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1 Mon, 17.9.2018

Thu, 20.9.2018

Monday's lecture: introduction, example problems, problem types

groups defined via wiki

everybody went (actively!) through the Getting Started part of

github.com/numbbo/coco

2 Fri, 21.9.2018 lecture "Benchmarking", final adjustments of groups everybody can run 

and postprocess the example experiment (~1h for final questions/help 

during the lecture)

3 Fri, 28.9.2018 lecture "Introduction to Continuous Optimization"

4 Fri, 5.10.2018 lecture "Gradient-Based Algorithms"

5 Fri, 12.10.2018 lecture "Stochastic Algorithms and DFO"

6 Fri, 19.10.2018 lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr."

deadline for submitting data sets

7

Wed, 24.10.2018

Fri, 26.10.2018

deadline for paper submission

final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

29.10.-2.11.2018 vacation aka learning for the exams

Thu, 8.11.2018 /

Fri, 9.11.2018

oral presentations (individual time slots)

Fri, 16.11.2018 written exam

Course Overview

All deadlines:

23:59pm Paris time

All deadlines:

23:59pm Paris time
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Introduction to Continuous Optimization

 examples (from ML / black-box problems)

 typical difficulties in optimization

Mathematical Tools to Characterize Optima

 reminders about differentiability, gradient, Hessian matrix

 unconstraint optimization

 first and second order conditions

 convexity

 constraint optimization

Gradient-based Algorithms

 quasi-Newton method (BFGS)

 [DFO trust-region method]

Learning in Optimization / Stochastic Optimization 

 CMA-ES (adaptive algorithms / Information Geometry)

 PhD thesis possible on this topic

method strongly related to ML / new promising research area 

interesting open questions

Details on Continuous Optimization Lectures
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 Optimize 𝑓:  
Ω ⊂ ℝ𝑛 → ℝ

𝑥 = 𝑥1, … , 𝑥𝑛 → 𝑓(𝑥1, … , 𝑥𝑛)

 Search space is continuous, i.e. composed of real vectors 𝑥 ∈ ℝ𝑛

 𝑛 =

Continuous Optimization

∈ ℝ unconstrained optimization

dimension of the problem

dimension of the search space ℝ𝑛 (as vector space)

1-D problem 2-D level sets
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Unconstrained case

 local vs. global

 local minimum 𝒙∗: ∃ a neighborhood 𝑉 of 𝒙∗ such that

∀𝒙 ∈ V: 𝑓(𝒙) ≥ 𝑓(𝒙∗)

 global minimum: ∀𝒙 ∈ Ω: 𝑓 𝒙 ≥ 𝑓 𝒙∗

 strict local minimum if the inequality is strict

Reminder: Different Notions of Optimum
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Objective: Derive general characterization of optima

Example: if 𝑓:ℝ → ℝ differentiable,

𝑓′ 𝑥 = 0 at optimal points

 generalization to 𝑓:ℝ𝑛 → ℝ ?

 generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

Mathematical Characterization of Optima

optima of such function can be easily 

approached by certain type of methods
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𝑓: (𝑉, | | 𝑉) ⟶ (𝑊, | | 𝑊) is continuous in 𝑥 ∈ 𝑉 if

∀𝜖 > 0, ∃𝜂 > 0 such that ∀𝑦 ∈ 𝑉: |𝑥 − 𝑦| 𝑉 ≤ 𝜂; ||𝑓 𝑥 − 𝑓(𝑦)||𝑊 ≤ 𝜖

Reminder: Continuity of a Function

continuous

function

not continuous

discontinuity

point
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𝑓:ℝ → ℝ is differentiable in 𝑥 ∈ ℝ if

lim
ℎ→0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ
exists, ℎ ∈ ℝ

Notation:

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ

The derivative corresponds to the slope of the tangent in 𝑥.

Reminder: Differentiability in 1D (n=1)
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Taylor Formula (Order 1)

If 𝑓 is differentiable in 𝑥 then

𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑓′ 𝑥 ℎ + 𝑜 |ℎ|

i.e. for ℎ small enough, ℎ ⟼ 𝑓 𝑥 + ℎ is approximated by ℎ ⟼
𝑓 𝑥 + 𝑓′ 𝑥 ℎ

ℎ ⟼ 𝑓 𝑥 + 𝑓′ 𝑥 ℎ is called a first order approximation of 𝑓(𝑥 + ℎ)

Reminder: Differentiability in 1D (n=1)
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Geometrically:

The notion of derivative of a function defined on ℝ𝑛 is generalized

via this idea of a linear approximation of 𝑓(𝑥 + ℎ) for ℎ small

enough.

