Introduction to Optimization: Benchmarking

September 21, 2018
TC2 - Optimisation
Université Paris-Saclay, Orsay, France

Dimo Brockhoff
Inria Saclay - Ile-de-France

Course Overview

Course Overview

1	Mon, 17.9.2018 Thu, 20.9.2018	Monday's lecture: introduction, example problems, problem types groups defined via wiki everybody went (actively!) through the Getting Started part of github.com/numbbo/coco 2 remaining part difficulties in cont. opt.
2	Fri, 21.9.2018	3 today's lecture "Benchmarking", (1) final adjustments of groups everybody can run and postprocess the example experiment (4) 1 h for final questions/help during the lecture)
3	Fri, 28.9.2018	lecture "Introduction to Continuous Optimization"
4	Fri, 5.10.2018	lecture "Gradient-Based Algorithms"
5	Fri, 12.10.2018	lecture "Stochastic Algorithms and DFO"
6	Fri, 19.10.2018	lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr." deadline for submitting data sets
7	Wed, 24.10.2018 Fri, 26.10.2018	deadline for paper submission final lecture "Discrete Optimization II: dyn. progr., B\&B, heuristics"
	29.10.-2.11.2018	vacation aka learning for the exams
	Thu, 8.11.2018/ Fri, 9.11.2018	oral presentations (individual time slots)
	Fri, 16.11.2018	written exam All deadlines:
		23:59pm Paris time

(2) Problem Difficulties in Continuous Optimization

What Makes a Function Difficult to Solve?

- dimensionality
(considerably) larger than three
- non-separability dependencies between the objective variables
- ill-conditioning
- ruggedness

cut from 3D example, solvable with an evolution strategy

Curse of Dimensionality

- The term Curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.
- Example: Consider placing 100 points onto a real interval, say $[0,1]$. To get similar coverage, in terms of distance between adjacent points, of the 10 -dimensional space $[0,1]^{10}$ would require $100^{10}=10^{20}$ points. The original 100 points appear now as isolated points in a vast empty space.
- Consequently, a search policy (e.g. exhaustive search) that is valuable in small dimensions might be useless in moderate or large dimensional search spaces.

Separable Problems

Definition (Separable Problem)

A function f is separable if

$$
\underset{\left(x_{1}, \ldots, x_{n}\right)}{\operatorname{argmin}} f\left(x_{1}, \ldots, x_{n}\right)=\left(\underset{x_{1}}{\operatorname{argmin}} f\left(x_{1}, \ldots\right), \ldots, \underset{x_{n}}{\operatorname{argmin}} f\left(\ldots, x_{n}\right)\right)
$$

\Rightarrow it follows that f can be optimized in a sequence of n independent 1-D optimization processes

Example:

Additively decomposable functions

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{i=1 \\ \text { Rastrigin function }}}^{n} f_{i}\left(x_{i}\right)
$$

Non-Separable Problems

Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system

- $f: x \mapsto f(x)$ separable
- $f: x \mapsto f(R \boldsymbol{x})$ non-separable

R rotation matrix

[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation". Sixth ICGA, pp. 57-64, Morgan Kaufmann
[2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

III-Conditioned Problems: Curvature of Level Sets

Consider the convex-quadratic function

$$
f(\boldsymbol{x})=\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)^{T} H\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)=\frac{1}{2} \sum_{i} h_{i, i} x_{i}^{2}+\frac{1}{2} \sum_{i, j} h_{i, j} x_{i} x_{j}
$$

H is Hessian matrix of f and symmetric positive definite

> gradient direction $-f^{\prime}(x)^{T}$
> Newton direction $-H^{-1} f^{\prime}(x)^{T}$

III-conditioning means squeezed level sets (high curvature). Condition number equals nine here. Condition numbers up to 10^{10} are not unusual in real-world problems.

If $H \approx I$ (small condition number of H) first order information (e.g. the gradient) is sufficient. Otherwise second order information (estimation of H^{-1}) information necessary.

Different Notions of Optimum

Unconstrained case

- local vs. global
- local minimum x^{*} : \exists a neighborhood V of x^{*} such that $\forall \boldsymbol{x} \in \mathrm{V}: f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}^{*}\right)$
- global minimum: $\forall x \in \Omega: f(x) \geq f\left(x^{*}\right)$
- strict local minimum if the inequality is strict

Constrained case

- a bit more involved
- hence, later in the lecture $)$

(3) Benchmarking Optimization Algorithms

Practical (Numerical) Blackbox Optimization

Given:

$f(x) \in \mathbb{R}^{k}$
derivatives not available or not useful
Not clear:
which of the many algorithms should I use on my problem?

