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Mastertitelformat bearbeitenDate Topic

1 Mon, 17.9.2018

Thu, 20.9.2018

Monday's lecture: introduction, example problems, problem types

groups defined via wiki

everybody went (actively!) through the Getting Started part of

github.com/numbbo/coco

2 Fri, 21.9.2018 lecture "Benchmarking", final adjustments of groups everybody can run 

and postprocess the example experiment (~1h for final questions/help 

during the lecture)

3 Fri, 28.9.2018 lecture "Introduction to Continuous Optimization"

4 Fri, 5.10.2018 lecture "Gradient-Based Algorithms" + DFO

5 Fri, 12.10.2018 lecture "Stochastic Algorithms", in particular CMA-ES

6 Fri, 19.10.2018 lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr."

deadline for submitting data sets

7

Wed, 24.10.2018

Fri, 26.10.2018

deadline for paper submission

final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

29.10.-2.11.2018 vacation aka learning for the exams

Thu, 8.11.2018 /

Fri, 9.11.2018

oral presentations (individual time slots)

Fri, 16.11.2018 written exam

Course Overview

All deadlines:

23:59pm Paris time

All deadlines:

23:59pm Paris time
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1 Mon, 17.9.2018

Thu, 20.9.2018

Monday's lecture: introduction, example problems, problem types

groups defined via wiki

everybody went (actively!) through the Getting Started part of

github.com/numbbo/coco

2 Fri, 21.9.2018 lecture "Benchmarking", final adjustments of groups everybody can run 

and postprocess the example experiment (~1h for final questions/help 

during the lecture)

3 Fri, 28.9.2018 lecture "Introduction to Continuous Optimization"

4 Fri, 5.10.2018 lecture "Gradient-Based Algorithms" + DFO

5 Fri, 12.10.2018 lecture "Stochastic Algorithms", in particular CMA-ES

6 Fri, 19.10.2018 lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr."

deadline for submitting data sets

7

Wed, 24.10.2018

Fri, 26.10.2018

deadline for paper submission

final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

29.10.-2.11.2018 vacation aka learning for the exams

Thu, 8.11.2018 /

Fri, 9.11.2018

oral presentations (individual time slots)

Fri, 16.11.2018 written exam

Course Overview

All deadlines:

23:59pm Paris time

All deadlines:

23:59pm Paris time

Let's check the schedule

in the wiki!

Let's check the schedule

in the wiki!
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Context discrete optimization:

 discrete variables

 or optimization over discrete structures (e.g. graphs)

 search space often finite, but typically too large for enumeration

  need for smart algorithms

Algorithms for discrete problems:

 typically problem-specific

 but some general concepts are repeatedly used:

 greedy algorithms

 branch and bound

 dynamic programming

 randomized search heuristics

Motivation for this Part:

 get an idea of the most common algorithm design principles

Discrete Optimization

before 2 excursions:

the O-notation

& graph theory

before 2 excursions:

the O-notation

& graph theory
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Exact

 brute-force often too slow

 better strategies such as dynamic programming & branch 

and bound

 still: often exponential runtime

Approximation Algorithms

 guarantee of low run time

 guarantee of high quality solution

 obstacle: difficult to prove these guarantees

Heuristics

 intuitive algorithms

 guarantee to run in short time

 often no guarantees on solution quality

Remark: Coping with Difficult Problems

we will see all 3 kinds

of algorithms here...

we will see all 3 kinds

of algorithms here...



6TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 6

Mastertitelformat bearbeiten

Excursion: The O-Notation
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Motivation:

 we often want to characterize how quickly a function f(x) grows 

asymptotically

 e.g. when we say an algorithm takes quadratically many steps 

(in the input size) to find the optimum of a problem with n 

(binary) variables, it is most likely not exactly n2, but maybe n2+1 

or (n+1)2

Big-O Notation

should be known, here mainly restating the definition:

we also view O(g(x)) as a set of functions growing at most as 

quick as g(x) and write f(x)O(g(x))

Excursion: The O-Notation



8TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 8

Mastertitelformat bearbeiten

 f(x) + c = O(f(x))    [if f(x) does not go to zero for x to infinity]

 c·f(x) = O(f(x))

 f(x) · g(x) = O(f(x) · g(x)) 

 3n4 + n2 – 7 = O(n4)

Intuition of the Big-O:

 if f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically) 

for f                                excluding constants and lower order terms

 With Big-O, you should have ‘≤’ in mind

 An algorithm that solves a problem in polynomial time is "efficient"

 An algorithm that solves a problem in exponential time is not

 But be aware:

In practice, often the line between efficient and non-efficient lies 

around 𝑛 log 𝑛 or even 𝑛 (or even log 𝑛 in the big data context) and 

the constants matter!!!

Big-O: Examples
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Further definitions to generalize from ‘≤’ to ‘≥‘ and ‘=‘:

 f(x) = Ω(g(x)) if g(x) = O(f(x))

 f(x) = Θ(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x))

Note: extensions to ‘<‘ and ‘>’ exist as well, but are not needed here.

