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Mastertitelformat bearbeitenDate Topic

1 Mon, 17.9.2018

Thu, 20.9.2018

Monday's lecture: introduction, example problems, problem types

groups defined via wiki

everybody went (actively!) through the Getting Started part of

github.com/numbbo/coco

2 Fri, 21.9.2018 lecture "Benchmarking", final adjustments of groups

everybody can run and postprocess the example experiment (~1h for 

final questions/help during the lecture)

3 Fri, 28.9.2018 lecture "Introduction to Continuous Optimization"

4 Fri, 5.10.2018 lecture "Gradient-Based Algorithms"

5 Fri, 12.10.2018 lecture "Stochastic Algorithms and DFO"

6 Fri, 19.10.2018 lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr."

deadline for submitting data sets

7

Wed, 24.10.2018

Fri, 26.10.2018

deadline for paper submission

final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

29.10.-2.11.2018 vacation aka learning for the exams

Thu, 8.11.2018 /

Fri, 9.11.2018

oral presentations (individual time slots)

Fri, 16.11.2018 written exam

Course Overview

All deadlines:

23:59pm Paris time

All deadlines:

23:59pm Paris time
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1 Mon, 17.9.2018

Thu, 20.9.2018

Monday's lecture: introduction, example problems, problem types

groups defined via wiki

everybody went (actively!) through the Getting Started part of

github.com/numbbo/coco  remaining part difficulties in cont. opt.

2 Fri, 21.9.2018  today's lecture "Benchmarking",  final adjustments of groups 

everybody can run and postprocess the example experiment ( ~1h for 

final questions/help during the lecture)

3 Fri, 28.9.2018 lecture "Introduction to Continuous Optimization"

4 Fri, 5.10.2018 lecture "Gradient-Based Algorithms"

5 Fri, 12.10.2018 lecture "Stochastic Algorithms and DFO"

6 Fri, 19.10.2018 lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr."

deadline for submitting data sets

7

Wed, 24.10.2018

Fri, 26.10.2018

deadline for paper submission

final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

29.10.-2.11.2018 vacation aka learning for the exams

Thu, 8.11.2018 /

Fri, 9.11.2018

oral presentations (individual time slots)

Fri, 16.11.2018 written exam

Course Overview

All deadlines:

23:59pm Paris time

All deadlines:

23:59pm Paris time



 Problem Difficulties 
in Continuous Optimization
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 dimensionality

(considerably) larger than three

 non-separability

dependencies between the objective variables

 ill-conditioning

 ruggedness

non-smooth, discontinuous, multimodal, and/or 

noisy function

What Makes a Function Difficult to Solve?

a narrow ridge

cut from 3D example, 

solvable with an 

evolution strategy
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 The term Curse of dimensionality (Richard Bellman) refers to 

problems caused by the rapid increase in volume associated 

with adding extra dimensions to a (mathematical) space.

 Example: Consider placing 100 points onto a real interval, say 

0,1 . To get similar coverage, in terms of distance between

adjacent points, of the 10-dimensional space 0,1 10 would

require 10010 = 1020 points. The original 100 points appear now

as isolated points in a vast empty space. 

 Consequently, a search policy (e.g. exhaustive search) that is 

valuable in small dimensions might be useless in moderate or 

large dimensional search spaces.

Curse of Dimensionality
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Definition (Separable Problem)

A function 𝑓 is separable if

argmin
(𝑥1,…,𝑥𝑛)
𝑓(𝑥1, … , 𝑥𝑛) = argmin

𝑥1

𝑓 𝑥1, … , … , argmin
𝑥𝑛

𝑓(… , 𝑥𝑛)

⟹ it follows that 𝑓 can be optimized in a sequence of

𝑛 independent 1-D optimization processes

Example:

Additively decomposable functions

𝑓 𝑥1, … , 𝑥𝑛 = 

𝑖=1

𝑛

𝑓𝑖(𝑥𝑖)

