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Course Overview

1 Mon, 17.9.2018
Thu, 20.9.2018

2 Fri, 21.9.2018

Fri, 28.9.2018
Fri, 5.10.2018

Fri, 12.10.2018
Fri, 19.10.2018

o o1 b~ O

Wed, 24.10.2018

7 Fri, 26.10.2018
29.10.-2.11.2018

Thu, 8.11.2018 /
Fri, 9.11.2018

Fri, 16.11.2018

Monday's lecture: introduction, example problems, problem types
groups defined via wiki

everybody went (actively!) through the Getting Started part of
github.com/numbbo/coco

lecture "Benchmarking", final adjustments of groups everybody can run
and postprocess the example experiment (~1h for final questions/help
during the lecture)

lecture "Introduction to Continuous Optimization"
lecture "Gradient-Based Algorithms"

lecture "Stochastic Algorithms and DFO"

lecture "Discrete Optimization |: graphs, greedy algos, dyn. progr."
deadline for submitting data sets

deadline for paper submission
final lecture "Discrete Optimization Il: dyn. progr., B&B, heuristics"
vacation aka learning for the exams

oral presentations (individual time slots)

written exam All deadlines:
23:59pm Paris time
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Details on Continuous Optimization Lectures

Introduction to Continuous Optimization
= examples (from ML / black-box problems)
= typical difficulties in optimization

Mathematical Tools to Characterize Optima
= reminders about differentiability, gradient, Hessian matrix
= unconstraint optimization

= first and second order conditions

= convexity

= constraint optimization

Gradient-based Algorithms
= quasi-Newton method (BFGS)
= [DFQO trust-region method]

Learning in Optimization / Stochastic Optimization
= CMA-ES (adaptive algorithms / Information Geometry)
= PhD thesis possible on this topic
method strongly related to ML / new promising research area
interesting open questions




Continuous Optimization

QcR*" >R
X = (X1, ., Xp) = f(X1, eer, Xp)

eER

=  Optimize f: {

unconstrained optimization

= Search space is continuous, i.e. composed of real vectors x € R"

. _ | dimension of the problem
=7 dimension of the search space R™ (as vector space)

{G)y

1-D problem 2-D level sets

o/ M
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Reminder: Different Notions of Optimum

Unconstrained case
» Jocal vs. global
* |ocal minimum x*: 3 a neighborhood V' of x* such that
Vx eV:f(x) = f(x¥)
= global minimum: vx € Q: f(x) = f(x*)
= strict local minimum if the inequality is strict




Mathematical Characterization of Optima

Objective: Derive general characterization of optima

Example: if f: R — R differentiable,
f'(x) = 0 at optimal points

= generalizationto f:R" - R ?
= generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

optima of such function can be easily
approached by certain type of methods
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Reminder: Continuity of a Function

£V 0 Hy) — (WL | lw) is continuous in x € V if
Ve > 0,an >0suchthatvy e V: ||lx—vy|ly <n; |If(x) — fFW)]||lw < €

not continuous

continuous
function discontinuity
. point




Reminder: Differentiability in 1D (n=1)

f:R — R is differentiable in x € R if

lim L& =ICD ovists. h e R
h—-0 h
Notation:
/ o f(x+h)—f(x)
F1e0 = hm 5

{4

\




Reminder: Differentiability in 1D (n=1)

Taylor Formula (Order 1)
If f is differentiable in x then

fix+h) = fx)+ f (x)h+o(lh]])

l.e. for h small enough, h — f(x + h) is approximated by h —

f(x) + f(x)h

h+— f(x)+ f'(x)h is called a first order approximation of f(x + h)
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Reminder: Differentiability in 1D (n=1)

Geometrically:

The notion of derivative of a function defined on R" is generalized
via this idea of a linear approximation of f(x + h) for h small
enough.

How to generalize this to arbitrary dimension?
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Gradient Definition Via Partial Derivatives

= In(R", || ||,) where ||x|]|, = +/{x, x) is the Euclidean norm
deriving from the scalar product (x,y) = xTy

daf
o

Vi) =

Y,

0x,
= Reminder: partial derivative in x,

fir y = f(25, 0, 67y, %6, 2F)

d
a_»]; (x0) = £/ (%)
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Exercise: Gradients
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Exercise: Gradients

Exercise:

Compute the gradients of

a) f(x)=x, withx e R"

b) f(x) =a’x with a,x € R"

c) f(x)=xTx(=]|x||?) with x € R"

Some more examples:
= inR",if f(x) = xTAx, then Vf(x) = (A + AD)x
" InR, Vf(x) = f(x)
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Gradient: Geometrical Interpretation

Exercise:

Let L, = {x € R"| f(x) = c} be again a level set of a function f(x).
Let x, € L, # 0.

Compute the level sets for f;(x) = a’x and f,(x) = ||x]|? and
the gradient in a chosen point x, and observe that V' f(x,) is
orthogonal to the level set in x.