Example:

 Algo A solves problem P in time O(n)

 Algo B solves problem P in time O(n2)

 which one is faster?

Excursion: The O-Notation

only proving upper

bounds to compare

algorithms is not sufficient!

only proving upper

bounds to compare

algorithms is not sufficient!
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Further definitions to generalize from ‘≤’ to ‘≥‘ and ‘=‘:

 f(x) = Ω(g(x)) if g(x) = O(f(x))

 f(x) = Θ(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x))

Note: extensions to ‘<‘ and ‘>’ exist as well, but are not needed here.

Example:

 Algo A solves problem P in time O(n)

 Algo B solves problem P in time O(n2)  Ω(n2) 

 which one is faster?

Excursion: The O-Notation

only proving upper

bounds to compare

algorithms is not sufficient!

only proving upper

bounds to compare

algorithms is not sufficient!
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 Please order the following functions in terms of their asymptotic 

behavior (from smallest to largest):

 exp(n2)

 log n

 ln n / ln ln n

 n

 n log n

 exp(n)

 ln n!

 Pick one pair of runtimes and give a formal proof for the relation.

Exercise O-Notation
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Correct ordering:

= O(log n)           log n = O(n)            n = O(n log n)

n log n = Θ(ln(n!))          ln(n!)= O(en)            en = O(en^2)

but for example en^2 ≠ O(en)

One exemplary proof:

= O(log n):

Exercise O-Notation (Solution)
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One additional proof: ln n! = O(n log n)

 Stirling’s approximation:                                         or even

 ln 𝑛! ≤ ln(𝑒𝑛𝑛+
1

2𝑒−𝑛) = 1 + 𝑛 +
1

2
ln 𝑛 − 𝑛

≤ 𝑛 +
1

2
ln 𝑛 ≤ 2𝑛 ln 𝑛 = 2𝑛

log 𝑛

log 𝑒
= 𝑐 ∙ 𝑛 log 𝑛

okay for 𝑐 = 2/ log 𝑒 and all 𝑛 ∈ ℕ

 n ln n = O(ln n!) proven in a similar vein

Exercise O-Notation (Solution)
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Excursion:

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]
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 vertices = nodes

 edges = lines

 Note: edges cover two unordered vertices (undirected graph)

 if they are ordered, we call G a directed graph

Graphs
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 G is called empty if E empty

 u and v are end vertices of an edge {u,v}

 Edges are adjacent if they share an end vertex

 Vertices u and v are adjacent if {u,v} is in E

 The degree of a vertex is the number of times it is an end vertex

 A complete graph contains all possible edges (once):

Graphs: Basic Definitions

a loop

K1 K2 K3 K4
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A walk is

 closed if first and last node coincide

 a trail if each edge traversed at most once

 a path if each vertex is visited at most once

 a closed path is a circuit or cycle

 a closed path involving all vertices of G is a Hamiltonian cycle

Walks, Paths, and Circuits
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 Two vertices are called connected if there is a walk between 

them in G

 If all vertex pairs in G are connected, G is called connected

 The connected components of G are the (maximal) subgraphs 

which are connected.

Graphs: Connectedness
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 A forest is a cycle-free graph

 A tree is a connected forest

A spanning tree of a connected graph G is a tree in G which 

contains all vertices of G

Trees and Forests
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Greedy Algorithms
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From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem 

solving heuristic of making the locally optimal choice at each 

stage with the hope of finding a global optimum.”

 Note: typically greedy algorithms do not find the global optimum

 We will see later when this is the case

Greedy Algorithms
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What we will see:

 Example 1: Money Change problem

 Example 2: Minimal Spanning Trees (MST) and the algorithm of 

Kruskal

 Example 3: An approximation algorithm for Bin Packing

Lecture Outline Greedy Algorithms
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Change-making problem

 Given n coins of distinct values w1=1, w2, ..., wn and a total 

change W (where w1, ..., wn, and W are integers). 

 Minimize the total amount of coins Σxi such that Σwixi = W and 

where xi is the number of times, coin i is given back as change. 

Greedy Algorithm

Unless total change not reached:

add the largest coin which is not larger than the remaining 

amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:

finishing darts (from 501 to 0 with 9 darts)

Example 1: Money Change
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Outline:

 problem definition

 Kruskal’s algorithm

 analysis of its running time

 proof of its correctness

Example 2: Minimal Spanning Trees (MST)
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Minimum Spanning Tree problem: 

Given a graph G=(V,E) with edge weights wi for each edge ei. 