Rastrigin function
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Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system

 𝑓: 𝒙 ⟼ 𝑓(𝒙) separable

 𝑓: 𝒙 ⟼ 𝑓(𝑅𝒙) non-separable

𝑅 rotation matrix

𝑅
⟶

[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in 

evolution strategies: The generating set adaptation". Sixth ICGA, pp. 57-64, Morgan Kaufmann

[2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark 

Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278
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Consider the convex-quadratic function

𝑓 𝒙 =
1

2
𝒙 − 𝒙∗ 𝑇𝐻 𝒙 − 𝒙∗ =

1

2
 
𝑖
ℎ𝑖,𝑖𝑥𝑖
2 +
1

2
 
𝑖,𝑗
ℎ𝑖,𝑗𝑥𝑖𝑥𝑗

H is Hessian matrix of 𝑓 and symmetric positive definite

Ill-conditioning means squeezed level sets (high curvature). 

Condition number equals nine here. Condition numbers up to 1010

are not unusual in real-world problems. 

If 𝐻 ≈ 𝐼 (small condition number of 𝐻) first order information (e.g. 

the gradient) is sufficient. Otherwise second order information 

(estimation of 𝐻−1) information necessary.

gradient direction −𝑓′ 𝑥 𝑇

Newton direction −𝐻−1𝑓′ 𝑥 𝑇
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Unconstrained case

 local vs. global

 local minimum 𝒙∗: ∃ a neighborhood 𝑉 of 𝒙∗ such that

∀𝒙 ∈ V: 𝑓(𝒙) ≥ 𝑓(𝒙∗)

 global minimum: ∀𝒙 ∈ Ω: 𝑓 𝒙 ≥ 𝑓 𝒙∗

 strict local minimum if the inequality is strict

Constrained case

 a bit more involved

 hence, later in the lecture 

Different Notions of Optimum



 Benchmarking Optimization Algorithms



challenging optimization problems

appear in many

scientific, technological and industrial domains

challenging optimization problems

appear in many

scientific, technological and industrial domains



Given:

Not clear:

which of the many algorithms should I use on my 
problem?

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Practical (Numerical) Blackbox Optimization

derivatives not available or not useful



Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]

Simplex downhill [Nelder & Mead 1965] 

Pattern search [Hooke and Jeeves 1961] 

Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain) 

• Differential Evolution [Storn & Price 1997] 

• Particle Swarm Optimization [Kennedy & Eberhart 1995] 

• Evolution Strategies, CMA-ES
[Rechenberg 1965, Hansen & Ostermeier 2001] 

• Estimation of Distribution Algorithms (EDAs) 
[Larrañaga, Lozano, 2002] 

• Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004] 

• Genetic Algorithms [Holland 1975, Goldberg 1989] 

Simulated annealing [Kirkpatrick et al. 1983]

Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000] 

Numerical Blackbox Optimizers



Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]

Simplex downhill [Nelder & Mead 1965] 

Pattern search [Hooke and Jeeves 1961] 

Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain) 

• Differential Evolution [Storn & Price 1997] 

• Particle Swarm Optimization [Kennedy & Eberhart 1995] 

• Evolution Strategies, CMA-ES
[Rechenberg 1965, Hansen & Ostermeier 2001] 

• Estimation of Distribution Algorithms (EDAs) 
[Larrañaga, Lozano, 2002] 

• Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004] 

• Genetic Algorithms [Holland 1975, Goldberg 1989] 

Simulated annealing [Kirkpatrick et al. 1983]

Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000] 

Numerical Blackbox Optimizers

choice typically not immediately clear although practitioners

have knowledge about which difficulties their problem has

(e.g. multi-modality, non-separability, ...)

choice typically not immediately clear although practitioners

have knowledge about which difficulties their problem has

(e.g. multi-modality, non-separability, ...)