Reminder: Differentiability in 1D (n=1)

How to generalize this to arbitrary dimension?How to generalize this to arbitrary dimension?
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 In (ℝ𝑛, || ||2) where ||𝒙||2 = 𝒙, 𝒙 is the Euclidean norm

deriving from the scalar product 𝒙, 𝒚 = 𝒙𝑇𝒚

𝛻𝑓 𝑥 =

𝜕𝑓

𝜕𝑥1
⋮
𝜕𝑓

𝜕𝑥𝑛

 Reminder: partial derivative in 𝑥0
fi: 𝑦→ 𝑓 𝑥0

1, … , 𝑥0
𝑖−1, 𝑦, 𝑥0

𝑖+1, … , 𝑥0
𝑛

𝜕𝑓

𝜕𝑥𝑖
𝑥0 = 𝑓𝑖′(𝑥0)

Gradient Definition Via Partial Derivatives
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Exercise:

Compute the gradients of 

a) 𝑓 𝑥 = 𝑥1 with 𝑥 ∈ ℝ𝑛

b) 𝑓 𝑥 = 𝑎𝑇𝑥 with a, 𝑥 ∈ ℝ𝑛

c) 𝑓 𝑥 = 𝑥𝑇𝑥 (= |x| 2) with 𝑥 ∈ ℝ𝑛

Exercise:

Compute the gradients of 

a) 𝑓 𝑥 = 𝑥1 with 𝑥 ∈ ℝ𝑛

b) 𝑓 𝑥 = 𝑎𝑇𝑥 with a, 𝑥 ∈ ℝ𝑛

c) 𝑓 𝑥 = 𝑥𝑇𝑥 (= |x| 2) with 𝑥 ∈ ℝ𝑛
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Some more examples:

 in ℝ𝑛, if 𝑓 𝒙 = 𝒙𝑇𝐴𝒙, then 𝛻𝑓 𝒙 = (𝐴 + 𝐴𝑇)𝒙

 in ℝ, 𝛻𝑓 𝒙 = 𝑓′(𝒙)

Exercise: Gradients

Exercise:

Compute the gradients of 

a) 𝑓 𝑥 = 𝑥1 with 𝑥 ∈ ℝ𝑛

b) 𝑓 𝑥 = 𝑎𝑇𝑥 with a, 𝑥 ∈ ℝ𝑛

c) 𝑓 𝑥 = 𝑥𝑇𝑥 (= |x| 2) with 𝑥 ∈ ℝ𝑛

Exercise:

Compute the gradients of 

a) 𝑓 𝑥 = 𝑥1 with 𝑥 ∈ ℝ𝑛

b) 𝑓 𝑥 = 𝑎𝑇𝑥 with a, 𝑥 ∈ ℝ𝑛

c) 𝑓 𝑥 = 𝑥𝑇𝑥 (= |x| 2) with 𝑥 ∈ ℝ𝑛



14TC2: Introduction to Optimization, U. Paris-Saclay, Sept. 27, 2018© Anne Auger and Dimo Brockhoff, Inria 14

Mastertitelformat bearbeiten

More generally, the gradient of a

differentiable function is orthogonal to

its level sets.

Gradient: Geometrical Interpretation

Exercise:

Let 𝐿𝑐 = 𝒙 ∈ ℝ𝑛 𝑓 𝒙 = 𝑐} be again a level set of a function 𝑓 𝒙 .

Let 𝒙0 ∈ 𝐿𝑐 ≠ ∅.

Compute the level sets for 𝑓1 𝒙 = 𝒂𝑇𝒙 and 𝑓2 𝒙 = | 𝒙 |2 and

the gradient in a chosen point 𝑥0 and observe that 𝛻𝑓 𝒙𝟎 is

orthogonal to the level set in 𝑥0.

Again: if this seems too difficult, do it for two variables (and a

concrete 𝒂 ∈ ℝ2) and draw the level sets and the gradients.

Exercise:

Let 𝐿𝑐 = 𝒙 ∈ ℝ𝑛 𝑓 𝒙 = 𝑐} be again a level set of a function 𝑓 𝒙 .

Let 𝒙0 ∈ 𝐿𝑐 ≠ ∅.

Compute the level sets for 𝑓1 𝒙 = 𝒂𝑇𝒙 and 𝑓2 𝒙 = | 𝒙 |2 and

the gradient in a chosen point 𝑥0 and observe that 𝛻𝑓 𝒙𝟎 is

orthogonal to the level set in 𝑥0.