Find the spanning tree with the smallest weight among all 

spanning trees.

weight of a spanning tree:

w(T) = Σ wi

ei in T

w(T) = 33

Applications

Setting up a new wired telecommunication/water 

supply/electricity network

Constructing minimal delay trees for broadcasting in networks

Minimum Spanning Trees (MST)
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Algorithm, see [1]

 Create forest F = (V,{}) with n components and no edge

 Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

 While S non-empty and F not spanning:

 delete cheapest edge from S

 add it to F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the 

traveling salesman problem". Proceedings of the American Mathematical 

Society 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal’s Algorithm: Idea
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First question: how to implement the algorithm?

 sorting of edges needs O(|E| log |E|)

Kruskal’s Algorithm: Runtime Considerations

Algorithm

Create forest F = (V,{}) with n components and no edge

Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

While S non-empty and F not spanning:

delete cheapest edge from S
add it to F if no cycle is introduced

simple ?
forest implementation:

Disjoint-set

data structure
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Data structure: ground set 1...N grouped to disjoint sets

Operations:

 FIND(i): to which set does i belong?

 UNION(i,j): union the sets of i and j!

Implemented as trees:

 UNION(T1, T2): hang root node of smaller tree under root 

node of larger tree (constant time), thus

 FIND(u): traverse tree from u to root (to return a representative 

of u’s set) takes logarithmic time in total number of nodes

Disjoint-set Data Structure (“Union&Find”)

1 2 3 4

1      2 3 4
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3
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5
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Algorithm, rewritten with UNION-FIND:

 Create initial disjoint-set data structure, i.e. for each vertex vi, 

store vi as representative of its set

 Create empty forest F = {}

 Sort edges such that w.l.o.g. w1 < w2 < ... < w|E|

 for each edge ei={u,v} starting from i=1:

 if FIND(u) ≠ FIND(v): # no cycle introduced?

 F = F ∪ {{u,v}}

 UNION(u,v)

 return F

Implementation of Kruskal’s Algorithm
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 Sorting of edges needs O(|E| log |E|)

 forest: Disjoint-set data structure

 initialization: O(|V|)

 log |V| to find out whether the minimum-cost edge {u,v} 

connects two sets (no cycle induced) or is within a set (cycle 

would be induced)

 2x FIND + potential UNION needs to be done O(|E|) times

 total O(|E| log |V|)

 Overall: O(|E| log |E|)

Back to Runtime Considerations
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Two parts needed:

 Algo always produces a spanning tree

final F contains no cycle and is connected by definition 

 Algo always produces a minimum spanning tree

 argument by induction

 P: If F is forest at a given stage of the algorithm, then there 

is some minimum spanning tree that contains F.

 clearly true for F = (V, {})

 assume that P holds when new edge e is added to F and 

be T a MST that contains F

 if e in T, fine

 if e not in T: T + e has cycle C with edge f in C but not 

in F (otherwise e would have introduced a cycle in F)

 now T – f + e is a tree with same weight as T (since 

T is a MST and f was not chosen to F)

 hence T – f + e is MST including F + e (i.e. P holds)

Kruskal’s Algorithm: Proof of Correctness
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Bin Packing Problem

Given a set of n items with sizes a1, a2, ..., an. Find an 

assignment of the ai’s to bins of size V such that the number of 

bins is minimal and the sum of the sizes of all items assigned to 

each bin is  ≤ V.

Applications

similar to multiprocessor scheduling of n jobs to m processors

Example 3: Bin Packing (BP)
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Bin Packing Problem

Given a set of n items with sizes a1, a2, ..., an. Find an 

assignment of the ai’s to bins of size V such that the number of 

bins is minimal and the sum of the sizes of all items assigned to 

each bin is  ≤ V.

Known Facts

 no optimization algorithm reaches a better than 3/2 

approximation in polynomial time (not shown here)

 greedy first-fit approach already yields an approximation 

algorithm with approximation ratio of 2

Example 3: Bin Packing (BP)
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First-Fit Algorithm

 without sorting the items do:

 put each item into the first bin where it fits

 if it does not fit anywhere, open a new bin

Theorem: First-Fit algorithm is a 2-approximation algorithm

Proof: Assume First Fit uses m bins. Then, at least m-1 bins are more 

than half full (otherwise, move items).

because m and OPT are integer

First-Fit Approach

0.5 0.8 0.20.40.3 0.2 0.2

0.5 0.3 0.4

0.8

0.2 0.2 0.2

means: algo always finds

a solution with f-value of ≤ 2OPT

means: algo always finds

a solution with f-value of ≤ 2OPT
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What we have seen so far:

 two problems where a greedy algorithm was optimal

 money change

 minimum spanning tree (Kruskal’s algorithm)

 but also: greedy not always optimal

 see the example of bin packing

 this is true in particular for so-called NP-hard problems

Obvious Question: when is greedy good?

Answer: if the problem is a matroid (not covered here)

From Wikipedia: [...] a matroid is a structure that captures and 

generalizes the notion of linear independence in vector 

spaces. There are many equivalent ways to define a matroid, 

the most significant being in terms of independent sets, 

bases, circuits, closed sets or flats, closure operators, and 

rank functions.

Conclusion Greedy Algorithms I
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I hope it became clear...