• understanding of algorithms

• algorithm selection

• putting algorithms to a standardized test
• simplify judgement

• simplify comparison

• regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

• choosing (and implementing) problems, performance 
measures, visualization, stat. tests, ...

• running a set of algorithms

Need: Benchmarking



that's where COCO comes into play

Comparing Continuous Optimizers Platform

https://github.com/numbbo/coco



automatized benchmarking



benchmarking is non-trivial



hence, COCO implements a

reasonable, well-founded, and

well-documented

pre-chosen methodology 



How to benchmark algorithms

with COCO?



https://github.com/numbbo/coco



https://github.com/numbbo/coco



https://github.com/numbbo/coco



https://github.com/numbbo/coco



https://github.com/numbbo/coco



https://github.com/numbbo/coco



https://github.com/numbbo/coco



requirements 

& download

requirements 

& download

https://github.com/numbbo/coco



installation I: experimentsinstallation I: experiments

https://github.com/numbbo/coco



installation II: postprocessinginstallation II: postprocessing

https://github.com/numbbo/coco



coupling algo + COCOcoupling algo + COCO

https://github.com/numbbo/coco



Simplified Example Experiment in Python
import cocoex

import scipy.optimize

### input

suite_name = "bbob"

output_folder = "scipy-optimize-fmin"

fmin = scipy.optimize.fmin

### prepare

suite = cocoex.Suite(suite_name, "", "")

observer = cocoex.Observer(suite_name,

"result_folder: " + output_folder)

### go

for problem in suite:  # this loop will take several minutes

problem.observe_with(observer)  # generates the data for

# cocopp post-processing

fmin(problem, problem.initial_solution)

Note: the actual example_experiment.py contains more 

advanced things like restarts, batch experiments, other 

algorithms (e.g. CMA-ES), etc.



running the experimentrunning the experiment

https://github.com/numbbo/coco

tip:

start with small #funevals (until bugs fixed )

then increase budget to get a feeling

how long a "long run" will take

tip:

start with small #funevals (until bugs fixed )

then increase budget to get a feeling

how long a "long run" will take



postprocessingpostprocessing

https://github.com/numbbo/coco

data from 200+ algorithms can be accessed directly

through its name (see 
http://coco.gforge.inria.fr/doku.php?id=algorithms )

data from 200+ algorithms can be accessed directly

through its name (see 
http://coco.gforge.inria.fr/doku.php?id=algorithms )



Result Folder



Automatically Generated Results



Automatically Generated Results



Automatically Generated Results



Automatically Generated Results



so far:

data for 200+ algorithm variants

(some of which on noisy or multiobjective test functions)

136 workshop papers

by 114 authors from 28 countries

used by another 77 students in the last two years



On

• real world problems
• expensive

• comparison typically limited to certain domains

• experts have limited interest to publish

• "artificial" benchmark functions
• cheap

• controlled

• data acquisition is comparatively easy

• problem of representativeness

Measuring Performance



• define the "scientific question"

the relevance can hardly be overestimated

• should represent "reality"

• are often too simple?

remind separability

• a number of testbeds are around

• account for invariance properties

prediction of performance is based on “similarity”, 
ideally equivalence classes of functions

Test Functions



Available Test Suites in COCO

bbob 24 noiseless fcts 140+ algo data sets

bbob-noisy 30 noisy fcts 40+ algo data sets

bbob-biobj 55 bi-objective fcts 16 algo data sets

soon to be released:

bbob-largescale

bbob-constrained

bbob-biobj-ext



Meaningful quantitative measure
• quantitative on the ratio scale (highest possible)

"algo A is two times better than algo B" is a meaningful 
statement

• assume a wide range of values 

• meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world

How Do We Measure Performance?



runtime or first hitting time is the prime candidate
(we don't have many choices anyway)



Two objectives:

• Find solution with small(est possible) 
function/indicator value

• With the least possible search costs (number of 
function evaluations)

For measuring performance: fix one and measure the 
other

How Do We Measure Performance?



convergence graphs is all we have to start with...

