Introduction to Optimization:
Benchmarking

September 21, 2018
TC2 - Optimisation
Université Paris-Saclay, Orsay, France

;’ , Dimo Brockhoff
W Inria Saclay — lle-de-France

NWENTO! THI ITAL WORLD

Course Overview

1

o o1 b~ O

Mon, 17.9.2018
Thu, 20.9.2018

Fri, 21.9.2018

Fri, 28.9.2018
Fri, 5.10.2018

Fri, 12.10.2018
Fri, 19.10.2018

Wed, 24.10.2018

Fri, 26.10.2018
29.10.-2.11.2018
Thu, 8.11.2018 /
Fri, 9.11.2018
Fri, 16.11.2018

Monday's lecture: introduction, example problems, problem types
groups defined via wiki

everybody went (actively!) through the Getting Started part of
github.com/numbbo/coco

lecture "Benchmarking", final adjustments of groups
everybody can run and postprocess the example experiment (~1h for
final questions/help during the lecture)

lecture "Introduction to Continuous Optimization"
lecture "Gradient-Based Algorithms"

lecture "Stochastic Algorithms and DFO"

lecture "Discrete Optimization |: graphs, greedy algos, dyn. progr."
deadline for submitting data sets

deadline for paper submission

final lecture "Discrete Optimization Il: dyn. progr., B&B, heuristics"
vacation aka learning for the exams

oral presentations (individual time slots)

All deadlines:
23:59pm Paris time

written exam

© Dimo Brockhoff, Inria

TC2: Introduction to Optimization, U. Paris-Saclay, Se

Course Overview

1

o o1 b~ O

Mon, 17.9.2018
Thu, 20.9.2018

Fri, 21.9.2018

Fri, 28.9.2018
Fri, 5.10.2018

Fri, 12.10.2018
Fri, 19.10.2018

Wed, 24.10.2018

Fri, 26.10.2018
29.10.-2.11.2018

Thu, 8.11.2018 /
Fri, 9.11.2018

Fri, 16.11.2018

Monday's lecture: introduction, example problems, problem types
groups defined via wiki

everybody went (actively!) through the Getting Started part of
github.com/numbbo/coco @ remaining part difficulties in cont. opt.

© today's lecture "Benchmarking", @ final adjustments of groups
everybody can run and postprocess the example experiment (@ ~1h for
final questions/help during the lecture)

lecture "Introduction to Continuous Optimization"
lecture "Gradient-Based Algorithms"

lecture "Stochastic Algorithms and DFO"

lecture "Discrete Optimization |: graphs, greedy algos, dyn. progr."
deadline for submitting data sets

deadline for paper submission
final lecture "Discrete Optimization Il: dyn. progr., B&B, heuristics"
vacation aka learning for the exams

oral presentations (individual time slots)

All deadlines:
23:59pm Paris time

written exam

© Dimo Brockhoff, Inria

TC2: Introduction to Optimization, U. Paris-Saclay, S

® Problem Difficulties
in Continuous Optimization

What Makes a Function Difficult to Solve?

= dimensionality
(considerably) larger than three
* non-separability
dependencies between the objective variables
= ill-conditioning
" ruggedness

non-smooth, discontinuous, multimodal, and/or
noisy function

cut from 3D example,
solvable with an
evolution strategy

© Dimo Brockhoff, Inria

Curse of Dimensionality

» The term Curse of dimensionality (Richard Bellman) refers to
problems caused by the rapid increase in volume associated
with adding extra dimensions to a (mathematical) space.

= Example: Consider placing 100 points onto a real interval, say
10,1]. To get similar coverage, in terms of distance between
adjacent points, of the 10-dimensional space [0,1]*° would
require 1001° = 102 points. The original 100 points appear now
as isolated points in a vast empty space.

= Consequently, a search policy (e.g. exhaustive search) that is
valuable in small dimensions might be useless in moderate or
large dimensional search spaces.

© Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Sep.

Separable Problems

Definition (Separable Problem)
A function f is separable if

argmin f(xq, ..., x,) = (argmin f(xq,...),...,argmin f (..., xn))
(X1,Xn) X1 Xn

= it follows that f can be optimized in a sequence of
n independent 1-D optimization processes

Example: 66 6 6 6 ©
Additively decomposable functions PO OO
0 ©©O©©O© O ¢

N 1.0.000 0

FOy, o x,) = Z £.0x) VosBE0:

— NP AN AYAY

Rga;trigin function :’@“00(12 ‘*@’ﬂ?@“
-3 -2 =1 i 1 2 3

© Dimo Brockhoff, Inria

Non-Separable Problems

Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system
= f:x+— f(x) separable
= f:x+— f(Rx) non-separable
R rotation matrix

3 4 o - L) ot ‘-L" - TR 3 AN i = I I_':'f' ey IIE"-U-';I {
©® © © 6 0 © 0206 206
» © O @O © G 2 Vo290 ~Y
.-'I.:_;f'\- ') S / e Ty ./-:.__E]\-, :';:I'l‘; 6 @' 8] '{i@k‘] l"\:—y ':_f]z' i E_*j.
A A LR AT b o] P el -\| ' i | ==\
SR (@) (0 (D) W = =7 O =9
15@’@ © © © R @6 (*‘*‘@ 6 ©lE
Lol -] X = ~ L : '.‘____, = = - il D .'.-. = — L i = \
) OO D O @ DB~ I~ 20D~
oD (@ © @ © © @ vdl@) (,_ﬁ@ e Y G
(=) ' . & w 4 e (i V| __. . = 1 ' o = I - R
) 0 © © © O ¢ — 020 2
-1 _.-_-._L_,,-f ___”\"'—.- Q:a'j '\'_9/)' = bty = M -1F —= "\-__:,-'.' O l.-'—““\, I"‘—-f (9 IHI]
{Q - :_,' (o O -'._'. i '_:S _l\l‘.‘.}_;l.- — I;.—..;_ | _./l .\I Liderd /“1.
T e e =3 0 == = = = e
© © © © 0 © Vo rm 2o 2«
3 = o) e : al WA SN =
-3 -2 -1 0 1 2] -3 -2 -1 0 1 2 3

[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in
evolution strategies: The generating set adaptation”. Sixth ICGA, pp. 57-64, Morgan Kaufmann

[2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark
Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

© Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Sep.

llI-Conditioned Problems: Curvature of Leve

Consider the convex-quadratic function
1 1 z 1 z
f(X) = — (x — x*)TH(x — x*) = — hi l-xl-z + — hlJXlX]
2 2 i 2 i ’

H is Hessian matrix of f and symmetric positive definite

gradient direction —f'(x)’
Newton direction —H~1f'(x)!

lll-conditioning means squeezed level sets (high curvature).