...what a greedy algorithm is

...that it not always results in the optimal solution

...but that it does if and only if the problem is a matroid

Conclusions Greedy Algorithms II



39TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 39

Mastertitelformat bearbeiten

Dynamic Programming
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Wikipedia:

“[...] dynamic programming is a method for solving a complex 

problem by breaking it down into a collection of simpler 

subproblems.”

But that’s not all:

 dynamic programming also makes sure that the subproblems are 

not solved too often but only once by keeping the solutions of 

simpler subproblems in memory (“trading space vs. time”)

 it is an exact method, i.e. in comparison to the greedy approach, it

always solves a problem to optimality

Note:

the reason why the approach is called "dynamic programming" is 

historical: at the time of invention by Richard Bellman, no 

computer "program" existed

Dynamic Programming
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Optimal Substructure

A solution can be constructed efficiently from optimal solutions of 

sub-problems 

Overlapping Subproblems

Wikipedia: “[...] a problem is said to have overlapping 

subproblems if the problem can be broken down into 

subproblems which are reused several times or a recursive 

algorithm for the problem solves the same subproblem over and 

over rather than always generating new subproblems.”

Note: in case of optimal substructure but independent subproblems, 

often greedy algorithms are a good choice; in this case, dynamic 

programming is often called “divide and conquer” instead

Two Properties Needed
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Main idea: solve larger subproblems by breaking them down to 

smaller, easier subproblems in a recursive manner

Typical Algorithm Design:

 decompose the problem into subproblems and think about how 

to solve a larger problem with the solutions of its subproblems

 specify how you compute the value of a larger problem 

recursively with the help of the optimal values of its subproblems

(“Bellman equation”)

 bottom-up solving of the subproblems (i.e. computing their 

optimal value), starting from the smallest by using the Bellman 

equality and a table structure to store the optimal values

(top-down approach also possible, but less common)

 eventually construct the final solution (can be omitted if only the 

value of an optimal solution is sought)

Main Idea Behind Dynamic Programming
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1 Mon, 17.9.2018

Thu, 20.9.2018

Monday's lecture: introduction, example problems, problem types

groups defined via wiki

everybody went (actively!) through the Getting Started part of

github.com/numbbo/coco

2 Fri, 21.9.2018 lecture "Benchmarking", final adjustments of groups everybody can run 

and postprocess the example experiment (~1h for final questions/help 

during the lecture)

3 Fri, 28.9.2018 lecture "Introduction to Continuous Optimization"

4 Fri, 5.10.2018 lecture "Gradient-Based Algorithms" + DFO

5 Fri, 12.10.2018 lecture "Stochastic Algorithms", in particular CMA-ES

6 Fri, 19.10.2018 lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr."

deadline for submitting data sets

7

Wed, 24.10.2018

Fri, 26.10.2018

deadline for paper submission

final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

29.10.-2.11.2018 vacation aka learning for the exams

Thu, 8.11.2018 /

Fri, 9.11.2018

oral presentations (individual time slots)

Fri, 16.11.2018 written exam

Course Overview

All deadlines:

23:59pm Paris time

All deadlines:

23:59pm Paris time
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 O-notation

 graphs

 greedy algorithms

 dynamic programming

 branch and bound

 randomized search heuristics

Remaining Lecture Overview
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Dynamic Programming

 exact algorithm

 solve problem via solutions of subproblems ("optimal substructure")

 not solving overlapping subproblems twice, but store solutions

Reminder Dynamic Programming (DP)
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What we will see:

 Example 1: The All-Pairs Shortest Path Problem

 Example 2: The knapsack problem

 Example 3: An approximation algorithm for the knapsack problem

Lecture Outline Dynamic Programming (DP)
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Shortest Path problem: 

Given a graph G=(V,E) with edge weights wi for each edge ei. 

Find the shortest path from a vertex v to a vertex u, i.e., the path 

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is 

minimized.

Obvious Applications

Google maps

Autonomous cars

Finding routes for packages in a computer network

...

Example 1: The Shortest Path Problem

u v

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1
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Shortest Path problem: 

Given a graph G=(V,E) with edge weights wi for each edge ei. 

Find the shortest path from a vertex v to a vertex u, i.e., the path 

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is 

minimized.

Note:

We can often assume that

the edge weights are stored

in a distance matrix D of

dimension |E|x|E| where

an entry Di,j gives the weight between nodes i and j and “non-

edges” are assigned a value of ∞

Why important?    determines input size

Example 1: The Shortest Path Problem

u v

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1
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Optimal Substructure

The optimal path from u to v, if it contains another vertex p can 

be constructed by simply joining the optimal path from u to p with 

the optimal path from p to v.

Overlapping Subproblems

Optimal shortest

sub-paths can be reused

when computing longer paths:

e.g. the optimal path from u to p

is contained in the optimal path from

u to q and in the optimal path from u to v.

Opt. Substructure and Overlapping Subproblems

u vq

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1
p
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All Pairs Shortest Path problem: 

Given a graph G=(V,E) with edge weights wi for each edge ei. 

