Introduction to Optimization Lecture 3: Introduction to Continuous Optimization

September 28, 2018 TC2 - Optimisation Université Paris-Saclay

Dimo Brockhoff Inria Saclay – Ile-de-France

Course Overview

1	Mon, 17.9.2018	Monday's lecture: introduction, example problems, problem types	
	Thu, 20.9.2018	groups defined via wiki	
		everybody went (actively!) through th github.com/numbbo/coco	e Getting Started part of
2	Fri, 21.9.2018	lecture "Benchmarking", final adjustments of groups everybody can run and postprocess the example experiment (~1h for final questions/help during the lecture)	
3	Fri, 28.9.2018	lecture "Introduction to Continuous Optimization"	
4	Fri, 5.10.2018	lecture "Gradient-Based Algorithms"	
5	Fri, 12.10.2018	lecture "Stochastic Algorithms and DFO"	
6	Fri, 19.10.2018	lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr." deadline for submitting data sets	
	Wed, 24.10.2018	deadline for paper submission	
7	Fri, 26.10.2018	final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"	
	29.102.11.2018	vacation aka learning for the exams	
	Thu, 8.11.2018 / Fri, 9.11.2018	oral presentations (individual time slots)	
	Fri, 16.11.2018	written exam	All deadlines:
			23:59pm Paris time

Details on Continuous Optimization Lectures

Introduction to Continuous Optimization

- examples (from ML / black-box problems)
- typical difficulties in optimization

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
 - first and second order conditions
 - convexity
- constraint optimization

Gradient-based Algorithms

- quasi-Newton method (BFGS)
- [DFO trust-region method]

Learning in Optimization / Stochastic Optimization

- CMA-ES (adaptive algorithms / Information Geometry)
- PhD thesis possible on this topic

method strongly related to ML / new promising research area

interesting open questions

Continuous Optimization

• Optimize
$$f: \begin{cases} \Omega \subset \mathbb{R}^n \to \mathbb{R} \\ x = (x_1, \dots, x_n) \to f(x_1, \dots, x_n) \\ \searrow \in \mathbb{R} \end{cases}$$
 unconstrained optimization

• Search space is continuous, i.e. composed of real vectors $x \in \mathbb{R}^n$

2-D level sets

Reminder: Different Notions of Optimum

Unconstrained case

- Iocal vs. global
 - local minimum x^* : \exists a neighborhood V of x^* such that $\forall x \in V: f(x) \ge f(x^*)$
 - global minimum: $\forall x \in \Omega: f(x) \ge f(x^*)$
- strict local minimum if the inequality is strict

Mathematical Characterization of Optima

Objective: Derive general characterization of optima

Example: if $f: \mathbb{R} \to \mathbb{R}$ differentiable, f'(x) = 0 at optimal points

- generalization to $f: \mathbb{R}^n \to \mathbb{R}$?
- generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

optima of such function can be easily approached by certain type of methods

Reminder: Continuity of a Function

 $f: (V, || ||_V) \rightarrow (W, || ||_W)$ is continuous in $x \in V$ if $\forall \epsilon > 0, \exists \eta > 0$ such that $\forall y \in V: ||x - y||_V \leq \eta; ||f(x) - f(y)||_W \leq \epsilon$

Reminder: Differentiability in 1D (n=1)

 $f: \mathbb{R} \to \mathbb{R}$ is differentiable in $x \in \mathbb{R}$ if

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ exists, } h \in \mathbb{R}$$

Notation:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The derivative corresponds to the slope of the tangent in x.

Reminder: Differentiability in 1D (n=1)

Taylor Formula (Order 1)

If *f* is differentiable in *x* then f(x+h) = f(x) + f'(x)h + o(||h||)

i.e. for *h* small enough, $h \mapsto f(x+h)$ is approximated by $h \mapsto f(x) + f'(x)h$

 $h \mapsto f(x) + f'(x)h$ is called a first order approximation of f(x + h)

Reminder: Differentiability in 1D (n=1)

Geometrically:

The notion of derivative of a function defined on \mathbb{R}^n is generalized via this idea of a linear approximation of f(x + h) for h small enough.

How to generalize this to arbitrary dimension?