Condition number equals nine here. Condition numbers up to 1070
are not unusual in real-world problems.

If H = I (small condition number of H) first order information (e.g.
the gradient) is sufficient. Otherwise second order information

(estimation of H~1) information necessary.

TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 21

© Dimo Brockhoff, Inria

Different Notions of Optimum

Unconstrained case
» Jocal vs. global
* |ocal minimum x*: 3 a neighborhood V of x* such that
vx eV:f(x) = f(x¥)
= global minimum: vx € Q: f(x) = f(x*)
= strict local minimum if the inequality is strict

Constrained case
= a bit more involved
= hence, later in the lecture ©

© Dimo Brockhoff, Inria

© Benchmarking Optimization Algorithms

challenging optimization problems
appear in many
scientific, technological and industrial domains

Practical (Numerical) Blackbox Optimization

Given:

x € R" f(x)EI[?J">

derivatives not available or not useful

Not clear:

which of the many algorithms should | use on my
problem?

Numerical Blackbox Optimizers

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder & Mead 1965]
Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)

Differential Evolution [Storn & Price 1997]

Particle Swarm Optimization [Kennedy & Eberhart 1995]

Evolution Strategies, CMA-ES
[Rechenberg 1965, Hansen & Ostermeier 2001]
Estimation of Distribution Algorithms (EDAS)

[Larrafiaga, Lozano, 2002]
Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]
. [Holland 1975, Goldberg 1989]
Simulated annealing [Kirkpatrick et al. 1983]
Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

Numerical Blackbox Optimizers

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder & Mead 1965]
Pattern search [Hooke and Jeeves 1961]
Trust-reaion methods (NEWUOA. BOBYQA) [Powell 2006. 20091

choice typically not immediately clear although practitioners
have knowledge about which difficulties their problem has
(e.g. multi-modality, non-separability, ...)

* CVOIULIOII DUrdleyles, VIVIA-COD
[Rechenberg 1965, Hansen & Ostermeier 2001]

« Estimation of Distribution Algorithms (EDASs)

[Larrafiaga, Lozano, 2002]
« Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]
. [Holland 1975, Goldberg 1989]
Simulated annealing [Kirkpatrick et al. 1983]
Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

Need: Benchmarking

 understanding of algorithms
* algorithm selection

* putting algorithms to a standardized test
 simplify judgement
 simplify comparison
 regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

» choosing (and implementing) problems, performance
measures, visualization, stat. tests, ...

* running a set of algorithms

that's where COCO comes into play

Comparing Continuous Optimizers Platform
https://github.com/numbbo/coco

automatized benchmarking

benchmarking is non-trivial

hence, COCO implements a
reasonable, well-founded, and
well-documented
pre-chosen methodology

How to benchmark algorithms
with COCO?

O numbbo/coco: Mumerical .. *
6 (i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':h

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

O This repository Pull requests Issues Marketplace Gist

& numbbo / coco ® Unwatch> 15 W Unstar 38 24
¢y Code Issues 133 Pull requests 1 Projects 9 Settings Insights =

Numerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/

Add topics

D 16,007 commits ¥ 11 branches > 31 releases 4% 15 contributors

Branch: master = New pull request Create new file = Upload files = Find file Clone or download «

1"} brockho committed on GitHub Merge pull request #1352 from numbboy/development - Clone with HTTPS & Use 35H

_ i)]] Use Git or checkout with SWN using the web URL.
B code-experiments A little more verbose error message when suite regression test fai

https://github.com/numbbo/coco.git @-
8 code-postprocessing Hashes are back on the plots.
@ code-preprocessing Fixed preprocessing to work correctly with the extended biobjectiv Open in Desktop Download ZIP
| howtos Update create-a-suite-howto.md 4 months ago
E) .clang-format raising an error in bbob2009_logger.c when best_value is MULL. Plus s... 2 years ago

E) hgignare raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago

E) AUTHORS small correction in AUTHORS a year ago

[

~ https://github.com/numbbo/coco

=]
LEL]

Q numbbo/coco: Mumerical ...

(' 'ﬁ:' & GitHub, Inc. (US] https://github.com/numbbo/coco £ ﬁ' E l' ‘ﬁ‘

[2) Most Visited @ Getting Started & COCO-Algorithms €) numbbo/numbbe - Gi.. [RandOpt @& CMAP @ Inria GitLab T RER B from lab

L humbbo / coco @ Unwatch~ 15 WUnstar 38 YFork 24
<» Code Issues 133 Pull requests 1 Projects 9 Settings Insights =

Mumerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/

Add topics

0 16,007 commits ¥ 11 branches @ 31 releases AL 15 contributors

Branch: master v MNew pull request Create new file | Upload files | Find file Clone or download

1"} brockho committed on GitHub Merge pull request #1352 from numbboy/development - Clone with HTTPS (@ Use 55H

))]) Use Git or checkout with SWN using the web URL.
code-experiments A little more verbose error message when suite regression test fai

https://github.com/numbbo/coco.git @-
code-postprocessing Hashes are back on the plots.
code-preprocessing Fixed preprocessing to work correctly with the extended biobjectiv Open in Desktop Download ZIP
howtos Update create-a-suite-howto.md 4 months ago
clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago
hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago
AUTHORS small correction in AUTHORS 3 year ago
LICENSE Update LICENSE 11 months ago

README.md Added link to #1335 before dosing. a month ago

~ https://github.com/numbbo/coco

C=EE X)

O numbbo/coco: Mumerical .. *

(i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':h ﬁ E ¥+ H

M

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

Numerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/

Add topics

{0 16,007 commits ¥ 11 branches > 31 releases AL 15 contributors

Branch: master + New pull request Create new file = Upload files = Find file Clone or download +

L") brockho committed on GitHub Merge pull request #1352 from numbbo/development - Clone with HTTPS 3 Use 55H
_ .)]) _ Use Git or checkout with 5¥N using the web URL.
B code-experiments A little more verbose error message when suite regression test fai

https://github.com/numbbo/coco.git @-
B code-postprocessing Hashes are back on the plots.