Numerical Blackbox Optimizers

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder \& Mead 1965]
Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]
Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)

- Differential Evolution [Storn \& Price 1997]
- Particle Swarm Optimization [Kennedy \& Eberhart 1995]
- Evolution Strategies, CMA-ES
[Rechenberg 1965, Hansen \& Ostermeier 2001]
- Estimation of Distribution Algorithms (EDAs)
[Larrañaga, Lozano, 2002]
- Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]
- Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]
Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

Numerical Blackbox Optimizers

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder \& Mead 1965]
Pattern search [Hooke and Jeeves 1961]
Trust-reaion methods (NEWUOA. BOBYQA) [Powell 2006. 20091
choice typically not immediately clear although practitioners have knowledge about which difficulties their problem has (e.g. multi-modality, non-separability, ...)

- Cvoiution strategies, LiviA-Co
[Rechenberg 1965, Hansen \& Ostermeier 2001]
- Estimation of Distribution Algorithms (EDAs)
[Larrañaga, Lozano, 2002]
- Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]
- Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]
Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

Need: Benchmarking

- understanding of algorithms
- algorithm selection
- putting algorithms to a standardized test
- simplify judgement
- simplify comparison
- regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

- choosing (and implementing) problems, performance measures, visualization, stat. tests, ...
- running a set of algorithms

that's where COCO comes into play

Comparing Continuous Optimizers Platform
https://github.com/numbbo/coco

automatized benchmarking

benchmarking is non-trivial

hence, COCO implements a

 reasonable, well-founded, and well-documented pre-chosen methodology
How to benchmark algorithms with COCO?

https：／／github．com／numbbo／coco

© numbbo／coco：Numerical ．．．$\times+$

Numerical Black－Box Optimization Benchmarking Framework http：／／coco．gforge．inria．fr／
Add topics
（1） 16,007 commits
\＆ 11 branches
31 releases
2115 contributors

Branch：master	New pull request		Create new file	Upload files	Find file	Clone	oad
İII brockho committed on GitHub Merge pull request \＃1352 from numbbo／development ．．．			Clone with HTTPS Use Git or checkout with SVN using the web URL．				
E code－experiments		A little more verbose error message when suite regression test fai					
－code－postprocessing			https：／／github．com／numbbo／coco．git				宜
E code－preprocessing		Fixed preprocessing to work correctly with the extended biobjectiv	Open in Desktop			Download ZIP	
E howtos		Update create－a－suite－howto．md					s ago
目．clang－format		raising an error in bbob2009＿logger．c when best＿value is NULL．Plus s．．．					s ago
目 ．hgignore		raising an error in bbob2009＿logger．c when best＿value is NULL．Plus s．．．					s ago
目 AUTHORS		small correction in AUTHORS					r ago

https：／／github．com／numbbo／coco

| $-\quad$ 回 |
| :--- | :--- |

x
numbbo／coco：Numerical ．．．\times
（－）（i）Github，Inc．（US）https：／／github．com／numbbo／coco
c
${ }^{9}{ }^{9}$ Search

$\sqrt{6}$
\equiv
（2）Most Visited Getting Started \leqslant coco－Algorithms numbbo／numbbo．Gi．．．Ge RandOpt CMAP Inria GitLab ReR B from lab
numbbo／coco

（－）Unwatch＊	15	＊Unstar	38	8 Fork	

＜＞Code（1）Issues 133 i7 Pull requests 1 III Projects 9 Settings Insights＊

Numerical Black－Box Optimization Benchmarking Framework http：／／coco．gforge．inria．fr／
Add topics
（1） 16,007 commits
\＆ 11 branches
31 releases
21 15 contributors
Branch：master New pull request

III brockho committed on GitHub Merge pull request \＃1352 from numbbo／development ．．．
－code－experiments
－code－postprocessing
－code－preprocessing
F howtos
目 ．clang－format
目 hgignore
目 AUTHORS
目 LICENSE
目 README．md

A little more verbose error message when suite regression test fai
Hashes are back on the plots．
Fixed preprocessing to work correctly with the extended biobjectiv
raising an error in bbob2009＿logger．c when best＿value is NULL．Plus s．．．
small correction in AUTHORS
Update LICENSE
Added link to \＃1335 before closing．

Clone with HTTPS（？）
Use SSH Use Git or checkout with SVN using the web URL．
https：／／github．com／numbbo／coco．git 畣

Open in Desktop Download ZIP

2 years ago
a year ago
11 months ago
a month ago

https：／／github．com／numbbo／coco

numbbo／coco：Numerical ．．．\times
（－）（i）GitHub，Inc．（US）https：／／github．com／numbbo／coco
$C \quad C^{\oplus}$ Search
甶自
－
\equiv
（2）Most Visited（3）Getting Started \＆cOCO－Algorithms（）numbbo／numbbo Gi．．．RandOpt CMAP Inria GitLab RER B from lab
Numerical Black－Box Optimization Benchmarking Framework http：／／coco．gforge．inria．fr／
Add topics
（1） 16,007 commits
f 11 branches
© 31 releases
215 contributors