Again: if this seems too difficult, do it for two variables (and a

concrete 𝒂 ∈ ℝ2) and draw the level sets and the gradients.
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Taylor Formula – Order One

𝑓 𝒙 + 𝒉 = 𝑓 𝒙 + 𝛻𝑓 𝒙
𝑇
𝒉 + 𝑜(||𝒉||)

Differentiability in ℝ𝒏
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 Let 𝑓:ℝ → ℝ be a differentiable function and let 𝑓′: 𝑥 → 𝑓′(𝑥) be 

its derivative.

 If 𝑓′ is differentiable in 𝑥, then we denote its derivative as 𝑓′′ 𝑥

 𝑓′′(𝑥) is called the second order derivative of 𝑓.

Reminder: Second Order Derivability in 1D
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 If 𝑓:ℝ → ℝ is two times differentiable then

𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑓′ 𝑥 ℎ + 𝑓′′ 𝑥 ℎ2 + 𝑜 ||ℎ||2

i.e. for ℎ small enough, ℎ → 𝑓 𝑥 + ℎ𝑓′ 𝑥 + ℎ2𝑓′′(𝑥)
approximates ℎ + 𝑓(𝑥 + ℎ)

 ℎ → 𝑓 𝑥 + ℎ𝑓′ 𝑥 + ℎ2𝑓′′(𝑥) is a quadratic approximation (or 

order 2) of 𝑓 in a neighborhood of 𝑥

 The second derivative of 𝑓: ℝ → ℝ generalizes naturally to larger 

dimension.

Taylor Formula: Second Order Derivative
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In ℝ𝑛, 𝑥, 𝑦 = 𝑥𝑇𝑦 , 𝛻2𝑓(𝑥) is represented by a symmetric matrix 

called the Hessian matrix. It can be computed as

𝛻2 𝑓 =

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
…

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛
𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2 …

𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑛
⋮ ⋮ ⋱ ⋮

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥2
…

𝜕2𝑓

𝜕𝑥𝑛
2

Hessian Matrix
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Exercise:

Let 𝑓 𝒙 =
1

2
𝒙𝑇𝐴 𝒙, 𝒙 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑛×𝑛.

Compute the Hessian matrix of 𝑓.

If it is too complex, consider 𝑓:  
ℝ2 → ℝ

𝒙 →
1

2
𝒙𝑇𝐴 𝒙

with 𝐴 =
9 0
0 1

Exercise:

Let 𝑓 𝒙 =
1

2
𝒙𝑇𝐴 𝒙, 𝒙 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑛×𝑛.

Compute the Hessian matrix of 𝑓.

If it is too complex, consider 𝑓:  
ℝ2 → ℝ

𝒙 →
1

2
𝒙𝑇𝐴 𝒙

with 𝐴 =
9 0
0 1
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Taylor Formula – Order Two

𝑓 𝒙 + 𝒉 = 𝑓 𝒙 + 𝛻𝑓 𝒙
𝑇
𝒉 +

1

2
𝒉𝑇 𝛻2𝑓 𝒙 𝒉 + 𝑜( |𝒉| 2)

Second Order Differentiability in ℝ𝒏
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We have seen that for a convex quadratic function

𝑓 𝑥 =
1

2
𝑥 − 𝑥0

𝑇𝐴 𝑥 − 𝑥0 + 𝑏 of 𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑛×𝑛, 𝐴 SPD, 𝑏 ∈ ℝ𝑛:

1) The level sets are ellipsoids. The eigenvalues of 𝐴 determine 

the lengths of the principle axes of the ellipsoid.

2) The Hessian matrix of 𝑓 equals to 𝐴.

Ill-conditioned convex quadratic problems are problems with large 

ratio between largest and smallest eigenvalue of 𝐴 which means large 

ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Back to Ill-Conditioned Problems

For 𝑛 = 2, let 𝜆1, 𝜆2 be

the eigenvalues of 𝐴.
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Gradient direction: 𝛻𝑓(𝒙)

Newton direction: 𝐻 𝒙
−1

⋅ 𝛻𝑓 𝒙

with 𝐻(𝒙) = 𝛻2𝑓(𝒙) being the Hessian at 𝒙

Gradient Direction Vs. Newton Direction

Exercise:

Let again 𝑓 𝒙 =
1

2
𝒙𝑇𝐴 𝒙, 𝒙 ∈ ℝ2, 𝐴 =

9 0
0 1

∈ ℝ2×2.

Plot the gradient and Newton direction of 𝑓 in a point 𝑥 ∈ ℝ𝑛

of your choice (which should not be on a coordinate axis) into

the same plot with the level sets, we created before.