Again: if this seems too difficult, do it for two variables (and a
concrete a € R?) and draw the level sets and the gradients.

More generally, the gradient of a ™~

differentiable function is orthogonal to *\\_ ” f
its level sets. %"
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Differentiability in R"

Taylor Formula — Order One

fx+h) = f@) + (V@) h+o(h]])
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Reminder: Second Order Derivability in 1D

= Let f:R — R be a differentiable function and let f":x - f'(x) be
its derivative.

= |If f'is differentiable in x, then we denote its derivative as "' (x)
= f"(x) is called the second order derivative of f.




Taylor Formula: Second Order Derivative

= |f f:R — Ris two times differentiable then
fGx+h)=fx)+f'h+f"(x)h? + o(]|h]]?)
i.e. for h small enough, h - f(x) + hf'(x) + h?f"(x)
approximates h + f(x + h)
= h- f(x)+hf'(x) + h?f"(x) is a quadratic approximation (or
order 2) of f in a neighborhood of x

i NI AN ALY

— flo) th {t)

-+

» The second derivative of f: R — R generalizes naturally to larger
dimension.
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Hessian Matrix

In (R™, (x,y) = xTy), V2f(x) is represented by a symmetric matrix
called the Hessian matrix. It can be computed as

oy o 02f

c’)_x12 0x10x,  0x10x,
02f  9f 02 f

V2(f) = |ox,0x, axz 7 0x,0x,
02f  9f 02 f

9x,0x; 0x,0x, ~  0xZ |
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Exercise on Hessian Matrix
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Second Order Differentiability in R"

Taylor Formula — Order Two

Fa+h) = )+ (7)) R+ 5T (72 () R+ o(lIAII)
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Back to llI-Conditioned Problems

We have seen that for a convex quadratic function
f(x) = %(x —x9)TA(x —xy) + b of x € R", A € R™", A SPD, b € R™:

1) The level sets are ellipsoids. The eigenvalues of A determine
the lengths of the principle axes of the ellipsoid.

or n=2,let A1, be

the eigenvalues of A.
N

2) The Hessian matrix of f equals to A.

lll-conditioned convex quadratic problems are problems with large
ratio between largest and smallest eigenvalue of A which means large
ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.
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Gradient Direction Vs. Newton Direction

Gradient direction: VV'f(x)

Newton direction: (H(x))_1 - Vf(x)
with H(x) = V%f(x) being the Hessian at x

Exercise:

Let again f(x) = %xTA x,x ER? A= (g 2) € R?*2,

Plot the gradient and Newton direction of f in a point x € R"
of your choice (which should not be on a coordinate axis) into
the same plot with the level sets, we created before.
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Optimality Conditions
for Unconstrained Problems




Optimality Conditions: First Order Necessary

For 1-dimensional optimization problems f: R - R
Assume f is differentiable
= x*is alocal optimum = f'(x*) =0
not a sufficient condition: consider f(x) = x3
proof via Taylor formula: f(x* + h) = f(x*) + f'(x*)h + o(||h]|)

= points y such that f'(y) = 0 are called critical or stationary points

Generalization to n-dimensional functions

If f:U c R™ +— R is differentiable

= necessary condition: If x* is a local optimum of f, then Vf(x*) =0
proof via Taylor formula




Second Order Necessary and Sufficient Opt

If f is twice continuously differentiable
= Necessary condition: if x* is a local minimum, then V'f(x*) =0
and V2f(x*) is positive semi-definite
proof via Taylor formula at order 2
= Sufficient condition: if 7f(x*) = 0 and 74f(x*) is positive definite,
then x* is a strict local minimum

Proof of Sufficient Condition:

= Let A > 0 be the smallest eigenvalue of V2 f(x*), using a second
order Taylor expansion, we have for all h:

= f(x"+h)- f(x*) = Vf(x) h+ hTV2f (xR + o(||hI[?)

—IIhI|2+o(IIhII ) = (2 (llllhllllz )) ||R]]?
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Convex Functions

Let U be a convex open set of R" and f: U — R. The function f is
said to be convex if for all x,y € U and for all t € [0,1]

f(A-Dx+ty) <A -Ofx) +tf(y)

Theorem
If f is differentiable, then f is convex if and only if for all x, y

f) - @ = (V@) -

ifn = 1, the curve is on top of the tangent

If £ is twice continuously differentiable, then f is convex if and only if
V4f(x) is positive semi-definite for all x.
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Convex Functions: Why Convexity?

Examples of Convex Functions:

= f(x)=a'x+b

= f(x) = %xTAx + a’x + b, A symmetric positive definite

= the negative of the entropy function (i.e. f(x) = — Y-, x; In(x;) )

Exercise:

Let f: U = R be a convex and differentiable function on a
convex open U.
Show that if Vf(x*) = 0, then x* is a global minimum of f

Why is convexity an important concept?
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