Branch：master New pull request

III brockho committed on GitHub Merge pull request \＃1352 from numbbo／development ．．．
F code－experiments
－code－postprocessing
－code－preprocessing
E．howtos
目．clang－format
目 ．hgignore
目 AUTHORS
目 LICENSE
目 README．md
目 do．py
目 doxygen．ini
A little more verbose error message when suite regression test fai Hashes are back on the plots．

Fixed preprocessing to work correctly with the extended biobjectiv Update create－a－suite－howto．md
raising an error in bbob2009＿logger．c when best＿value is NULL．Plus s．．．
raising an error in bbob2009＿logger．c when best＿value is NULL．Plus s．．．
small correction in AUTHORS
Update LICENSE
Added link to \＃1335 before closing．
refactoring here and there in do．py to get closer to PEP8 specifications
moved all files into code－experiments／folder besides the do．py scrip．．．
a year ago
11 months ago
a month ago

https://github.com/numbbo/coco

numbbo/coco: Numerical ... \times

C C ${ }_{\text {Search }}$
$\dot{\aleph}$

ก
(2) Most Visited Getting Started coco-Algorithms numbbo/numbbo. Gi... C RandOpt CMAP Inria GitLab ReRB from lab

[^0]numbbo/coco: Comparing Continuous Optimizers

https：／／github．com／numbbo／coco

numbbo／coco：Numerical ．．．\times
（4）（i）GitHub，Inc．（US）https：／／github．com／numbbo／coco
C C^{\oplus} Search
$\underset{\$}{3}$

2）Most Visited Getting Started coco－Algorithms numbbo／numbbo．Gi．．．RandOpt CMAP Inria GitLab RER B from lab

E．code－preprocessinghowtos
目．clang－format
目 ．hgignore
目 AUTHORS
目 LICENSE
目 README．md
目 do．py
目 doxygen．ini

Fixed preprocessing to work correctly with the extended biobjectiv Update create－a－suite－howto．md

Open in Desktop
Download ZIP
raising an error in bbob2009＿logger．c when best＿value is NULL．Plus s．．．
raising an error in bbob2009＿logger．c when best＿value is NULL．Plus s．．．
small correction in AUTHORS
Update LICENSE
11 months ago
Added link to \＃1335 before closing．
a month ago
refactoring here and there in do．py to get closer to PEP8 specifications
moved all files into code－experiments／folder besides the do．py scrip．．．

2 years ago

国 README．md

numbbo／coco：Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform，now rewritten fully in ANSI C with other languages calling the C code．As the name suggests，the code provides a platform to benchmark and compare continuous optimizers，AKA non－linear solvers for numerical optimization．Languages currently available are
－ $\mathrm{C} / \mathrm{C}++$
－Java
－MATLAB／Octave

https：／／github．com／numbbo／coco

numbbo／coco：Numerical ．．．\times
（i）GitHub，Inc．（US）https：／／github．com／numbbo／coco
c C^{9} Search
\star \square ，$\widehat{1}$三
（2）Most Visited Getting Started \＆coco－Algorithms numbbo／numbbo．Gi．．．Ge RandOpt CMAP Inria GitLab RERB from lab

目 LICENSE
README．md
目 do．py
doxygen．ini

Update LICENSE
Added link to \＃1335 before closing．
refactoring here and there in do．py to get closer to PEP8 specifications
moved all files into code－experiments／folder besides the do．py scrip．．．

11 months ago
a month ago
2 months ago
2 years ago

numbbo／coco：Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform，now rewritten fully in ANSI C with other languages calling the C code．As the name suggests，the code provides a platform to benchmark and compare continuous optimizers，AKA non－linear solvers for numerical optimization．Languages currently available are
－C／C＋＋
－Java
－MATLAB／Octave
－Python
Contributions to link further languages（including a better example in C_{++}）are more than welcome．