B code-preprocessing Fixed preprocessing to work correctly with the extended biobjectiv Open in Desktop Download ZIP

i howtos Update create-a-suite-howto.md 4 months ago

£lang-format raising an error in bbob2009_logger.c when best_value is MULL. Plus s... 2 years ago
hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago
AUTHORS small correction in AUTHORS a year ago
LICEMSE Update LICEMNSE 11 months ago
README.md Added link to #1335 before dosing. a month ago
do.py refactoring here and there in do.py to get closer to PEPS specifications 2 months ago

doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 2 years ago

~ https://github.com/numbbo/coco

O numbbo/coco: Mumerical .. *
| (i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':h ﬁ E ¥+ H

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

Branch: master = New pull request Create new file = Upload files = Find file Clone or download « B

1"} brockho committed on GitHub Merge pull request #1352 from numbboy/development - Clone with HTTPS (@ Use 55H

_ i)]] Use Git or checkout with SWN using the web URL.
B code-experiments A little more verbose error message when suite regression test fai

https://github.com/numbbo/coco. git B

8 code-postprocessing Hashes are back on the plots.
B code-preprocessing Fixed preprocessing to work correctly with the extended biobjectiv Open in Desktop Download ZIP
| howtos Update create-a-suite-howto.md 4 months ago
£lang-format raising an error in bbob2009_logger.c when best_value is MULL. Plus s... 2 years ago
hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago
AUTHORS small correction in AUTHORS a year ago
LICENSE Update LICENSE 11 months ago
README.md Added link to #1335 before dosing. a month ago

do.py refactoring here and there in do.py to get closer to PEPS specifications 2 months ago

doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 2 years ago

EE README.md

numbbo/coco: Comparing Continuous Optimizers

~ https://github.com/numbbo/coco

C=""E

O numbbo/coco: Mumerical .. *
, (i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':h ﬁ E ¥+ H
B Most Visited @ Getting Started & COCO-Algorithms €)) numbbo/numbho - Gi.. RandOpt @ CMAP @ Inria GitLab T RER B from lab

B code-preprocessing Fixed preprocessing to work correctly with the extended biobjectiv Open in Desktop Download ZIP
howtos Update create-a-suite-howto.md 4 months ago
£lang-format raising an error in bbob2009_logger.c when best_value is MULL. Plus s... 2 years ago
hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... 2 years ago
AUTHORS small correction in AUTHORS a year ago
LICEMSE Update LICEMSE 11 months ago
README.md Added link to #1335 before dosing. a month ago

do.py refactoring here and there in do.py to get closer to PEPS specifications 2 months ago

doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 2 years ago

EE README.md

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in ANSI € with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous
optimizers, AKA non-linear solvers for numerical optimization. Languages currently available are

® C/C++
® Java

® MATLAB/Octave

O numbbo/coco: Mumerical .. *
(') 'ii;' & GitHub, Inc. (US) https://github.com/numbbo/coco [C?Sec'r':h

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab
LICENSE Update LICEMSE 11 months ago

README.md Added link to #1335 before closing. a month ago
do.py refactoring here and there in do.py to get closer to PEPS specifications 2 months ago

doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 2 years ago

EB README.md

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in ANSI C with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous
optimizers, AKA non-linear solvers for numerical optimization. Languages currently available are

® C/C++
Java
MATLAB/Octave

Python
Contributions to link further languages (including a better example in c++) are more than welcome.
For more information,

® read our benchmarking quidelines introduction

® read the COCO experimental setup description

O numbbo/coco: Mumerical .. *
(') 'ii;' & GitHub, Inc. (US) https://github.com/numbbo/coco [C?Sec'r':h

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in AnsI ¢ with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous

optimizers, AKA non-linear solvers for numerical optimization. Languages currently available are

® C/C++
® Java

® MATLAB/Octave

er languages (including a better example in C++) are more than welcome.
For more information,

® read our benchmarking guidelines introduction
® read the COCO experimental setup description

® see the bbob-biobj and bbob-biobj-ext COCO multi-objective functions testbed documentation and the specificities

of the performance assessment for the bi-objective testbeds.
consult the BBOB workshops series,

consider to register here for news,

see the previous COCO home page here and

see the links below to learn more about the ideas behind CoCO.

6 (i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':r“

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

0. Check out the Requirements above. req ul re m e nts
1. Download the COCO framework code from github, & d Own Ioad

® either by clicking the Download ZIP button and unzip the zip file,

® or by typing git clone https://github.com/numbbo/coco.git . This way allows to remain up-to-date easily (but needs
git to be installed). After cloning, git pull keeps the code up-to-date with the latest release.

The record of official releases can be found here. The latest release corresponds to the master branch as linked above.

2.In a system shell, cd into the coco or coco-<version> folder {framework root), where the file do.py can be found.
Type, i.e. execute, one of the following commands once

python do. run-c
python do. run-java
python do. run-matlab
python do. run-octave
python do. run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the
example experiment once. The build result and the example experiment code can be found under code-experiments/build
/<language> (<language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall be post-processed, run

python do.py install-postprocessing

O numbbo/coco: Mumerical .. *
6 (i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':r“
18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab

Getting Started

0. Check out the Requirements above.
1. Download the COCO framework code from github,

® either by clicking the Download ZIP button and unzip the zip file,

® or by typing git clone https://github.com/numbbo/coco.git . This way allows to remain up-to-date easily (but needs
git to be installed). After cloning, git pull keeps the code up-to-date with the latest release.

The record of official releases can be found here. The latest release corresponds to the master branch as linked above.

2.In a system shell, cd into the coco or coco-<version> folder {framework root), where the file do.py can be found.
Type, i.e. execute, one of the following corg

installation I: experiments

run-java
run-matlab

run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the
example experiment once. The build result and the example experiment code can be found under code-experiments/build
/<language> (<language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall be post-processed, run

python do.py install-postprocessing

O numbbo/coco: Mumerical .. *

(' (E;' & GitHub, Inc. (US) https://github.com/numbbo/coco

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab
example expenment once. he build result and the example expenment code can be found under code-experiments/build

/<language> (<language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall b

to (user-locally) install the post-processing. From here on,
builds to a new release.

4. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example_experiment.py . Run the example experiment (it already is compiled). As the details

vary, see the respective read-me’s and/or example experiment files:

c read me and example experiment
Java read me and example experiment
Matlab/Octave read me and example experiment

Python read me and example experiment

If the example experiment runs, connect your favorite algorithm to Coco: replace the call to the random search optimizer in
the example experiment file by a call to your algorithm (see above). Update the output result_folder , the algorithm_name

and algorithm_info of the observer options in the example experiment file.
Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

O numbbo/coco: Mumerical .. *

\ 6 (i) @ GitHub, Inc, (US) https://github.com/numbbo/coco c C?Sec'r':h ﬂ E ¥+ @

18} Most Visited @ Getting Started & COCO-Algerithms € numbbo/numbbo - Gi.. [RandOpt @& CMAP @ Inria GitLlab) RERE from lab
example expenment once. he build result and the example expenment code can be found under code-experiments/build

/<language> (<language>=matlab for Octave). python do.py lists all available commands.

