because ywyo = —yw(—yw)" the sign of y,
is lost.

fro[n [Agger, p. 45]




Utilizing the Evolution Path

Cumulation
Utilizing the Evolution Path

We used y, y. for updating C. Because ywyo = —yw(—yw)" the sign of y,
is lost.

from [Auger, p. 45




Utilizing the Evolution Path

Cumulation
Utilizing the Evolution Path

We used y, y. for updating C. Because ywyo = —yw(—yw)" the sign of y,
is lost.

The sign information is (re-)introduced by using the evolution path.

pe +— (1—c) pc+ -\/1 — (1 — )’ Vtw Yw
\—-;v.-—-’ L. » J

decay factor normalization factor

C + (l_ccov)c+ccov pcch
N’

rank-one

where 1, = ﬁ ce < 1. from [Auger, p. 45]




Rank-u Update

Rank-p Update

X; = m+oy;, yi ~ N;(0,C),
m + m+oyw Yw = Db Wi¥ia

The rank-/ update extends the update rule for large population
sizes A using v > 1 vectors to update C at each generation step.

from [Auger, p. 47]




Rank-u Update

Rank-p Update

X; = m+oy;, yi ~ N;(0,C),
m + m+oyw Yw = Db Wi¥ia

The rank-/ update extends the update rule for large population
sizes A using v > 1 vectors to update C at each generation step.
The matrix

7]

T

C,= E Wi Yi)Yin
i=1

computes a weighted mean of the outer products of the best 1
steps and has rank min(y, n) with probability one.

from [Auger, p. 47]




Rank-u Update

Rank-p Update

X; = m+oy;, yi ~ N;(0,C),
m + m+oyw Yw = Db Wi¥ia

The rank-/ update extends the update rule for large population
sizes A using v > 1 vectors to update C at each generation step.
The matrix

7]

T

C,= E Wi Yi)Yin
i=1

computes a weighted mean of the outer products of the best 1
steps and has rank min(y, n) with probability one.
The rank-/¢ update then reads

C+(1—ceov)C+ceovC,

where c.ov ~ ftw/n? and c.oy < 1.

from [Auger, p. 47]




lllustration of Rank-u Update

sampling of
A = 150 solutions
where C = | and
og=1

from [Auger, p. 48]




lllustration of Rank-u Update

1 ! 1
1 : 1
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1 . " |.'."I-_T"'F 1 1 - 1
™~ e o I ! ¥ 1
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w | | |
& . ..-.“ *"1.:'.!.: H : H
*y & ‘

AT e ! . !

R T 1 :
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- . I

1 o 1 [

H | 1

I I
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! 1 ! 1
e e e e e e = e e e e e e

T
= lZ}'i:AJ";;;\
C « {i—l}xt—klxcg

sampling of calculating C where
A = 150 solutions (t=>50, wy =--- =
_ _ 1
where C = | and Wy = -, and
og=1 Ceov =

from [Auger, p. 48]




lllustration of Rank-u Update

R 2
R | 5
AR a
xi = m+oy;. yi~N(0,C) C. = Lyyiyi
C « {i —1)xC+1xC,
sampling of calculating C where
A = 150 solutions (t=>50, wy =--- =
where C = | and w, = ﬁ and
og=1 Ceov =

_________________________

new distribution

from [Auger, p. 48]




Rank-u Update: Summary

The rank-u update

* increases the possible learning rate for large populations
"large" when A > 3n 4+ 10

» |s the primary mechanism whenever a large population size
Is used

= can be easily combined with rank-one update




CMA-ES in a Nutshell

Evolution Strategies (ES) A Search Template

The CMA-ES

Input: m € R", 0 € Ry, A Promised:

nitialize: ¢ =1.and . = 0. ypqerstand the main principles

Set: ce = 4/n, co =~ 4/n, ¢y~ _ !
and 1r_, » such that ., — Of this state-of-the-art algorithm.