For more information，
－read our benchmarking guidelines introduction
－read the COCO experimental setup description

https：／／github．com／numbbo／coco

numbbo／coco：Numerical ．．．\times

numbbo／coco：Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform，now rewritten fully in ANSI C with other languages calling the C code．As the name suggests，the code provides a platform to benchmark and compare continuous optimizers，AKA non－linear solvers for numerical optimization．Languages currently available are
－C／C＋＋
－Java
－MATLAB／Octave
－Python
Contributions to link further languages（including a better example in C_{++}）are more than welcome．
For more information，
－read our benchmarking guidelines introduction
－read the COCO experimental setup description
－see the bbob－biobj and bbob－biobj－ext COCO multi－objective functions testbed documentation and the specificities of the performance assessment for the bi－objective testbeds．
－consult the BBOB workshops series，
－consider to register here for news，
－see the previous COCO home page here and
－see the links below to learn more about the ideas behind CoCO．

https：／／github．com／numbbo／coco

Gettina Started

0 ．Check out the Requirements above．

requirements \＆download

－either by clicking the Download ZIP button and unzip the zip file，
－or by typing git clone https：／／github．com／numbbo／coco．git．This way allows to remain up－to－date easily（but needs git to be installed）．After cloning，git pull keeps the code up－to－date with the latest release．

The record of official releases can be found here．The latest release corresponds to the master branch as linked above．
2．In a system shell，cd into the coco or coco－＜version＞folder（framework root），where the file do．py can be found． Type，i．e．execute，one of the following commands once
python do．py run－c
python do．py run－java
python do．py run－matlab
python do．py run－octave
python do．py run－python
depending on which language shall be used to run the experiments．run－＊will build the respective code and run the example experiment once．The build result and the example experiment code can be found under code－experiments／build ／＜language＞（＜language＞＝matlab for Octave）．python do．py lists all available commands．

3．On the computer where experiment data shall be post－processed，run

https://github.com/numbbo/coco

numbbo/coco: Numerical ... \times
(i) GitHub, Inc. (US) https://github.com/numbbo/coco

C C^{\oplus} Search
曻, 介
\equiv
2) Most Visited Getting Started coco-Algorithms numbbo/numbbo. Gi... GandOpt CMAP Inria GitLab RER B from lab

Getting Started

0 . Check out the Requirements above.

1. Download the COCO framework code from github,

- either by clicking the Download ZIP button and unzip the zip file,
- or by typing git clone https://github.com/numbbo/coco.git. This way allows to remain up-to-date easily (but needs git to be installed). After cloning, git pull keeps the code up-to-date with the latest release.

The record of official releases can be found here. The latest release corresponds to the master branch as linked above.
2. In a system shell, cd into the coco or coco-<version> folder (framework root), where the file do.py can be found. Type, i.e. execute, one of the following com
python do.py run-c python do.py run-java python do.py run-matlab
python co.py run-octave
python do.py run-python
depending on which language shall be used to run the experiments. run-* will build the respective code and run the example experiment once. The build result and the example experiment code can be found under code-experiments/build /<language> (<language>=matlab for Octave). python do.py lists all available commands.
3. On the computer where experiment data shall be post-processed, run

https：／／github．com／numbbo／coco

numbbo／coco：Numerical ．．．\times
（1）GitHub，Inc．（US）https：／／github．com／numbbo／coco

```
8 人 \equiv
```

2）Most Visited（2）Getting Started © coco－Algorithms（）numbbo／numbbo．Gi．．．ZandOpt CMAP Inria GitLab RER B from lab example experıment once．The build result and the example experıment code can be tound under code－experiments／build ／＜language＞（＜language＞＝matlab for Octave）．python do．py lists all available commands．

3．On the computer where experiment data shall b
python do．py install－postprocessing

installation II：postprocessing

to（user－locally）install the post－processing．From here on，do．py has done its Joi and is only needed again tor upaating the builds to a new release．

4．Copy the folder code－experiments／build／YOUR－FAVORITE－LANGUAGE and its content to another location．In Python it is sufficient to copy the file example＿experiment．py．Run the example experiment（it already is compiled）．As the details vary，see the respective read－me＇s and／or example experiment files：
－c read me and example experiment
－Java read me and example experiment
－Matlab／Octave read me and example experiment
－Python read me and example experiment
If the example experiment runs，connect your favorite algorithm to Coco：replace the call to the random search optimizer in the example experiment file by a call to your algorithm（see above）．Update the output result＿folder，the algorithm＿name and algorithm＿info of the observer options in the example experiment file．

Another entry point for your own experiments can be the code－experiments／examples folder．
5．Now you can run your favorite algorithm on the bbob suite（for single－objective algorithms）or on the bbob－biobj and bbob－biobj－ext suites（for multi－objective algorithms）．Output is automatically generated in the specified data result＿folder．By now，more suites might be available，see below．

https：／／github．com／numbbo／coco

numbbo／coco：Numerical ．．．\times
（i）GitHub，Inc．（US）https：／／github．com／numbbo／coco
2）Most Visited Getting Started © COCO－Algorithms numbbo／numbbo．Gi．．．CandOpt CMAP Inria GitLab RER B from lab example experıment once．The buld result and the example experıment code can be tound under code－experiments／build ／＜language＞（＜language＞＝matlab for Octave）．python do．py lists all available commands．