Find the shortest path from each source vertex v to each other 

target vertex u, i.e., the paths (v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) 

such that w1 + ... + wk is minimized for all pairs (u,v) in V2.

The All Pairs Shortest Paths Problem

u v

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1
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Idea:

 if we knew that the shortest path between source and target 

goes through node v, we would be able to construct the 

optimal path from the shorter paths “sourcev” and “vtarget”

 subproblem P(k): compute all shortest paths where the 

intermediate nodes can be chosen from v1, ..., vk

AllPairsShortestPathFloyd(G, D)

 Init: for all 1 ≤ i,j ≤ |V|: dist(i,j) = Di,j

 For k = 1 to |V|      # solve subproblems P(k)

 for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

 dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

Note: Bernard Roy in 1959 and Stephen Warshall in 1962 essentially proposed the 

same algorithm independently.

The Algorithm of Robert Floyd (1962)
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k=0 1 2 3 4 5

1

2

3

4

5

1

3

5

4

2

7

2

-1

-1
3

5
9
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k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9
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k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3

4

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3

4

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3

4

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3 9

4 1

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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1

3

5

4

2

7

2

-1

-1
3

5
9

allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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1

3

5

4

2

7

2

-1

-1
3

5
9

allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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1

3

5

4

2

7

2

-1

-1
3

5
9

allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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1

3

5

4

2

7

2

-1

-1
3

5
9

allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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1

3

5

4

2

7

2

-1

-1
3

5
9

allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 11 ∞

2 9 ∞

3 7 9 18 8 ∞

4 10 3

5 5 ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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1

3

5

4

2

7

2

-1

-1
3

5
9

allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 1

2 -1

3 8

4 -1 1 10 0 3

5 13

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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1

3

5

4

2

7

2

-1

-1
3

5
9

allow all nodes as intermediate nodes

k=5 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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1

3

5

4

2

7

2

-1

-1
3

5
9

allow all nodes as intermediate nodes

k=5 1 2 3 4 5

1 0 2 9 1 4

2 -2 0 7 -1 2

3 7 9 16 8 11

4 -1 1 8 0 3

5 12 14 5 13 16

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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O(|V|3) easy to show

 O(|V|2) many distances need to be updated O(|V|) times

Correctness

 given by the Bellman equation

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

 only correct if cycles do not have negative total weight (can 

be checked in final distance matrix if diagonal elements are 

negative)

Runtime Considerations and Correctness
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 Construct matrix of predecessors 𝑃 alongside distance matrix

 𝑃𝑖,𝑗(𝑘) = predecessor of node j on path from i to j (at algo. step k)

 no extra costs (asymptotically)

𝑃𝑖,𝑗 0 =  
0
𝑖

if 𝑖 = 𝑗 or 𝑑𝑖,𝑗 = ∞

in all other cases

𝑃𝑖,𝑗 𝑘 =  
𝑃𝑖,𝑗(𝑘 − 1)

𝑃𝑘,𝑗 𝑘 − 1

if dist 𝑖, 𝑗 ≤ dist 𝑖, 𝑘 + dist(𝑘, 𝑗)

if dist 𝑖, 𝑗 > dist(𝑖, 𝑘) + dist(𝑘, 𝑗)

But How Can We Actually Construct the Paths?
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Knapsack Problem

Example 2: The Knapsack Problem (KP)

Dake
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Consider the following subproblem:

𝑃(𝑖, 𝑗): optimal profit when packing the first 𝑖 items into a 

knapsack of size 𝑗

Optimal Substructure

The optimal choice of whether taking item 𝑖 or not can be made 

easily for a knapsack of weight 𝑗 if we know the optimal choice 

for items 1… 𝑖 − 1:

𝑃 𝑖, 𝑗 =  

0
𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑖 = 0 or 𝑗 = 0

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

Overlapping Subproblems

a recursive implementation of the Bellman equation is simple, 

but the 𝑃(𝑖, 𝑗) might need to be computed more than once!

Opt. Substructure and Overlapping Subproblems
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To circumvent computing the subproblems more than once, we can 

store their results (in a matrix for example)...

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 ... W-1 W

0

1 P(i,j)

2

...

n-1

n

it
e
m

s

knapsack weight

best achievable

profit with items 1...i

and a knapsack of

size j
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

it
e
m

s

knapsack weight

initialization:

𝑃 𝑖, 𝑗 = 0 if 𝑖 = 0 or 𝑗 = 0
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

it
e
m

s

knapsack weight

initialization:

𝑃 𝑖, 𝑗 = 0 if 𝑖 = 0 or 𝑗 = 0
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0

2 0

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0

2 0

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

2 0

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

2 0

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝1(= 4)
4
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4

2 0

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝1(= 4)
4
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝2(= 10)
10
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
4
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
4
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
10 etc.
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Question: How to obtain the actual packing?

Answer: we just need to remember where the max came from!