Exercise:

Let again 𝑓 𝒙 =
1

2
𝒙𝑇𝐴 𝒙, 𝒙 ∈ ℝ2, 𝐴 =

9 0
0 1

∈ ℝ2×2.

Plot the gradient and Newton direction of 𝑓 in a point 𝑥 ∈ ℝ𝑛

of your choice (which should not be on a coordinate axis) into

the same plot with the level sets, we created before.
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Optimality Conditions

for Unconstrained Problems
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For 1-dimensional optimization problems 𝒇: ℝ → ℝ

Assume 𝑓 is differentiable

 𝒙∗ is a local optimum ⟹ 𝑓′ 𝒙∗ = 0

not a sufficient condition: consider 𝑓 𝒙 = 𝒙3

proof via Taylor formula: 𝑓 𝒙∗ + 𝒉 = 𝑓 𝒙∗ + 𝑓′ 𝒙∗ 𝒉 + 𝑜(||𝒉||)

 points 𝒚 such that 𝑓′ 𝒚 = 0 are called critical or stationary points

Generalization to 𝒏-dimensional functions

If 𝑓:𝑈 ⊂ ℝ𝑛 ⟼ ℝ is differentiable

 necessary condition: If 𝒙∗ is a local optimum of 𝑓, then 𝛻𝑓 𝒙∗ = 0

proof via Taylor formula 

Optimality Conditions: First Order Necessary Cond.
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If 𝑓 is twice continuously differentiable

 Necessary condition: if 𝒙∗ is a local minimum, then 𝛻𝑓 𝒙∗ = 0
and 𝛻2𝑓(𝒙∗) is positive semi-definite

proof via Taylor formula at order 2

 Sufficient condition: if 𝛻𝑓 𝒙∗ = 0 and 𝛻2𝑓 𝒙∗ is positive definite, 

then 𝒙∗ is a strict local minimum

Proof of Sufficient Condition:

 Let 𝜆 > 0 be the smallest eigenvalue of 𝛻2𝑓(𝒙∗), using a second 

order Taylor expansion, we have for all 𝒉:

 𝑓 𝒙∗ + 𝒉 − 𝑓 𝒙∗ = 𝛻𝑓 𝒙∗ 𝑇𝒉 +
1

2
𝒉𝑇𝛻2𝑓 𝒙∗ 𝒉 + 𝑜(||𝒉||2)

>
𝜆

2
| 𝒉 |2 + o(||𝒉||2) =

𝜆

2
+
𝑜(||𝒉||2)

||𝒉||2
||𝒉||2

Second Order Necessary and Sufficient Opt. Cond.
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Let 𝑈 be a convex open set of ℝ𝑛 and 𝑓:𝑈 → ℝ. The function 𝑓 is

said to be convex if for all 𝒙, 𝒚 ∈ 𝑈 and for all 𝑡 ∈ [0,1]

𝑓 1 − 𝑡 𝒙 + 𝑡𝒚 ≤ 1 − 𝑡 𝑓 𝒙 + 𝑡𝑓(𝒚)

Theorem

If 𝑓 is differentiable, then 𝑓 is convex if and only if for all 𝒙, 𝒚

𝑓 𝒚 − 𝑓 𝒙 ≥ 𝛻𝑓 𝑥
𝑇
(𝒚 − 𝒙)

if 𝑛 = 1, the curve is on top of the tangent

If 𝑓 is twice continuously differentiable, then 𝑓 is convex if and only if 

𝛻2𝑓(𝒙) is positive semi-definite for all 𝒙.

Convex Functions
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Examples of Convex Functions:

 𝑓 𝒙 = 𝑎𝑇𝒙 + 𝑏

 𝑓 𝒙 =
1

2
𝒙𝑇𝐴𝒙 + 𝑎𝑇𝒙 + 𝑏, 𝐴 symmetric positive definite

 the negative of the entropy function (i. e. 𝑓 𝒙 = − 𝑖=1
𝑛 𝒙𝑖 ln(𝒙𝒊) )

Why is convexity an important concept?

Convex Functions: Why Convexity?

Exercise:

Let 𝑓:𝑈 → ℝ be a convex and differentiable function on a

convex open 𝑈.

Show that if 𝛻𝑓 𝒙∗ = 0, then 𝒙∗ is a global minimum of 𝑓

Exercise:

Let 𝑓:𝑈 → ℝ be a convex and differentiable function on a

convex open 𝑈.

Show that if 𝛻𝑓 𝒙∗ = 0, then 𝒙∗ is a global minimum of 𝑓