Gradient Definition Via Partial Derivatives

• In $(\mathbb{R}^n, || ||_2)$ where $||x||_2 = \sqrt{\langle x, x \rangle}$ is the Euclidean norm deriving from the scalar product $\langle x, y \rangle = x^T y$

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Reminder: partial derivative in x₀

$$f_i: y \to f\left(x_0^1, \dots, x_0^{i-1}, y, x_0^{i+1}, \dots, x_0^n\right)$$
$$\frac{\partial f}{\partial x_i}(x_0) = f_i'(x_0)$$

Exercise: Gradients

Exercise:

Compute the gradients of a) $f(x) = x_1$ with $x \in \mathbb{R}^n$ b) $f(x) = a^T x$ with $a, x \in \mathbb{R}^n$ c) $f(x) = x^T x (= ||x||^2)$ with $x \in \mathbb{R}^n$

Exercise: Gradients

Exercise:

Compute the gradients of a) $f(x) = x_1$ with $x \in \mathbb{R}^n$ b) $f(x) = a^T x$ with $a, x \in \mathbb{R}^n$ c) $f(x) = x^T x (= ||x||^2)$ with $x \in \mathbb{R}^n$

Some more examples:

- in \mathbb{R}^n , if $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, then $\nabla f(\mathbf{x}) = (A + A^T) \mathbf{x}$
- in \mathbb{R} , $\nabla f(\mathbf{x}) = f'(\mathbf{x})$

Gradient: Geometrical Interpretation

Exercise:

Let $L_c = \{x \in \mathbb{R}^n \mid f(x) = c\}$ be again a level set of a function f(x). Let $x_0 \in L_c \neq \emptyset$.

Compute the level sets for $f_1(x) = a^T x$ and $f_2(x) = ||x||^2$ and the gradient in a chosen point x_0 and observe that $\nabla f(x_0)$ is *orthogonal* to the level set in x_0 .

Again: if this seems too difficult, do it for two variables (and a concrete $a \in \mathbb{R}^2$) and draw the level sets and the gradients.

More generally, the gradient of a differentiable function is orthogonal to its level sets.

Differentiability in \mathbb{R}^n

Taylor Formula – Order One

$$f(\boldsymbol{x} + \boldsymbol{h}) = f(\boldsymbol{x}) + (\nabla f(\boldsymbol{x}))^T \boldsymbol{h} + o(||\boldsymbol{h}||)$$

Reminder: Second Order Derivability in 1D

- Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function and let $f': x \to f'(x)$ be its derivative.
- If f' is differentiable in x, then we denote its derivative as f''(x)
- f''(x) is called the second order derivative of f.

Taylor Formula: Second Order Derivative

- If f: ℝ → ℝ is two times differentiable then
 f(x + h) = f(x) + f'(x)h + f''(x)h² + o(||h||²)
 i.e. for h small enough, h → f(x) + hf'(x) + h²f''(x)
 approximates h + f(x + h)
- $h \to f(x) + hf'(x) + h^2 f''(x)$ is a quadratic approximation (or order 2) of f in a neighborhood of x

• The second derivative of $f: \mathbb{R} \to \mathbb{R}$ generalizes naturally to larger dimension.

Hessian Matrix

In $(\mathbb{R}^n, \langle x, y \rangle = x^T y)$, $\nabla^2 f(x)$ is represented by a symmetric matrix called the Hessian matrix. It can be computed as

$$\nabla^{2}(f) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}} & \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}} \end{bmatrix}$$

Exercise on Hessian Matrix

Exercise:

Let $f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T A \mathbf{x}, \mathbf{x} \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}$.

Compute the Hessian matrix of f.

If it is too complex, consider
$$f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ x \to \frac{1}{2} x^T A x \end{cases}$$
 with $A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$

Second Order Differentiability in \mathbb{R}^n

Taylor Formula – Order Two

$$f(\boldsymbol{x} + \boldsymbol{h}) = f(\boldsymbol{x}) + \left(\nabla f(\boldsymbol{x})\right)^T \boldsymbol{h} + \frac{1}{2}\boldsymbol{h}^T \left(\nabla^2 f(\boldsymbol{x})\right) \boldsymbol{h} + o(||\boldsymbol{h}||^2)$$

Back to III-Conditioned Problems

We have seen that for a convex quadratic function

 $f(x) = \frac{1}{2}(x - x_0)^T A(x - x_0) + b \text{ of } x \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}, A \text{ SPD}, b \in \mathbb{R}^n:$

1) The level sets are ellipsoids. The eigenvalues of *A* determine the lengths of the principle axes of the ellipsoid.