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 =  𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

𝒙𝟓 = 𝟎

𝒙𝟒 = 𝟏

𝒙𝟑 = 𝟎

𝒙𝟐 = 𝟏

𝒙𝟏 = 𝟎
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 Simple to prove runtime of the previous algorithm as 𝑂(𝑛𝑊)

 In practice, i.e. for large 𝑛 and 𝑊, computing the exact optimum 

for the knapsack problem might be too costly.

no polynomial-time algo exists under famous P≠NP hypothesis

 If we want to have a polynomial-time algorithm, we have to trade 

for approximation quality.

Example 3: Approximating the Knapsack Problem
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 An algorithm is a ρ-approximation algorithm for problem Π if, for 

each problem instance of Π, it outputs a feasible solution which 

function value is within a ratio ρ of the true optimum for that 

instance.

 An algorithm A is an approximation scheme for a maximization 

problem Π if for any instance I of Π and a parameter ε>0, it 

outputs a solution s with f Π(I,s) ≥ (1-ε) ∙ OPT .

 An approximation scheme is called polynomial time 

approximation scheme (PTAS) if for a fixed ε>0, its running time 

is polynomially bounded in the size of the instance I.

note: runtime might be exponential in 1/ε actually!

 An approximation scheme is a fully polynomial time 

approximation scheme (FPTAS) if its running time is bounded 

polynomially in both the size of the input I and in 1/ε.

Approximations, PTAS, and FPTAS

remember the 2-approximation algo for bin packing?
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Similar to the previous dynamic programming algorithm, we can 

design a dynamic programming algorithm for which

 a subproblem is restricting the items to {1, ..., k} and 

searches for the lightest packing with prefixed profit P

 runs in 𝑂(𝑛2𝑃max) [idea: fill matrix of size 𝑛 × 𝑛𝑃max ]

What strange runtime is 𝑶(𝒏𝟐𝑷𝐦𝐚𝐱)?

Answer: pseudo-polynomial (polynomial if 𝑃max would be 

polynomial in input size)

Idea behind FPTAS:

 scale all profits 𝑝𝑖 smartly to 
𝑝𝑖𝑛

𝜀𝑃max
to make 𝑃max

polynomially bounded

 prove that dynamic programming approach computes profit 

of at least (1-ε)∙OPT (not shown here)

An FPTAS for the Knapsack Problem



99TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 99

Mastertitelformat bearbeiten

Branch and Bound
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 Systematic enumeration of candidate solutions in terms of a 

rooted tree

 Each tree node corresponds to a set of solutions; the whole 

search space on the root

 At each tree node, the corresponding subset of the search space 

is split into (non-overlapping) sub-subsets:

 the optimum of the larger problem must be contained in at 

least one of its subproblems

 If tree nodes correspond to small enough subproblems, they are 

solved exhaustively.

 The smart part of the algorithm is the estimation of upper and 

lower bounds on the optimal function value achieved by 

solutions in the tree nodes

 the exploration of a tree node is stopped ("pruning the tree") 

if a node’s upper bound is already lower than the lower 

bound of an already explored node (assuming maximization)

Branch and Bound: General Ideas
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Needed for successful application of branch and bound:

 optimization problem

 finite (or at least countable) set of solutions

 clear idea of how to split problem into smaller subproblems

 efficient calculation of the following modules:

 upper bound calculation

 lower bound calculation

Applying Branch and Bound
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Assume w.l.o.g. maximization of f(x) here

Lower Bounds

 any actual feasible solution will give a lower bound (which will be 

exact if the solution is the optimal one for the subproblem)

 hence, sampling a (feasible) solution can be one strategy

 using a heuristic to solve the subproblem another one

Upper Bounds

 upper bounds can be achieved by solving a relaxed version of 

the problem formulations (i.e. by either loosening or removing 

constraints)

Note: the better/tighter the bounds, the quicker the branch and 

bound tree can be pruned

Computing Bounds (Maximization Problems)
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 Exact, global solver

 Can be slow; only exponential worst-case runtime

 due to the exhaustive search behavior if no pruning of the 

search tree is possible

 but might work well in some cases

Advantages:

 can be stopped if lower and upper bound are “close enough” in 

practice (not necessarily exact anymore then)

 can be combined with other techniques, e.g. “branch and cut” 

(not covered here)

Properties of Branch and Bound Algorithms
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0-1 problems:

 choose unfixed variable xi

 one subproblem defined by setting xi to 0

 one subproblem defined by setting xi to 1

General integer problem:

 choose unfixed variable xi

 choose a value c that xi can take

 one subproblem defined by restricting xi ≤ c

 one subproblem defined by restricting xi > c

Combinatorial Problems:

 branching on certain discrete choices, e.g. an edge/vertex is 

chosen or not chosen

The branching decisions are then induced as additional constraints 

when defining the subproblems.