3. On the computer where experiment data shall be post-processed, run

python do.py install-postprocessing

to (user-locally) install the post-processing. From here on, do.py has done its job and is only needed again for updating the
builds to a new release.

4. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example_experiment.py . Run the example experiment (it already is compiled). As the details

see the respective read-me's and/or example experiment files:

c read me and example experiment
Java read me and example experiment

Matlab/Octave read me and example experiment Cou pl i ng algo + COCO

Python read me and example experiment

If the example experiment runs, connect your favorite algorithm to Coco: replace the call to the random search optimizer in
the example experiment file by a call to your algorithm (see above). Update the output result_folder , the algorithm_name

and algorithm_info of the observer options in the example experiment file.
Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

Simplified Example Experiment in Python

import cocoex
import scipy.optimize

input

suite name = "bbob"

output folder = "scipy-optimize-fmin"
fmin = scipy.optimize.fmin

prepare
suite = cocoex.Suite(suite name, "", "")
observer = cocoex.Observer (suite name,
"result folder: " + output folder)

go
for problem in suite: # this loop will take several minutes
problem.observe with (observer) # generates the data for
cocopp post-processing
fmin (problem, problem.initial solution)

Note: the actual example experiment.py contains more
advanced things like restarts, batch experiments, other
algorithms (e.g. CMA-ES), etc.

- https://github. Com/numbbo/coco

O numbbo/coco at develop., *
é (© & GitHub, Inc, (US) | https://github.com/numbbo/cocostree/development e || @ search

|2 Most Visited @ Getting Started & COCO-Algorithms €} numbbo/numbbe - Gi... A RandOpt @ CMAP @ Inria Gitlab) RER B from lab
Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

6. Postprocess the data from the results folder by typing

python -m cocopp [-o OUTPUT_FOLDERNAME] YOURDA

running the experiment

Any subfolder in the folder arguments will be searched fo
different folders collected under a single "root” YOURDATAFOLDER folder. We can also compare more than one algorithm by

specifying several data result folders generated by different algorithms.

| tip:
start with small #funevals (until bugs fixed ©)
then increase budget to get a feeling
how long a "long run" will take

8. The experiments can be parallelized with any re-distribution of single problem instances to batches (see
example_experiment.py for an example). Each batch must write in a different target folder (this should happen
automatically). Results of each batch must be kept under their separate folder as is. These folders then must be

- https://github. Com/numbbo/coco

O numbbo/coco at develop., *
é (© & GitHub, Inc, (US) | https://github.com/numbbo/cocostree/development e || @ search

|2 Most Visited @ Getting Started & COCO-Algorithms €} numbbo/numbbe - Gi... A RandOpt @ CMAP @ Inria Gitlab) RER B from lab
Another entry point for your own experiments can be the code-experiments/examples folder.

5. Now you can run your favorite algorithm on the bbob suite (for single-objective algorithms) or on the bbob-biobj and
bbob-biobj-ext suites (for multi-objective algorithms). Output is automatically generated in the specified data
result_folder . By now, more suites might be available, see below.

6. Postprocess the data from the results folder b

python -m cocopp [-o OUTPUT_FOLDERNAME] YOURDATAFOLDER [MORE_DATAFOLDERS]

Any subfolder in the folder arguments will be searched for logged data. That is, experiments from different batches can be in
different folders collected under a single "root” YOURDATAFOLDER

specifying several data result folders generated by different algg

postprocessing

A folder, ppdata by default, will be generated, which contains 3
file, useful as main entry point to explore the result with a brows®
the output folder name with the -o OUTPUT_FOLDERNAME option.

data from 200+ algorithms can be accessed directly
through its name (see
http://coco.gforge.inria.fr/doku.php?id=algorithms)

’ automatically). Results of each batch must be kept under their separate folder as is. These folders then must be

Result Folder

f(:\ " . # data-archive » data » gecco-bbob-1-24 » 2009 » rawdata » ppdata » - Search ppdata =

Organize « Include in library « Share with = Mew folder =+ 0 @

> Eavorites i Mame Date modified Type Size
-y
4. Downloads , BIPOP-CMA-ES_hansen_noiseless 03/06/2017 11:33 File folder

cocopp_commands.tex 03/06/2017 11:33 LaTeX Document

% Dropbox

o
il Recent Places] indexhtml 03/06/201711:33 Firefox HTML Doc...
L]

B [Cesktop
J IntelGraphicsProfiles

ppdata.html 03/06/2017 11:33 Firefox HTML Doc...

il Libraries
3 Documents Select a file
i Git to preview.
J"- Music
b=| Pictures
_|] Subwersion

B videos

f% Homegroup

(M Computer
- -
F -2 L VY U — LR Y

4 items State: 3% Shared

Automatically Generated Results

Post processing results

{(- (i) filey///C:/Users/dimo/Desktop/coco/BBOB/ data-archive/data/gecco-bbob-1-24/2008, @ || Q Search S al:=| 3 #

[2) Most Visited @ Getting Started & COCO-Algorithms €) numbbo/numbbe - Gi... [RandOpt @ CMAP @ Inria GitLlab) RER B from lab

Post processing results

Single algorithm data

BIPOP-CMA-ES hansen noiseless

Automatically Generated Results

: R

BIPOP-CMA-ES, templateBBOB... *

| € | () filey///C:/Users/dimo/Desktop/coco/BBOB/ data-archive/data/gecco-bbob-1-24/2009, @ || Q Search S al:=| + B

[2) Most Visited @ Getting Started & COCO-Algorithms €) numbbo/numbbe - Gi... [RandOpt @ CMAP @ Inria GitLlab) RER B from lab

BIPOP-CMA-ES

Home

Runtime distributions (ECDFs) per function

Runtime distributions (ECDFs) summary and function groups

Scaling with dimension for selected targets

Tables for selected targets

Runtime distribution for selected targets and f-distributions

Runtime loss ratios

Runtime distributions (ECDFs) over all targets

|bbab - f1-f24
51 targets in 10
115 instances

nction+target pairs

Automatically Generated Results

ppridmany

'(- @' file:/// T/ Users/dimo/Desktop/coco/BBOB/ data-archive/data/gecco-bbob-1-24,/2009, [Q, Search ﬁ' E lv 'ﬁ'

Most Visited @ Getting Started & COCO-Algorithms € numbbo/numbbo - Gi... RandOpt @ CMAP @ Inria Gitlab) RER B from lab

Overview page

Runtime distributions (ECDFs) per function

irs

1 Sphere 4 Skew Rastrigin-Bueche separ
bbb - 14 kg , 4o
51 targets in lDD..le-.m

15 instances.