3．On the computer where experiment data shall be post－processed，run
python do．py install－postprocessing
to（user－locally）install the post－processing．From here on，do．py has done its job and is only needed again for updating the builds to a new release．

4．Copy the folder code－experiments／build／YOUR－FAVORITE－LANGUAGE and its content to another location．In Python it is sufficient to copy the file example＿experiment．py．Run the example experiment（it already is compiled）．As the details vary，see the respective read－me＇s and／or example experiment files：
－C read me and example experiment
－Java read me and example experiment
－Matlab／Octave read me and example experiment

coupling algo＋COCO

－Python read me and example experiment
If the example experiment runs，connect your favorite algorithm to Coco：replace the call to the random search optimizer in the example experiment file by a call to your algorithm（see above）．Update the output result＿folder，the algorithm＿name and algorithm＿info of the observer options in the example experiment file．

Another entry point for your own experiments can be the code－experiments／examples folder．
5．Now you can run your favorite algorithm on the bbob suite（for single－objective algorithms）or on the bbob－biobj and bbob－biobj－ext suites（for multi－objective algorithms）．Output is automatically generated in the specified data result＿folder．By now，more suites might be available，see below．

Simplified Example Experiment in Python

```
import cocoex
import scipy.optimize
### input
suite name = "bbob"
output_folder = "scipy-optimize-fmin"
fmin = scipy.optimize.fmin
### prepare
suite = cocoex.Suite (suite_name, "", "")
observer = cocoex.Observer(suite_name,
"result_folder: " + output_folder)
```

\#\#\# go
for problem in suite: \# this loop will take several minutes
problem.observe_with(observer) \# generates the data for
\# cocopp post-processing
fmin (problem, problem.initial_solution)

Note: the actual example_experiment.py contains more advanced things like restarts, batch experiments, other algorithms (e.g. CMA-ES), etc.

https://github.com/numbbo/coco

https：／／github．com／numbbo／coco

（2）Most Visited（2）Getting Started COCO－Algorithms（）numbbo／numbbo．Gi．．．GrandOpt CMAP Inria GitLab RER B from lab
Another entry point for your own experiments can be the code－experiments／examples folder．
5．Now you can run your favorite algorithm on the bbob suite（for single－objective algorithms）or on the bbob－biobj and bbob－biobj－ext suites（for multi－objective algorithms）．Output is automatically generated in the specified data result＿folder．By now，more suites might be available，see below．

6．Postprocess the data from the results folder by typing
python－m cocopp［－o OUTPUT＿FOLDERNAME］YOURDATAFOLDER［MORE＿DATAFOLDERS］

Any subfolder in the folder arguments will be searched for logged data．That is，experiments from different batches can be in different folders collected under a single＂root＂YOURDATAFOLDEF specifying several data result folders generated by different algc

A folder，ppdata by default，will be generated，which contains

postprocessing

file，useful as main entry point to explore the result with a brows
the output folder name with the－o OUTPUT＿FOLDERNAME option．

data from 200＋algorithms can be accessed directly through its name（see

http：／／coco．gforge．inria．fr／doku．php？id＝algorithms ）

Result Folder

Automatically Generated Results

Post processing results								
(i) file:///C:/Users/dimo/Desktop/coco/BBOB/data-archive/data/gecco-bbob-1-24/2009,								
2) Most Visited Getting Started COCO-Algorithms numbbo/numbbo. Gi... GatandOpt CMAP Inria Gitlab RER B from lab								
POSt Processing results								

Single algorithm data
BIPOP-CMA-ES hansen noiseless

Automatically Generated Results

\leftarrow
®) Most Visited © Geting Stared
BIPOP-CMA-ES

Home

Runtime distributions (ECDFs) per function
Runtime distributions (ECDFs) summary and function groups
Scaling with dimension for selected targets
Tables for selected targets
Runtime distribution for selected targets and f-distributions
Runtime loss ratios
Runtime distributions (ECDFs) over all targets

Automatically Generated Results

↔ (i) file:///C:/Users/dimo/Desktop/coco/BBOB/data-archive/data/gecco-bbob-1-24/2009.
C
Q Search
出自
v

- $\boldsymbol{1} \equiv$
(2) Most Visited Getting Started coco-Algorithms () numbbo/numbbo. Gi... GandOpt CMAP Inria GitLab RER B from lab

Overview page

Runtime distributions (ECDFs) per function

Automatically Generated Results

(2) Most Visited Getting Started coco-Algorithms () numbbo/numbbo. Gi... G RandOpt CMAP Inria GitLab RER B from lab