Example Branching Decisions
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Several strategies (again assuming maximization):

 choose the subproblem with highest upper bound

 gain the most in reducing overall upper bound

 if upper bound not the optimal value, this problem needs to 

be branched upon anyway sooner or later

 choose the subproblem with lowest lower bound

 simple depth-first search or breadth-first search

see for example

https://en.wikipedia.org/wiki/Depth-first_search

https://en.wikipedia.org/wiki/Breadth-first_search

 problem-specific approach most likely to be a good choice

Which Tree Node to Branch on?
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Concrete steps when designing a branch and bound algorithm:

 How to split a problem into subproblems (“branching”)?

 How to compute upper bounds (assuming maximization)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

4 Steps Towards a Branch and Bound Algorithm
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The ILP formalization covers many problems such as

 Traveling Salesperson Person (TSP)

 Vertex Cover and other covering problems

 Set packing and other packing problems

 Boolean satisfiability (SAT)

Example: Application to ILPs
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 Do not restrict the solutions to integers and round the solution 

found of the relaxed problem (=remove the integer constraints) 

by a continuous solver (i.e. solving the so-called LP relaxation)

 no guarantee to be exact

 Exploiting the instance property of A being total unimodular:

 feasible solutions are guaranteed to be integer in this case

 algorithms for continuous relaxation  can be used (e.g. the 

simplex algorithm)

 Using heuristic methods (typically without any quality guarantee)

 we’ll see these type of algorithms later in the lecture

 Using exact algorithms such as branch and bound

Possible Ways to Solve an ILP
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Here, we just give an idea instead of a concrete algorithm...

 How to split a problem into subproblems (“branching”)?

 How to compute upper bounds (assuming maximization)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

Branch and Bound for ILPs
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Here, we just give an idea instead of a concrete algorithm...

 How to compute upper bounds (assuming maximization)?

 How to split a problem into subproblems (“branching”)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

Branch and Bound for ILPs
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How to compute upper bounds (assuming maximization)?

 drop the integer constraints and solve the so-called LP-

relaxation

 can be done by standard LP algorithms such as 
scipy.optimize.linprog or Matlab’s linprog

What’s then?

 The LP has no feasible solution. Fine. Prune.

 We found an integer solution. Fine as well. Might give us a 

new lower bound to the overall problem. 

 The LP problem has an optimal solution which is worse than 

the highest lower bound over all already explored 

subproblems. Fine. Prune.

 Otherwise: Branch on this subproblem: e.g. if optimal 

solution has xi=2.7865, use xi≤2 and xi≥3 as new constraints

Branch and Bound for ILPs
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How to split a problem into subproblems (“branching”)?

 mainly needed if the solution of the LP-relaxation is not 

integer

 branch on a variable which is rational

Not discussed here in depth due to time:

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

 seems to be good choice: subproblem with largest upper 

bound of LP-relaxation

Branch and Bound for ILPs
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I hope it became clear...

...what the algorithm design ideas of dynamic programming and 

branch and bound are

...and for which problem types they are supposed to be suitable

Conclusions
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(Randomized) Search Heuristics
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 often, problem complicated and not much time available to 

develop a problem-specific algorithm

 search heuristics are a good choice:

 relatively easy to implement

 easy to adapt/change/improve

 e.g. when the problem formulation changes in an early 

product design phase

 or when slightly different problems need to be solved 

over time

 randomized/stochastic algorithms are a good choice because 

they are robust to noise

Motivation General Search Heuristics
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Which algorithms will we touch?

 Randomized Local Search (RLS)

 Variable Neighborhood Search (VNS)

 Tabu Search (TS)

 Evolutionary Algorithms (EAs)

Lecture Outline Randomized Search Heuristics
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For most (stochastic) search heuristics, we need to define a 

neighborhood structure

 which search points are close to each other?

Example: k-bit flip / Hamming distance k neighborhood

 search space: bitstrings of length n (Ω={0,1}n)

 two search points are neighbors if their Hamming 

distance is k

 in other words: x and y are neighbors if we can flip 

exactly k bits in x to obtain y

 0001001101 is neighbor of

0001000101 for k=1

0101000101 for k=2

1101000101 for k=3

Neighborhoods
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Example: possible neighborhoods for the knapsack problem

 search space again bitstrings of length n (Ω={0,1}n)

 Hamming distance 1 neighborhood:

 add an item or remove it from the packing

 replacing 2 items neighborhood:

 replace one chosen item with an unchosen one

 makes only sense in combination with other 

neighborhoods because the number of items stays 

constant

 Hamming distance 2 neighborhood on the contrary:

 allows to change 2 arbitrary items, e.g.

 add 2 new items

 remove 2 chosen items

 or replace one chosen item with an unchosen one

Neighborhoods II
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Idea behind (Randomized) Local Search:

 explore the local neighborhood of the current solution (randomly)

Pure Random Search:

 go to randomly chosen neighbor

First Improvement Local Search:

 go to first (randomly) chosen neighbor which is better

Best Improvement strategy:

 always go to the best neighbor

 not random anymore

 computationally expensive if neighborhood large

Randomized Local Search (RLS)
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Main Idea: [Mladenovic and P. Hansen, 1997]

 change the neighborhood from time to time

 local optima are not the same for different neighborhood 

operators

 but often close to each other

 global optimum is local optimum for all neighborhoods

 rather a framework than a concrete algorithm

 e.g. deterministic and stochastic neighborhood changes

 typically combined with (i) first improvement, (ii) a random 

order in which the neighbors are visited and (iii) restarts 

N. Mladenovic and P. Hansen (1997). "Variable neighborhood search". Computers 
and Operations Research 24 (11): 1097–1100.