1o bbod - 13

51 targets in 100 Je-ap
0.8 115 instances !

=
=]

im 10 1e-08 51 targats |

0.8 (15 instanc

e
o

=
™

2
-
=
S
=
.

2
o
Fd
=]

=
=]

5
a
]
=
a
5
c
3
£
¥
5
=
2
T
2
o

Propertian of Tunctien+target pairs
=
oy
Prapartian of Tunction+target pairs
o
: o
Prapartian of Tunction+target pa

g dan
2 4 b]
laglD of (# fevals [dirmension)

5 Linear slope

51 targats 0

0.8 (15 instanc 0.8

=
S

"

|
Wan
| [
o Lan] Saup
4 b 1 [a
i) 10910 of [# f-evals / dimension)

10} Ellipsoid

Propertion of Tunctien+target pairs
b 2 = ¥
L. . 5

Prapartion of Tuncticn+target pairs

Pragartion of function+targst pairs
Pragartion of function+target pairs

1

L0 bbol - 112

51 targets in-
0.5 {15 instanceq
|

1.0 ook - 110
51 targats |
0.8 1S instance

=
Propertion of Tunctisn+target pairs
£ e o
ol
Prapartion of Tuncticn+target pairs
=
Fy

=
ra
2
=
ra

=
=]
=
=]

2

i 4 b
laglD of (# f-evals § dirmension)

Pragartian of function+target pairs
Pragartian of function+target pairs
o
o

airs
airs

Automatically Generated Results

ppfigdim
| € | () filey///C:/Users/dimo/Desktop/coco/BBOB/ data-archive/data/gecco-bbob-1-24/2009, @ || Q Search S al:=| + B

[2) Most Visited @ Getting Started & COCO-Algorithms €) numbbo/numbbe - Gi... [RandOpt @ CMAP @ Inria GitLlab) RER B from lab
Overview page

Average number of f~evaluations to reach target

2 Ellipsoid separable - 3 Rastrigin separable 4 Skew Rastrigin-Bueche separ 5 Linear slope

p.4 . 4 et

¢

15 instances stances 15 instances
0 Thesdife targets v U () shschue targets

10 20 2 3 5 10 20 20 40 2 3 5 20
& Attractive sector . 7 step-ellipsoid o 9 Posenbrock rotated =, 10 Ellipsoid

() A3 instances 15 instances mstances 15 instances 15 instances
buute argats % 0 wheoliite tErgets ¥ 0 fitsalits Eargats 0 wiheolite tErgets ¥ 4] mhsclits targets

2 3 5 0 20 40 2 3 5 10 20 2 3 5 10 20 2 3 5 10 20 40 2 3 5 .10 20
11 Discus o 12 Bent cigar 13 Sharp ridge 14 sum of different powers . 15 Rastrigin

15 instances 15 instances 3 nstances 15 instances
0 Shseins Rargats % 0 wheoliite tErgets mbsalute targets 4 ¥ () mibschura targets

2 3 5 o 20 40 2 3 5 l 1w 20 40 2 3 5 10 20 20 40 2 3 5 . 10 20 40
16 Weierstrass ¢ 17 Schaffer F7, condition 10 1B Schaffer F7, condition 1000 19 Griewank-Rosenbrock FBF2 _ 20 Schwefel x*sin{x)

5
4
3
2
1
0

so far:

data for 200+ algorithm variants
(some of which on noisy or multiobjective test functions)
136 workshop papers
by 114 authors from 28 countries

used by another 77 students in the last two years

Measuring Performance

On

» real world problems
* expensive
« comparison typically limited to certain domains
» experts have limited interest to publish

 "artificial" benchmark functions
» cheap
 controlled
 data acquisition is comparatively easy
* problem of representativeness

Test Functions

 define the "scientific question”
the relevance can hardly be overestimated
 should represent "reality”
e are often too simple?
remind separability
* a number of testbeds are around

« account for invariance properties

prediction of performance is based on “similarity”,
ideally equivalence classes of functions

Available Test Suites in COCO

bbob 24 noiseless fcts 140+ algo data sets
bbob-noisy 30 noisy fcts 40+ algo data sets
bbob-biobj 55 bi-objective fcts 16 algo data sets

soon to be released:
bbob-largescale
bbob-constrained
bbob-biobj-ext

How Do We Measure Performance?

Meaningful quantitative measure
* quantitative on the ratio scale (highest possible)

"algo A is two times better than algo B" is a meaningful
statement

e assume a wide range of values
* meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world

runtime or first hitting time is the prime candidate
(we don't have many choices anyway)

How Do We Measure Performance?

Two objectives:

 Find solution with small(est possible)
function/indicator value

* With the least possible search costs (number of
function evaluations)

For measuring performance: fix one and measure the
other

Measuring Performance Empirically
convergence graphs is all we have to start with...

fi 5!
N _U,,_: ___
S S
c al
= -:
o E K
o @ ox
=) el
© o i
> = |
g “
= 5
S o |Xedatarget 4 o N ™ S]
=
> !
e R R TR P PP 1 ...
(1v] i
= !
< |
i
i
|

number of function evaluations

ECDF:

Empirical Cumulative Distribution Function of the
Runtime

[aka data profile]

A Convergence Graph

110

100f M

oo M

function value

o R N — .

7 - — — S N — — -

60

log,,(function evaluations)

First Hitting Time is Monotonous

110

100f M

o0 M

function value

o R N — .

7 - — — S N — — -

60

log,,(function evaluations)

15 Runs

2n|eA uonouny

3
log,,(function evaluations)

2

15 Runs £ 15 Runtime Data Points

100

90

80

function value

70

1 2 3 4
log,,(function evaluations)

Empirical Cumulative Distribution

110 g
TR
¥ 1
. A \

100+

function value

70¢F

60

90+

80+

log,,(function evaluations)

the of run

lengths to reach
the target

has for each
data point a
vertical step of
constant size

displays for
each x-value
(budget) the
count of
observations to
the left (first
hitting times)

Empirical Cumulative Distribution

110 pymry interpretations
possible:
100} . 80% of the runs
o reached the
2 g0l target
-
s . e.g.60% of the
S gol runs need
= between 2000
and 4000
70t -
evaluations
60

log,,(function evaluations)

Reconstructing A Single Run

110 py—

100+

90+

80+

function value

70¢F

60

T 2 3 4
log,,(function evaluations)

Reconstructing A Single Run

50 equally
spaced targets

function value

log,,(function evaluations)

Reconstructing A Single Run

110py—

oo} o

YA k" T

function value

o 3 N — .