Measuring Performance Empirically
fu

n
c
ti
o
n
 v

a
lu

e
 o

r



ECDF:

Empirical Cumulative Distribution Function of the
Runtime

[aka data profile]



A Convergence Graph
A Convergence Graph



First Hitting Time is Monotonous



15 Runs



target

15 Runs ≤ 15 Runtime Data Points



Empirical CDF
1

0.8

0.6

0.4

0.2

0

the ECDF of run 
lengths to reach 
the target

● has for each 
data point a 
vertical step of 
constant size

● displays for 
each x-value 
(budget) the 
count of 
observations to 
the left (first 
hitting times)

Empirical Cumulative Distribution



Empirical CDF
1

0.8

0.6

0.4

0.2

0

interpretations 
possible:

● 80% of the runs 
reached the 
target

● e.g. 60% of the 
runs need 
between 2000 
and 4000 
evaluations

Empirical Cumulative Distribution



Reconstructing A Single Run



50 equally
spaced targets

Reconstructing A Single Run



Reconstructing A Single Run



Reconstructing A Single Run



the empirical CDF
makes a step for 
each star, is 
monotonous and 
displays for 
each budget the 
fraction of 
targets achieved 
within the 
budget

1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run



the ECDF recovers 
the monotonous 
graph, 
discretized and 
flipped
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0.8
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0.4
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Reconstructing A Single Run



1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run

the ECDF recovers 
the monotonous 
graph, 
discretized and 
flipped



Aggregation

15 runs



Aggregation

15 runs

50 targets



Aggregation

15 runs

50 targets



15 runs

50 targets

ECDF with 750 
steps

Aggregation



50 targets from 
15 runs 

...integrated in a 
single graph

Aggregation



area over the 
ECDF curve

=
average log 

runtime
(or geometric avg. 
runtime) over all 

targets (difficult and 
easy) and all runs

50 targets from 
15 runs 
integrated in a 
single graph

Interpretation



Fixed-target: Measuring Runtime



Fixed-target: Measuring Runtime

• Algo Restart A:

• Algo Restart B:

𝑹𝑻𝑨
𝒓

ps(Algo Restart A) = 1

𝑹𝑻𝑩
𝒓

ps(Algo Restart B) = 1



Fixed-target: Measuring Runtime

• Expected running time of the restarted algorithm:

𝐸 𝑅𝑇𝑟 =
1 − 𝑝𝑠
𝑝𝑠
𝐸 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 + 𝐸[𝑅𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙]

• Estimator average running time (aRT):

 𝑝𝑠 =
#successes

#runs

 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐 = Average evals of unsuccessful runs

 𝑅𝑇𝑠𝑢𝑐𝑐 = Average evals of successful runs

𝑎𝑅𝑇 =
total #evals

#successes



ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated 
restarted algorithms:



Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

• never aggregate over dimension

• but often over targets and functions

• can show data of more than 1 algorithm at a time

150 algorithms

from BBOB-2009

till BBOB-2015

150 algorithms

from BBOB-2009

till BBOB-2015



...comparing aRT values over several algorithms

Another Interesting Plot...



...comparing aRT values over several algorithms

Another Interesting Plot...

y axis shows 

runtime

in log-scale:

5 "=" 1e5*DIM

dimension



...comparing aRT values over several algorithms

Another Interesting Plot...

aRT value

[if < ∞]
to reach 

given target

precision

a star indicates statistically 

significant results compared

to all other displayed algos

median runlength

of unsuccessful runs



...comparing aRT values over several algorithms

Another Interesting Plot...

artificial best 

algorithm

from

BBOB-2016

scaling with 

dimension
linear



...are scatter plots

Interesting for 2 Algorithms...

aRT for algorithm A 

a
R

T
fo

r 
a
lg

o
ri

th
m

 B

dimensions:

one marker 

per target



...but they are probably less interesting for us here

There are more Plots...