Overview page

Average number of \boldsymbol{f}-evaluations to reach target

so far:

data for 200+ algorithm variants
(some of which on noisy or multiobjective test functions) 136 workshop papers
by 114 authors from 28 countries
used by another 77 students in the last two years

Measuring Performance

On

- real world problems
- expensive
- comparison typically limited to certain domains
- experts have limited interest to publish
- "artificial" benchmark functions
- cheap
- controlled
- data acquisition is comparatively easy
- problem of representativeness

Test Functions

- define the "scientific question"
the relevance can hardly be overestimated
- should represent "reality"
- are often too simple?
remind separability
- a number of testbeds are around
- account for invariance properties
prediction of performance is based on "similarity", ideally equivalence classes of functions

Available Test Suites in COCO

bbob
bbob-noisy
bbob-biobj

24 noiseless fcts
30 noisy fcts
55 bi-objective fcts

140+ algo data sets 40+ algo data sets
16 algo data sets
soon to be released:
bbob-largescale bbob-constrained
bbob-biobj-ext

How Do We Measure Performance?

Meaningful quantitative measure

- quantitative on the ratio scale (highest possible)
"algo A is two times better than algo B " is a meaningful statement
- assume a wide range of values
- meaningful (interpretable) with regard to the real world possible to transfer from benchmarking to real world
runtime or first hitting time is the prime candidate (we don't have many choices anyway)

How Do We Measure Performance?

Two objectives:

- Find solution with small(est possible) function/indicator value
- With the least possible search costs (number of function evaluations)

For measuring performance: fix one and measure the other

Measuring Performance Empirically convergence graphs is all we have to start with...

number of function evaluations

ECDF:
 Empirical Cumulative Distribution Function of the Runtime
 [aka data profile]

A Convergence Graph

First Hitting Time is Monotonous

15 Runs

15 Runs ≤ 15 Runtime Data Points

Empirical Cumulative Distribution

 the ECDF of run lengths to reach the target

- has for each data point a vertical step of constant size
- displays for each x-value (budget) the count of observations to the left (first hitting times)

Empirical Cumulative Distribution

interpretations possible:
0.8 . 80% of the runs reached the target

- e.g. 60% of the runs need between 2000 and 4000 evaluations

Reconstructing A Single Run

Reconstructing A Single Run

50 equally spaced targets

Reconstructing A Single Run

Reconstructing A Single Run

Reconstructing A Single Run

a empirical CDF

 makes a step for each star, is monotonous and displays for each budget the fraction of targets achieved within the budget
Reconstructing A Single Run

the ECDF recovers the monotonous graph, discretized and flipped

Reconstructing A Single Run

the ECDF recovers the monotonous graph, discretized and flipped

Aggregation

15 runs

Aggregation

15 runs 50 targets

Aggregation

15 runs 50 targets

Aggregation

15 runs
 50 targets

ECDF with 750 steps

Aggregation

50 targets from 15 runs
...integrated in a single graph

Interpretation

50 targets from 15 runs integrated in a single graph
area over the
ECDF curve
=
average log runtime
(or geometric avg. runtime) over all targets (difficult and easy) and all runs

Fixed-target: Measuring Runtime

Fixed-target: Measuring Runtime

- Algo Restart A:

$$
p_{s}(\text { Algo Restart } A)=1
$$

- Algo Restart B:
$\mathrm{p}_{\mathrm{s}}($ Algo Restart $B)=1$

Fixed-target: Measuring Runtime

- Expected running time of the restarted algorithm:

$$
E\left[R T^{r}\right]=\frac{1-p_{s}}{p_{s}} E\left[R T_{\text {unsuccessful }}\right]+E\left[R T_{\text {successful }}\right]
$$

- Estimator average running time (aRT):

$$
\begin{gathered}
\widehat{p_{s}}=\frac{\text { \#successes }}{\# \text { runs }} \\
R \widehat{T_{u n s u c c}}=\text { Average evals of unsuccessful runs } \\
\widehat{R T_{\text {succ }}}=\text { Average evals of successful runs } \\
a R T=\frac{\text { total \#evals }}{\# \text { successes }}
\end{gathered}
$$

ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated restarted algorithms:

Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

- never aggregate over dimension
- but often over targets and functions
- can show data of more than 1 algorithm at a time

Another Interesting Plot...

...comparing aRT values over several algorithms

Another Interesting Plot...

...comparing aRT values over several algorithms

Another Interesting Plot...

...comparing aRT values over several algorithms

Another Interesting Plot...

...comparing aRT values over several algorithms

Interesting for 2 Algorithms...

dimensions:
...are scatter plots

$$
2:+, 3: \nabla, 5: \star, 10: \circ, 20: \square, 40: \diamond .
$$

There are more Plots...