7 - — — S 3 — — -

60

T 2 3 4
log,,(function evaluations)

Reconstructing A Single Run

110 pv—

100+

90+

80+

function value

70¢

60

Reconstructing A Single Run

110 pv—

2

4

makes a step for
each star, is
| ; ; : 5 5 5 monotonous and
each budget the
8oL] fraction of
| | 5 | | | | targets achieved
within the
budget

function value

Reconstructing A Single Run

110

the ECDF recovers
the monotonous
graph,
discretized and
flipped

function value

o) NS - SO S SN N SRS RN S

) R e—"

log,o(function evaluations)

Reconstructing A Single Run

110py—

5 | 5 5 5 5 the ECDF recovers
200h N S o] the monotonous
: E E : : : : graph,
discretized and
90_ - ﬂipped

function value

60

T 2 3 4
log,o(function evaluations)

Aggregation

110 s

100

90

80

function value

70

60

15 runs

log,,(function evaluations)

Aggregation

[[Jr—

100

S I ql’nﬂ&u..mu.- -
T AL YAy

. T.t--l--u_.'t it
90 : AN Y, W W . Y .
- LS iAW e
ke Viaded Lo 7. L" oy LA
v ! %

-
t‘_t ML v o
W, P Flyh

80

function value

70

e -, '\“ o ‘ “'I'
's" LR Lk T hY
e v RPN T |.\l"'
e --'—H\.‘i}ﬂ.—.l'
e "'!'"‘L_ N « -
. . . . ! e \"‘""""!"'ﬂl"‘l‘- ~
60 3 \ﬂ-""u.ll- 71' Py A T aM

1 2 3 4
log,,(function evaluations)

15 runs
50 targets

Aggregation

110 g

100+

function value

70¢F

60

90+

80+

log,o(function evaluations)

15 runs
50 targets

Aggregation

110 g

100+

function value

70¢F

60

90+

80+

log,o(function evaluations)

15 runs
50 targets

Aggregation

110 paggees—
' ' 'I

100+

function value

70¢F

60

- _
oT0] SN\ |
vl gt
L/]

80+

log,o(function evaluations)

50 targets from

15 runs

...Integrated in a
single graph

Interpretation

110 pagey

100+

function value

60

90+
80+

50 targets from
15 runs
integrated in a
single graph

average log

runtime
(or geometric avg.
log(function evaluations) runtime) over all
targets (difficult and
easy) and all runs

Fixed-target: Measuring Runtime

ps(Algo A) << 1, fast convergence

Dy (A.lgo B) ~ 1, slow convergence

Fixed-target: Measuring Runtime

* Algo Restart A:

p<(Algo Restart A) = 1

* Algo Restart B:

p<(Algo Restart B) = 1

Fixed-target: Measuring Runtime

» Expected running time of the restarted algorithm:

1-p
E[RTT] = D - E[RTunsuccessful] + E[RTsuccessful]
S

« Estimator average running time (aRT):

__ #successes
Ps =

#runs

RT,,,succ = Average evals of unsuccessful runs

RT, .. = Average evals of successful runs

total #evals

aRT =
#successes

ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated
restarted algorithms:

.. 15phere/Sphere
bbob:biobj + f1 | | | 375
10 instances | | | i i

=
o

O
0o

b ooy

O
)

o
N

o
N

Proportion of function+target pairs

4 5 6 71 8
loal0 of (# f-evals / dimension)

Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

* never aggregate over dimension
* but often over targets and functions

« can show data of more than 1 algorlthm at a time

150 algorithms
from BBOB-2009
til BBOB-2015 7

o
N

\ Proporti

4 5 6 71 8
loal0 of (# f-evals / dimension)

0 1 2

Another Interesting Plot...

...comparing aRT values over several algorithms

_1 Sphere/Sphere

7
65 I e S
5v : wv ..
Al
e]
I]
&= DEMO :
1} + GA- MULTIOB}(NSGA-—II-}-------—-------—--------—-------—--;

=4

2 3 5 10 20 40

Another Interesting Plot...

...comparing aRT values over several algorithms

7 1 Sphere/Sphere

6lYr Yo Yoo 3 S

y axis shows 5 o o~ w— - N
runtime '
In log-scale:

D L I o _
=@= DEMO . - i

1L == GA-MULTIOBJ(NSGA-)]

010,10 Lo hotances TV ES

tali-""'t"Df"I""S' """"" e B I"J"""I""'j"l""'"""""'"'.'_"f:'."-'-"'"I""-':"-';.".'-'.'I """"" | -

=4

2 3 5 10 20 40
dimension

Y e

Another Interesting Plot...

...comparing aRT values over several algorithms
1 Sphere/Sphere median runlength

7 — ' | IIIIII/OfunS

I e a-star-in dlcati

successful runs

es statistically
sults compared
splayed algos

aRT value >l significant re:
[f<cw] |=@=DEMO 't o all other di
toreach 1f + GA- MULTIOB}{NSGA-H)--....-.......-._.....______________:
giver{target hyo sogo MRS

precision 2 3 5 10 20 40

Another Interesting Plot...

...comparing aRT values over several algorithms

_1 Sphere/Sphere

7
B Lo oo mmeereeee e T eeeeevrmmeceree e Sne e eececemrp e oo L
5 ’-\—; """"""" “—""“%’I’ """
5 *
/ - quadraliCe
) IS
linear
artificial best o]
algorithm == DEMO .
from 1} == GA- MULTIOB}(NSGA-—H-} ------------------------------------
BBOB-2016 ko 10 10 biapecz AES .
Otara'ét"uf"lé"5 """"" A i NN PPE AR

2 3 5 10 20

40

=== scaling with
I dimension

Interesting for 2 Algorithms...

dimensions:
...are scatter plots 2:+, 3:7, 5:x, 10:0, 20:0, 40:0,

0o
&

. LR A LRt T T

aRT for algorithm B
7 Sphere/Rastrigin
N W B N N %

17273 4 5 6 7 80
aRT for algorithm A

T T perfarget

There are more Plots...