z|;|

J

While not terminate

xi=m+oy, y; ~ Nj(0,C), fori=1,..., A sampling
m<— > ' wixin =m+oy, wherey, =31 wiyia update mean
pe (1 =co)pe + Mgy <1sym V' 1 — (1 — ce)®/iowyw  cumulation for C
Po — (1 —co)ps + \/1 — (1 = ¢co)* /1w C—%yW cumulation for &
C—(1—-c1—¢,)C+ C PePe’ + Cpdi Wi¥indiy update C
04— 0 X exp (3—; (%— 1)) update of o

Not covered on this slide: termination, restarts, useful output, boundaries and
encoding
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CMA-ES in a Nutshell

Evolution Strategies (ES)

The CMA-ES

Input: m € R", 0 € Ry, A

Initialize: C =1, andp. =0, p, =0,

Set: cc & 4/n, ¢y = 4/n, c; =~ 2/n, Cp R [y /N2, €1 + cp <1,de =1+ \/%,
and wi=;.x such that i, = «x—5 ~ 0.3 A

i=1""1

While not terminate

xi=m+oy, y; ~ Nj(0,C), fori=1,..., A sampling
m<— > ' wixin =m+oy, wherey, =31 wiyia update mean
pe (1 =co)pe + Mgy <1sym V' 1 — (1 — ce)®/iowyw  cumulation for C
Po (1 —co)ps ++/1 — (1 — CJ)E\/;TWC—%}:W cumulation for o
C—(1—-c1—¢,)C+ C PePe’ + Cpdi Wi¥indiy update C
04— 0 X exp (3—; (%—1)) update of o

Not covered on this slide: termination, restarts, useful output, boundaries and
encoding

16/ 81




CMA-ES: Almost Parameterless

CMA-ES Summary

Strategy Internal Parameters

@ related to selection and recombination

» ), offspring number, new solutions sampled, population size
» 4, parent number, solutions involved in updates of m, C, and o
> wi—1 ... ... recombination weights

@ related to C-update

» ¢, decay rate for the evolution path
» ¢y, learning rate for rank-one update of C
> ¢,, learning rate for rank-p update of C

@ related to o-update

» ¢, decay rate of the evolution path
» ds, damping for o-change

Parameters were identified in carefully chosen experimental set ups. Parameters do not in the
first place depend on the objective function and are not meant to be in the users choice.
Only(?) the population size A (and the initial =) might be reasonably varied in a wide range,
depending on the objective function

Useful: restarts with increasing population size (IPOP)

from fHanser,p: 90]
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Experimental Considerations




Experimentum Crucis with CMA-ES

CMA-ES Summary

Experimentum Crucis (0)

What did we want to achieve?

@ reduce any convex-quadratic function

to the sphere mode|

without use of derivatives

@ lines of equal density align with lines of equal fithess

CxH!

in a stochastic sense

from fHansern,p: 91]
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Experimentum Crucis with CMA-ES

CMA-ES Summary

Experimentum Crucis (1)

f convex quadratic, separable

bIHe:absU}, cyan:f-min(f), green:sigma, red:axis ratio Object Variables (9-D)
10 : ; 15 ; ; x(1)=3.0931e
: : : (2)=2 2083
10 {1 (B)=5.6127e
| K()=2.714Te
1 o x(8)=4.5138e
] b(9)=2. T4 1e-
ok (5)——1.0864
: : - k(4)=—3.8371
4 206:1 40'00 T

Stgndard Deviations in Coordinates divided by sigma
10 1

2
/ 3
z
1
— 5
1= 3]
"\-\..___‘_\_ ?
\\\‘ .
107 i i 107 i ' g9
0 2000 4000 BOO0 [} 2000 4000 6000
function evaluations function evaluations

Flr) = 3 10%512 a0 = 6




Experimentum Crucis with CMA-ES

CMA-ES Summary

Experimentum Crucis (2)
f convex quadratic, as before but non-separable (rotated)

bl}ae:abs(f}, cyan:f-min(f), green:sigma, red:axis ratio Object Variables (3-D)
10 T T T T