...but they are probably less interesting for us here

The single-objective BBOB functions

bbob Testbed

- 24 functions in 5 groups:

1 Separable Functions	
$f 1$	(1)Sphere Function
f2	(1)Ellipsoidal Function
f3	(1)Rastrigin Function
f4	(1)Büche-Rastrigin Function
	QLinear Slope
2 Functions with low or moderate conditioning	
$f 6$	(1)Attractive Sector Function
f7	©Step Ellipsoidal Function
f8	(1)Rosenbrock Function, original
f9	(1)Rosenbrock Function, rotated
3 Functions with high conditioning and unimodal	
$f 10$	(2)Ellipsoidal Function
$f 11$	(1) Discus Function
$f 12$	(1)Bent Cigar Function
$f 13$	QSharp Ridge Function
$f 14$	(1) Different Powers Function

4 Multi-modal functions with adequate global structure	
f15	(1)Rastrigin Function
f16	(1) Weierstrass Function
f17	QSchaffers F7 Function
$f 18$	QSchaffers F7 Functions, moderately ill-conditioned
f19	(1) Composite Griewank-Rosenbrock Function F8F2
5 Multi-modal functions with weak global structure	
f20	QSchwefel Function
f21	(1)Gallagher's Gaussian 101-me Peaks Function
f22	(1)Gallagher's Gaussian 21-hi Peaks Function
f23	QKatsuura Function
f24	QLunacek bi-Rastrigin Function

- 6 dimensions: $2,3,5,10,20$, (40 optional)

Notion of Instances

- All COCO problems come in form of instances
- e.g. as translated/rotated versions of the same function
- Prescribed instances typically change from year to year
- avoid overfitting
- 5 instances are always kept the same

Plus:

- the bbob functions are locally perturbed by nonlinear transformations

Notion of Instances

linear transformations

the recent extension to multi-objective optimization

A Brief Introduction to Multiobjective Optimization

Multiobjective Optimization (MOO)

Multiple objectives that have to be optimized simultaneously
performance

A Brief Introduction to Multiobjective Optimization

Observations: (1) there is no single optimal solution, but
② some solutions (\bigcirc) are better than others (\bigcirc)

A Brief Introduction to Multiobjective Optimization

u weakly Pareto dominates $v\left(u \leqslant_{\text {par }} v\right): \quad \forall 1 \leq i \leq k: f_{i}(u) \leq f_{i}(v)$

$$
u \text { Pareto dominates } v\left(u<_{p a r} v\right): \quad u \leqslant_{\text {par }} v \wedge v \not \nless p a r^{u}
$$

performance

A Brief Introduction to Multiobjective Optimization

u weakly Pareto dominates $v\left(u \leqslant_{\text {par }} v\right): \quad \forall 1 \leq i \leq k: f_{i}(u) \leq f_{i}(v)$

$$
u \text { Pareto dominates } v\left(u<_{p a r} v\right): \quad u \leqslant_{\text {par }} v \wedge v \not \nless p a r^{u}
$$

performance

A Brief Introduction to Multiobjective Optimization

Pareto set: set of all non-dominated solutions (decision space) Pareto front: its image in the objective space
performance

A Brief Introduction to Multiobjective Optimization

Pareto set: set of all non-dominated solutions (decision space) Pareto front: its image in the objective space
performance

A Brief Introduction to Multiobjective Optimization

decision space
objective space

solution of Pareto-optimal set - vector of Pareto-optimal front non-optimal decision vector - non-optimal objective vector

A Brief Introduction to Multiobjective Optimization

$\left.\begin{array}{l}\text { ideal point: best values } \\ \text { nadir point: worst values }\end{array}\right\}$ obtained for Pareto-optimal points

Quality Indicator Approach to MOO

Idea:

- transfer multiobjective problem into a set problem
- define an objective function ("quality indicator") on sets

Important:

\Rightarrow Underlying dominance relation (on sets) should be reflected by the resulting set comparisons!

$$
A \preceq B: \Leftrightarrow \forall_{y \in B} \exists_{x \in A} x \leq_{p a r} y
$$

Examples of Quality Indicators

$$
A \stackrel{\text { ref }}{\preccurlyeq} B: \Leftrightarrow I(A) \geq I(B) \quad A \stackrel{\text { ref }}{\preccurlyeq} B: \Leftrightarrow I(A, B) \leq I(B, A)
$$

unary hypervolume indicator

Examples of Quality Indicators II

$$
A \stackrel{\mathrm{ref}}{\preccurlyeq} B: \Leftrightarrow I(A, R) \leq I(B, R)
$$

$$
A \stackrel{\text { ref }}{\preccurlyeq} B: \Leftrightarrow I(A) \leq I(B)
$$

$I(A, R)=$ how much needs A to be moved to weakly dominate R

$$
\begin{aligned}
& \mathrm{I}(\mathrm{~A})= \\
& \frac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} \min _{a \in \mathrm{~A}}\left(\max _{j=1 . . m} \lambda_{j}\left|z_{j}^{*}-a_{j}\right|\right)
\end{aligned}
$$