2) The Hessian matrix of f equals to A.

Ill-conditioned convex quadratic problems are problems with large ratio between largest and smallest eigenvalue of *A* which means large ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Gradient Direction Vs. Newton Direction

Gradient direction: $\nabla f(\mathbf{x})$ **Newton direction:** $(H(\mathbf{x}))^{-1} \cdot \nabla f(\mathbf{x})$ with $H(\mathbf{x}) = \nabla^2 f(\mathbf{x})$ being the Hessian at \mathbf{x}

Exercise:

Let again
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x}, \mathbf{x} \in \mathbb{R}^2, A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}.$$

Plot the gradient and Newton direction of f in a point $x \in \mathbb{R}^n$ of your choice (which should not be on a coordinate axis) into the same plot with the level sets, we created before.

Optimality Conditions for Unconstrained Problems

Optimality Conditions: First Order Necessary Cond.

For 1-dimensional optimization problems $f: \mathbb{R} \to \mathbb{R}$

Assume *f* is differentiable

• x^* is a local optimum $\Rightarrow f'(x^*) = 0$

not a sufficient condition: consider $f(x) = x^3$ proof via Taylor formula: $f(x^* + h) = f(x^*) + f'(x^*)h + o(||h||)$

• points y such that f'(y) = 0 are called critical or stationary points

Generalization to *n*-dimensional functions

If $f: U \subset \mathbb{R}^n \mapsto \mathbb{R}$ is differentiable

necessary condition: If x* is a local optimum of f, then $\nabla f(x^*) = 0$ proof via Taylor formula

Second Order Necessary and Sufficient Opt. Cond.

If *f* is twice continuously differentiable

• Necessary condition: if x^* is a local minimum, then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semi-definite

proof via Taylor formula at order 2

• Sufficient condition: if $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite, then x^* is a strict local minimum

Proof of Sufficient Condition:

• Let $\lambda > 0$ be the smallest eigenvalue of $\nabla^2 f(x^*)$, using a second order Taylor expansion, we have for all **h**:

•
$$f(\mathbf{x}^* + \mathbf{h}) - f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T \nabla^2 f(\mathbf{x}^*) \mathbf{h} + o(||\mathbf{h}||^2)$$

> $\frac{\lambda}{2} ||\mathbf{h}||^2 + o(||\mathbf{h}||^2) = \left(\frac{\lambda}{2} + \frac{o(||\mathbf{h}||^2)}{||\mathbf{h}||^2}\right) ||\mathbf{h}||^2$

Convex Functions

Let *U* be a convex open set of \mathbb{R}^n and $f: U \to \mathbb{R}$. The function *f* is said to be convex if for all $x, y \in U$ and for all $t \in [0,1]$

$$f((1-t)\mathbf{x} + t\mathbf{y}) \le (1-t)f(\mathbf{x}) + tf(\mathbf{y})$$

Theorem

If f is differentiable, then f is convex if and only if for all x, y

$$f(\mathbf{y}) - f(\mathbf{x}) \ge (\nabla f(\mathbf{x}))^T (\mathbf{y} - \mathbf{x})$$

if n = 1, the curve is on top of the tangent

If *f* is twice continuously differentiable, then *f* is convex if and only if $\nabla^2 f(x)$ is positive semi-definite for all *x*.

Convex Functions: Why Convexity?

Examples of Convex Functions:

- $f(\mathbf{x}) = a^T \mathbf{x} + b$
- $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} + a^T \mathbf{x} + b$, A symmetric positive definite
- the negative of the entropy function (i.e. $f(x) = -\sum_{i=1}^{n} x_i \ln(x_i)$)

Exercise:

Let $f: U \to \mathbb{R}$ be a convex and differentiable function on a convex open U. Show that if $\nabla f(\mathbf{x}^*) = 0$, then \mathbf{x}^* is a global minimum of f

Why is convexity an important concept?