4 pe(1)=2 00522
i5)=1.25522
0% P ] - f.ff k(B)=1.2468e
[ Ae(Q)=—7.3812
10° b ] x(4)=-2.9981
. be(F)=—8.3583
107 \'\%:& b3 )=—2.0364
g 7.01055728188042 10 ¢ 50;;::;;31
0 2000 4000 6000
~ —1
i Principle Axes Lengths Standard Deviations in Coordinates divided by sigma C X H for a” g’ H

: : : i 4
0 2000 4000 6000 0 2000 4000 6000
function evaluations function evaluations

f(x) =g (x"Hx), ¢ : R — R stricly increasing

from fHansern,p: 93]
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Influence of Condition Number + Invariance

Comparing Experiments

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, separable with varying condition number «

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

0 ==mma  H diagonal
- gg’é&éﬁéﬂ'f ¢ identity (for BFGS and
10 X DE2 NEWUOA)
2 Gmes (| g any order-preserving = strictly
101 2 4 i f 1, increasing function (for all other)

10 10 10 10 10 10
Condition number

SP1 = average number of objective function evaluations' to reach the target function
value of g~ '(1077)

14Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Influence of Condition Number + Invariance

Comparing Experiments

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, non-separable (rotated) with varying condition number «

Rotated Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

]

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

SP1

10 2z Hiul

= —~-nNewuoa|] g identity (for BFGS and
10 32 2o os | NEWUOA)

— - - | g any order-preserving = strictly
0 2 4 a f 1, increasing function (for all other)

10 10 10 10 10 10
Condition number

SP1 = average number of objective function evaluations’ to reach the target function
value of g~ '(1077)

15Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Influence of Condition Number + Invariance

Comparing Experiments

Comparison to BFGS, NEWUOA, PSO and DE

f non-convex, non-separable (rotated) with varying condition number «

Sqrt of sqrt of rotated ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

7 ==

10

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

= ===  DE (Storn & Price 1996)
e ——4q  PSO (Kennedy & Eberhart 1995)

10 CMA-ES (Hansen & Ostermeier
T o i 2001)
10; s | f(x) = ¢(x"H) with
102 H full
] g :x — x'/* (for BFGS and
10 = : NEWUOQOA)
Yoo e P oues | & @ny order-preserving = strictly
100 gi ! ) f 1, increasing function (for all other)

Condition number

SP1 = average number of objective function evaluations'® to reach the target function
value of g~ '(1077)

16Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Performance on BBOB Testbed: Data Profile

Comparing Experiments

Comparison during BBOB at GECCO 2009
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Summary CMA-ES |

Summary and Final Remarks

Main Characteristics of (CMA) Evolution Strategies

@ Multivariate normal distribution to generate new search points
follows the maximum entropy principle

©Q Rank-based selection
implies invariance, same performance on g(f(x)) for any increasing g
more invariance properties are featured

© Step-size control facilitates fast (log-linear) convergence and

possibly linear scaling with the dimension
in CMA-ES based on an evolution path (a non-local trajectory)

© Covariance matrix adaptation (CMA) increases the likelihood of
previously successful steps and can improve performance by
orders of magnitude

the update follows the natural gradient

C < H™' «= adapts a variable metric
<= new (rotated) problem representation
— [ :x — g(x"Hx) reduces to x — x'x

79/ 81




Summary CMA-ES I

Summary and Final Remarks

Limitations
of CMA Evolution Strategies

@ internal CPU-time: 10~%n* seconds per function evaluation on a 2GHz

PC, tweaks are available
1000 000 f-evaluations in 100-D take 100 seconds internal CPU-time

@ better methods are presumably available in case of

» partly separable problems

» specific problems, for example with cheap gradients
specific methods

v

small dimension (n < 10)
for example Nelder-Mead

» small running times (number of f-evaluations < 100n)
model-based methods
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Conclusions

| hope it became clear...

...that CMA-ES samples according to multivariate normal distributions
...how CMA-ES updates its mean, stepsize, and covariance matrix
...and what are the invariance properties of CMA-ES