...but they are probably less interesting for us here

The single-objective BBOB functions

* 6 dimensions: 2, 3, 5,

bbob Testbed

24 functions in 5 groups:

1 Separable Functions

f1 @ Sphere Function

f2 | @eEllipsoidal Function

f2 @ Rastrigin Function

f4 @ Biiche-Rastrigin Function
fz |@Linear Slope

2 Functions with low or moderate conditioning
fo |@Attractive Sector Function

f7 @ Step Ellipsoidal Function

fa |@PRosenbrock Function, original

fo @ Rosenbrock Function, rotated

3 Functions with high conditioning and unimodal
f10 |@Ellipsoidal Function

f11 @Discus Function

f12 @ EBent Cigar Function

f13 |@ 5Sharp Ridge Function

f14 @nDifferent Powers Function

4 Multi-modal functions with adequate global structure
f15 @ Rastrigin Function

f16 @ Weierstrass Function

f17 @ Schaffers F7 Function

f18 |@ 5chaffers F7 Functions, moderately ill-conditioned
f19 @@ Composite Griewank-Rosenbrock Function FEBF2
5 Multi-modal functions with weak global structure
f20 @ Schwefel Function

f21 @ Gallagher's Gaussian 101-me Peaks Function

f22 @ Gallagher's Gaussian 21-hi Peaks Function

f23 @Katsuura Function

f24 @ Lunacek bi-Rastrigin Function

10, 20, (40 optional)

Notion of Instances

* All COCO problems come in form of instances

* e.g. as translated/rotated versions of the same
function

* Prescribed instances typically change from year to
year

» avoid overfitting
5 instances are always kept the same

Plus:

* the bbob functions are locally perturbed by non-
linear transformations

Notion of Instances

5 s - ARSI NG Catat) = 10 ~
™

(Rastrigin) ° \‘& ;

4 -!

linear transformations

the recent extension to
multi-objective optimization

A Brief Introduction to Multiobjective Optimi

Multiobjective Optimization (MOO)
Multiple objectives that have to be optimized simultaneously

performance

incomparable

Q
5 Q

maXT incomparable

cost

| |
:1; 500 1000 1500 2000 2500 3000 3500

© Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 21

A Brief Introduction to Multiobjective Optimize

Observations: © there is no single optimal solution, but
® some solutions (e) are better than others (o)

performance

20

incomparable
15

Q
5 Q

maXT incomparable

| | cost
;E 500 1000 1500 2000 2500 3000 3500

© Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 21

A Brief Introduction to Multiobjective Optimize

u weakly Pareto dominates v (u <per v): V1 <t <k: fi(u) < fi(v)

u Pareto dominates v (u <par U)Z U SperV NV ;(par U

performance

20

incomparable
15

Q
5 Q

maXT incomparable

| | cost
;E 500 1000 1500 2000 2500 3000 3500

© Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 21

A Brief Introduction to Multiobjective Optimize

u weakly Pareto dominates v (u <per v): V1 <t <k: fi(u) < fi(v)

u Pareto dominates v (u <par U)Z U SperV NV ;(par U

performance

20

incomparable
15

Q
5 Q

maXT incomparable

| | cost
;E 500 1000 1500 2000 2500 3000 3500

© Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 21

A Brief Introduction to Multiobjective Optimi

Pareto set: set of all non-dominated solutions (decision space)
Pareto front: its image in the objective space

performance
currently non- °
20 dominated front ; o L
(approximation) s
15 ?0 Qoo
Q@ecccccccccse Q
1 . Q
0~ ° ® Vilfredo Pareto
© Q (1848 —1923)
>~ . © wikipedia
. Q
maxT °
14_"". | — cost

| | | | |
mn 900 1000 1500 2000 2500 3000 3500

© Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 21

A Brief Introduction to Multiobjective Optimi

Pareto set: set of all non-dominated solutions (decision space)
Pareto front: its image in the objective space

performance
20 true Pareto front
| (Pareto efficient Q
frontier)
15 Q
Q
1 Q
0 — Q Vilfredo Pareto
Q Q (1848 —1923)
5 — Q 0O wikipedia
Q
maxT
] | — cost
e

| | | | |
mn 900 1000 1500 2000 2500 3000 3500

© Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 21

A Brief Introduction to Multiobjective Optim

decision space objective space

» f1

solution of Pareto-optimal set ® vector of Pareto-optimal front
non-optimal decision vector @ non-optimal objective vector

© Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 21

A Brief Introduction to Multiobjective Optimize

min |

ideal point: best values } obtained for Pareto-optimal points

© Dimo Brockhoff, Inria

Quality Indicator Approach to MOO

Idea:
» transfer multiobjective problem into a set problem
» define an objective function (“quality indicator”) on sets

Important:

= Underlying dominance relation (on sets) should be reflected by
the resulting set comparisons!

A = B:= V’ZJGBHCUEA:C Spa/r Yy

A A
S neither A <

nor < A4 Qe

max T max T

© Dimo Brockhoff, Inria

Examples of Quality Indicators

ref ref
A B:=I(A)>1(B) A B:sI(AB)<I(BA)
9= volu.me e I(A,B) = how much needs A to
weakly dominated area :
In objective space L
A
.‘ A i
(G >
maxT E .'... maxT
— : >
unary hypervolume indicator binary epsilon indicator

© Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Sep

Examples of Quality Indicators Il

ref ref
As B:=I(AR) <I(B,R) A< B:=I(A) <I(B)
I(A) =
I(A,R) = how much needs A to 1 _)
be moved to weakly dominate R TP E (i Alz; = q; |)
€A

max T

max max

unary epsilon indicator unary R2 indicator

© Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Sep.

Examples of Quality Indicators Il

ref ref
As B:=I(AR) <I(B,R) A< B:=I(A) <I(B)
I(A) =
I(A,R) = how much needs A to 1 _)
be moved to weakly dominate R TP E (i Alz; = q; |)
€A

max T

"—“—.‘—> | —
max max

unary epsilon indicator unary R2 indicator

© Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Sep.

bbob-biobj Testbed

« 55 functions by combining 2 bbob functions

1 Separable Functions

f1
f2
f3
f4
f5

@ Sphere Function v
@Ellipsoidal Function v/
) Rastrigin Function

@ Biiche-Rastrigin Function
@Linear Slope

2 Functions with low or moderate conditioning

fo
f7
fa
fa

@ Attractive Sector Function

@ Step Ellipsoidal Function
@~Rosenbrock Function, original
@ Rosenbrock Function, rotated