The single-objective BBOB functions



• 24 functions in 5 groups:

• 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

bbob Testbed



• All COCO problems come in form of instances

• e.g. as translated/rotated versions of the same 
function

• Prescribed instances typically change from year to 
year

• avoid overfitting

• 5 instances are always kept the same

Plus:

• the bbob functions are locally perturbed by non-
linear transformations

Notion of Instances



• All COCO problems come in form of instances

• e.g. as translated/rotated versions of the same 
function

• Prescribed instances typically change from year to 
year

• avoid overfitting

• 5 instances are always kept the same

Plus:

• the bbob functions are locally perturbed by non-
linear transformations

Notion of Instances

f10 (Ellipsoid) f15 (Rastrigin)



the recent extension to

multi-objective optimization
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better

worse

incomparable

500 1000 1500 2000 2500 3000 3500

cost

performance

5

10

15

20

Multiobjective Optimization (MOO)

Multiple objectives that have to be optimized simultaneously

Multiobjective Optimization (MOO)

Multiple objectives that have to be optimized simultaneously

max

min

incomparable
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better

worse

incomparable

500 1000 1500 2000 2500 3000 3500

cost

performance

5

10

15

20

Observations:  there is no single optimal solution, but

 some solutions (   ) are better than others (   )

max

min

incomparable
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better

worse

incomparable

500 1000 1500 2000 2500 3000 3500

cost

performance

5

10

15

20

max

min

incomparable
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dominating

dominated

incomparable

500 1000 1500 2000 2500 3000 3500

cost

performance

5

10

15

20

max

min

incomparable
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500 1000 1500 2000 2500 3000 3500

cost

performance

5

10

15

20

Pareto set: set of all non-dominated solutions (decision space)

Pareto front: its image in the objective space

currently non-

dominated front

(approximation)

Vilfredo Pareto 

(1848 –1923)

wikipedia

max

min
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500 1000 1500 2000 2500 3000 3500

cost

performance

5

10

15

20
true Pareto front

(Pareto efficient 

frontier)

Vilfredo Pareto 

(1848 –1923)

wikipedia

Pareto set: set of all non-dominated solutions (decision space)

Pareto front: its image in the objective space

max

min
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f2

f1

x3

x1

decision space objective space 

solution of Pareto-optimal set

non-optimal decision vector

vector of Pareto-optimal front

non-optimal objective vector

x2

max

min



92TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 21, 2018© Dimo Brockhoff, Inria 92

Mastertitelformat bearbeitenA Brief Introduction to Multiobjective Optimization

f2

f1

f2

f1

nadir point

ideal pointShape Range

min

min

min

min

ideal point: best values

nadir point: worst values
obtained for Pareto-optimal points



93TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 21, 2018© Dimo Brockhoff, Inria 93

Mastertitelformat bearbeiten

Idea:

 transfer multiobjective problem into a set problem

 define an objective function (“quality indicator”) on sets

Important:

 Underlying dominance relation (on sets) should be reflected by

the resulting set comparisons!

Quality Indicator Approach to MOO

max

min

max

min

𝑨 ≼ 𝑩
neither 𝑨 ≼ 𝑩
nor 𝑩 ≼ 𝑨
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I(A)
A