Examples of Quality Indicators II

$$
A \stackrel{\mathrm{ref}}{\preccurlyeq} B: \Leftrightarrow I(A, R) \leq I(B, R)
$$

$$
A \stackrel{\mathrm{ref}}{\preccurlyeq} B: \Leftrightarrow I(A) \leq I(B)
$$

$I(A, R)=$ how much needs A to be moved to weakly dominate R

$$
\begin{aligned}
& \mathrm{I}(\mathrm{~A})= \\
& \frac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} \min _{a \in \mathrm{~A}}\left(\max _{j=1 . m} \lambda_{j}\left|z_{j}^{*}-a_{j}\right|\right)
\end{aligned}
$$

bbob-biobj Testbed

- 55 functions by combining 2 bbob functions

1 Separable Functions	
$f 1$	©Sphere Function \checkmark
f2	QEllipsoidal Function \checkmark
$f 3$	(2)astrigin Function
f4	(1)Büche-Rastrigin Function
$f 5$	QLinear Slope
2 Functions with low or moderate conditioning	
$f 6$	(1)Attractive Sector Function \downarrow
f7	QStep Ellipsoidal Function
$f 8$	(2Rosenbrock Function, original \downarrow
$f 9$	(1)Rosenbrock Function, rotated
3 Functions with high conditioning and unimodal	
$f 10$	(1)Ellipsoidal Function
$f 11$	(2iscus Function
$f 12$	(1)Bent Cigar Function
$f 13$	QSharp Ridge Function $\sqrt{ }$
$f 14$	QDifferent Powers Function \downarrow

4 Multi-modal functions with adequate global structure	
f15	(Rastrigin Function \checkmark
f16	(2)Weierstrass Function
$f 17$	(2) Schaffers F7 Function \checkmark
$f 18$	QSchaffers F7 Functions, moderately ill-conditioned
$f 19$	(1) Composite Griewank-Rosenbrock Function F8F2
5 Multi-modal functions with weak global structure	
f20	QSchwefel Function \downarrow
f21	QGallagher's Gaussian 101-me Peaks Function \downarrow
f22	(1)Gallagher's Gaussian 21-hi Peaks Function
f23	©Katsuura Function
	(1)Lunacek bi-Rastrigin Function

bbob-biobj Testbed

- 55 functions by combining 2 bbob functions

bbob-biobj Testbed

- 55 functions by combining 2 bbob functions
- 15 function groups with 3-4 functions each
- separable - separable, separable - moderate, separable -ill-conditioned, ...
- 6 dimensions: 2, 3, 5, 10, 20, (40 optional)
- instances derived from bbob instances:
- no normalization (algo has to cope with different orders of magnitude)
- for performance assessment: ideal/nadir points known

bbob-biobj Testbed (cont'd)

- Pareto set and Pareto front unknown
- but we have a good idea of where they are by running quite some algorithms and keeping track of all nondominated points found so far
- Various types of shapes

bbob-biobj Testbed (cont'd)

connected uni-modal

disconnected multi-modal

Bi-objective Performance Assessment

 algorithm quality $=$ normalized* hypervolume (HV) of all non-dominated solutionsif a point dominates nadir

closest normalized* negative diser
to region of interest $[0,1]^{2}$
\quad if no point dominates nadir

* such that ideal=[0,0] and nadir=[1,1]

Bi-objective Performance Assessment

We measure runtimes to reach (HV indicator) targets:

- relative to a reference set, given as the best Pareto front approximation known (since exact Pareto set not known)
- actual absolute hypervolume targets used are HV(refset) - targetprecision
with 58 fixed targetprecisions between +1 and -10^{-4} (same for all functions, dimensions, and instances) in the displays

Course Overview

Conclusions Benchmarking Continuous Optimizers

I hope it became clear...
...what are important problem difficulties in continuous optimization
...what are the important issues in algorithm benchmarking
...which functionality is behind the COCO platform
...and how to measure performance in particular
...what are the basics of multiobjective optimization
...and what are the next important steps to do:
read the assigned paper and implement the algorithm document everything on the wiki
run COCO experiment with your algorithm and share your data until Friday 19 ${ }^{\text {th }}$ of October, 2018

And now...
...time for your questions and problems around COCO

[^0]: 国 README.md