3 Functions with high conditioning and unimodal
f10 @Ellipsoidal Function

f11 @Discus Function

f12 @ EBent Cigar Function

f12 @s5harp Ridge Functiony”

f14 @nDifferent Powers Function/

4 Multi-modal functions with adequate global structure
f15 @Rastrigin Function \/

f16 @ Weierstrass Function

f17 @ Schaffers F7 Function /

fig8 @ Schaffers F7 Functions, moderately ill-conditioned
f19 @@ Composite Griewank-Rosenbrock Function FEBF2
5 Multi-modal functions with weak global structure
f20 | @sSchwefel Function ./

f21 @ Gallagher's Gaussian 101-me Peaks Funu:ticm\/
f22 @ Gallagher's Gaussian 21-hi Peaks Function

f23 @HKatsuura Function

f24 @ Lunacek bi-Rastrigin Function

bbob-biobj Testbhed

« 55 functions by combining 2 bbob functions

1 Separable Functions 4 Multi-modal functions with adequate global structure
fi | @sSphere Function f15 @ Rastrigin Function v

f2 | @Ellipsoidal Function v f16 @ Weierstrass Function

f2 @ Rastrigin Function f17 @5Schaffers F7 Function o/

f4_|@Buche Rastrigin Function i 2 fo fs fiza fuu fis fuu fo fa
f5 | @Linear Slope fi i P B M4 f5 f6 7 B8 0 f0
2 Functions with low or moderate conditionir

f6 | @Attractive Sector Function v/ fa fil f12 f13 f14 f15 fle f17 f18 f19
7 @Step Ellipsoidal Function fe f20 f21 f22 23 f24 125 f26 {27
f8 |@Rosenbrock Function, original v/ fE f28 f29 30 31 32 f33 f34
fo |@Rosenbrock Function, rotated f13 f35 f36 f37 38 f39 f40
3 Functions with high conditioning and unime [14 f41 f42 f43 {44 {145
f10 @Ellipsoidal Function fis fae f47 f48 f49
f11 @Discus Function fi7 fso fs51 f52
f12 @ EBent Cigar Function f?ﬂ f53 f54
f13 | @Sharp Ridge Functiony/ f?l f55

f14 @nDifferent Powers Function/

bbob-biobj Testbed

» 55 functions by combining 2 bbob functions

15 function groups with 3-4 functions each

» separable — separable, separable — moderate, separable -
Ill-conditioned, ...

* 6 dimensions: 2, 3, 5, 10, 20, (40 optional)
* instances derived from bbob instances:

* N0 normalization (algo has to cope with different
orders of magnitude)

» for performance assessment: ideal/nadir points
kKnown

bbob-biobj Testbed (cont'd)

 Pareto set and Pareto front unknown

* but we have a good idea of where they are by running
quite some algorithms and keeping track of all non-
dominated points found so far

* Various types of shapes

bbob-biobj Testbed (cont'd)

connected

objective space

uni-modal

bbob-biobj f;; along linear search space directions (5-D, instance 1)

® 6 projection of decision space for bbob-biobj f3; (5-D, instance 1) 6 projection of decision space for bbob-biobj f,, (5-D, instance 1)
O « reference set (1230 of 1722826 points)
—— cuts through single optima
CU 4} —— cut through both optima 1 4
two random directions
c |
O 2|
+ reference set (1095 of 1378108 points)
m -4} al = cuts through single optima]
——— cut through both optima
m two random directions
w e Y - 0 2 4 6 i 2 2 0 2 2 6
)

bbob-biobj f,, along linear search space directions (5-D, instance 1)

cuts through single optima
cut through both optima |
two random directions

3500

3000

]
v
=
=]

second objective
N
o
o
o

1500

1000 -

X F‘,E.

second objective

—— cuts through single optima
- cut through both optima 1
two random directions

100

80

60

40

20}

-20}

0 500 1000 1500 2000 2500

first objective

420 430 440 450

first objective

400 410

second objective

6 projection of decision space for bbob-biobj f:, (5-D, instance 1)

+ reference set (585 of 444135 points)

—al == cuts through single optima J
——— cut through both optima
— two random directions
0.0.7971
-6 L n L n L
—6 — -2 0 2 4 6

d

isconnected

multi-moda

bbob-biobj f;, along linear search space directions (5-D, instance 1)
801

cuts through single optima 1
cut through both optima

&6 two random directions

35
first objective

Bi-objective Performance Assessment

algorithm quality = AL

normalized* hypervolume (HV)
of all non-dominated solutions
if a point dominates nadir

oZnadir

A
closest normalized* negative dista "
to region of interest [0,1]? T
. B} i . I H "
if no point dominates nadir | Enadir ——

—

* such that ideal=[0,0] and nadir=[1,1]

Bi-objective Performance Assessment

We measure runtimes to reach (HV indicator) targets:

* relative to a reference set, given as the best Pareto

front approximation known (since exact Pareto set
not known)

 actual absolute hypervolume targets used are

HV(refset) — targetprecision

with 58 fixed targetprecisions between +1 and -10-4
(same for all functions, dimensions, and instances) in
the displays

Course Overview

1

o o1 b~ O

Mon, 17.9.2018
Thu, 20.9.2018

Fri, 21.9.2018

Fri, 28.9.2018
Fri, 5.10.2018

Fri, 12.10.2018
Fri, 19.10.2018

Wed, 24.10.2018

Fri, 26.10.2018
29.10.-2.11.2018

Thu, 8.11.2018 /
Fri, 9.11.2018

Fri, 16.11.2018

Monday's lecture: introduction, example problems, problem types
groups defined via wiki

everybody went (actively!) through the Getting Started part of
github.com/numbbo/coco @ remaining part difficulties in cont. opt.

© today's lecture "Benchmarking", @ final adjustments of groups
everybody can run and postprocess the example experiment (@ ~1h for
final questions/help during the lecture)

lecture "Introduction to Continuous Optimization"
lecture "Gradient-Based Algorithms"

lecture "Stochastic Algorithms and DFO"

lecture "Discrete Optimization |: graphs, greedy algos, dyn. progr."
deadline for submitting data sets

deadline for paper submission
final lecture "Discrete Optimization Il: dyn. progr., B&B, heuristics"
vacation aka learning for the exams

oral presentations (individual time slots)

All deadlines:
23:59pm Paris time

written exam

© Dimo Brockhoff, Inria

TC2: Introduction to Optimization, U. Paris-Saclay, S

Conclusions Benchmarking Continuous Opti

| hope it became clear...

...what are important problem difficulties in continuous optimization
...what are the important issues in algorithm benchmarking
...which functionality is behind the COCO platform
...and how to measure performance in particular
...what are the basics of multiobjective optimization
...and what are the next important steps to do:
read the assigned paper and implement the algorithm
document everything on the wiki

run COCO experiment with your algorithm and share your
data until Friday 19t of October, 2018

© Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 21

And now...

...time for your questions and problems
around COCO

© Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 21