A

I(A) = volume of the

weakly dominated area

in objective space

I(A,B) = how much needs A to

be moved to weakly dominate B

A     B : I(A)  I(B) A     B : I(A,B)  I(B,A)

unary hypervolume indicator binary epsilon indicator

A’

max

max

max

max
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R

A

I(A,R) = how much needs A to

be moved to weakly dominate R

A     B : I(A,R)  I(B,R)

unary epsilon indicator

A’ A

I(A) = 
1

Λ
 

𝜆∈Λ

min
𝑎∈A
max
𝑗=1..𝑚
𝜆𝑗|𝑧𝑗
∗ − 𝑎𝑗|

A     B : I(A)  I(B)

unary R2 indicator

max

max

max

max

𝒛∗

slope

based

on 𝜆
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R

A

I(A,R) = how much needs A to

be moved to weakly dominate R

A     B : I(A,R)  I(B,R)

unary epsilon indicator

A’ A

I(A) = 
1

Λ
 

𝜆∈Λ

min
𝑎∈A
max
𝑗=1..𝑚
𝜆𝑗|𝑧𝑗
∗ − 𝑎𝑗|

A     B : I(A)  I(B)

unary R2 indicator

max

max

max

max

𝒛∗



• 55 functions by combining 2 bbob functions

bbob-biobj Testbed























• 55 functions by combining 2 bbob functions

bbob-biobj Testbed























• 55 functions by combining 2 bbob functions

• 15 function groups with 3-4 functions each
• separable – separable, separable – moderate, separable -

ill-conditioned, ...

• 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

• instances derived from bbob instances:

• no normalization (algo has to cope with different 
orders of magnitude)

• for performance assessment: ideal/nadir points 
known

bbob-biobj Testbed



• Pareto set and Pareto front unknown
• but we have a good idea of where they are by running 

quite some algorithms and keeping track of all non-
dominated points found so far

• Various types of shapes

bbob-biobj Testbed (cont'd)



bbob-biobj Testbed (cont'd)
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algorithm quality = 

normalized* hypervolume (HV)

of all non-dominated solutions

if a point dominates nadir

closest normalized* negative distance

to region of interest [0,1]2

if no point dominates nadir

* such that ideal=[0,0] and nadir=[1,1]

Bi-objective Performance Assessment



We measure runtimes to reach (HV indicator) targets:

• relative to a reference set, given as the best Pareto 
front approximation known (since exact Pareto set 
not known)

• actual absolute hypervolume targets used are

HV(refset) – targetprecision

with 58 fixed targetprecisions between +1 and -10-4

(same for all functions, dimensions, and instances) in 
the displays

Bi-objective Performance Assessment
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1 Mon, 17.9.2018

Thu, 20.9.2018

Monday's lecture: introduction, example problems, problem types

groups defined via wiki

everybody went (actively!) through the Getting Started part of

github.com/numbbo/coco  remaining part difficulties in cont. opt.

2 Fri, 21.9.2018  today's lecture "Benchmarking",  final adjustments of groups 

everybody can run and postprocess the example experiment ( ~1h for 

final questions/help during the lecture)

3 Fri, 28.9.2018 lecture "Introduction to Continuous Optimization"

4 Fri, 5.10.2018 lecture "Gradient-Based Algorithms"

5 Fri, 12.10.2018 lecture "Stochastic Algorithms and DFO"

6 Fri, 19.10.2018 lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr."

deadline for submitting data sets

7

Wed, 24.10.2018

Fri, 26.10.2018

deadline for paper submission

final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

29.10.-2.11.2018 vacation aka learning for the exams

Thu, 8.11.2018 /

Fri, 9.11.2018

oral presentations (individual time slots)

Fri, 16.11.2018 written exam

Course Overview

All deadlines:

23:59pm Paris time

All deadlines:

23:59pm Paris time



105TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 21, 2018© Dimo Brockhoff, Inria 105

Mastertitelformat bearbeiten

I hope it became clear...

...what are important problem difficulties in continuous optimization

...what are the important issues in algorithm benchmarking

...which functionality is behind the COCO platform

...and how to measure performance in particular

...what are the basics of multiobjective optimization

...and what are the next important steps to do:

read the assigned paper and implement the algorithm

document everything on the wiki

run COCO experiment with your algorithm and share your

data until Friday 19th of October, 2018

Conclusions Benchmarking Continuous Optimizers
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And now...

...time for your questions and problems

around COCO