Variable Neighborhood Search
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Disadvantages of local searches (with or without varying 

neighborhoods)

 they get stuck in local optima

 have problems to traverse large plateaus of equal objective 

function value (“random walk”)

Tabu search addresses these by

 allowing worsening moves if all neighbors are explored

 introducing a tabu list of temporarily not allowed moves

 those restricted moves are

 problem-specific and

 can be specific solutions or not permitted “search 

directions” such as “don’t include this edge anymore” or 

“do not flip this specific bit”

 the tabu list is typically restricted in size and after a while, 

restricted moves are permitted again

Tabu Search
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One class of (bio-inspired) stochastic optimization algorithms: 

Evolutionary Algorithms (EAs)

 Class of optimization algorithms

originally inspired by the idea of

biological evolution

 selection, mutation, recombination

Stochastic Optimization Algorithms

1859
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Classical Optimization Evolutionary Computation

variables or parameters variables or chromosomes

candidate solution

vector of decision variables /      

design variables / object 

variables

individual, offspring, parent

set of candidate solutions population

objective function

loss function

cost function

error function

fitness function

iteration generation

Metaphors
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Important:

representation (search space)

Important:

representation (search space)

initialization

evaluation

evaluation

potential

parents

offspring

parents

crossover/

mutation

mating

selection

environmental

selection

stop?

best individual

stochastic operators

“Darwinism”

stopping criteria
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Genetic Algorithms (GA)

J. Holland 1975 and D. Goldberg (USA)

Evolution Strategies (ES)

I. Rechenberg and H.P. Schwefel, 1965 (Berlin)

Evolutionary Programming (EP)

L.J. Fogel 1966 (USA)

Genetic Programming (GP)

J. Koza 1990 (USA)

nowadays one umbrella term: evolutionary algorithms

The Historic Roots of EAs
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The genotype – phenotype mapping

 related to the question: how to come up with a fitness 

("quality") of each individual from the representation?

 related to DNA vs. actual animal (which then has a fitness)

fitness of an individual not always = f(x)

 include constraints

 include diversity

 others

 but needed: always a total order on the solutions

Genotype – Phenotype mapping
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Several possible ways to handle constraints, e.g.:

 resampling until a new feasible point is found (“often bad idea”)

 penalty function approach: add constraint violation term 

(potentially scaled)

 repair approach: after generation of a new point, repair it (e.g. 

with a heuristic) to become feasible again if infeasible

 continue to use repaired solution in the population or

 use repaired solution only for the evaluation?

 multiobjective approach: keep objective function and constraint 

functions separate and try to optimize all of them in parallel

 ...

Handling Constraints
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Examples for some EA parts
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Selection is the major determinant for specifying the trade-off 

between exploitation and exploration

Selection is either

stochastic                                  or                     deterministic

e.g. fitness proportional

e.g. via a tournament

Mating selection (selection for variation): usually stochastic

Environmental selection (selection for survival): often deterministic

Selection

Disadvantage:

depends on

scaling of f

Disadvantage:

depends on

scaling of f

e.g. (µ+λ), (µ,λ)

best µ from 

offspring and

parents

best µ from 

offspring only
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Variation aims at generating new individuals on the basis of those 

individuals selected for mating

Variation = Mutation and Recombination/Crossover

mutation: mut:

recombination: recomb:        where and 

 choice always depends on the problem and the chosen 

representation

 however, there are some operators that are applicable to a wide 

range of problems and tailored to standard representations such 

as vectors, permutations, trees, etc.

Variation Operators
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Two desirable properties for mutation operators:

 every solution can be generation from every other with a 

probability greater than 0 (“exhaustiveness”)



(“locality”)

Desirable property of recombination operators (“in-between-ness”):

Variation Operators: Guidelines
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Swap:

Scramble:

Invert:

Insert:

Examples of Mutation Operators on Permutations
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1-point crossover

n-point crossover

uniform crossover

Examples of Recombination Operators: {0,1}n

choose each bit

independently from

one parent or another

choose each bit

independently from

one parent or another
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 binary search space, maximization

 uniform initialization

 generational cycle: of the population

 evaluation of solutions

 mating selection (e.g. roulette wheel)

 crossover (e.g. 1-point)

 environmental selection (e.g. plus-selection)

A Canonical Genetic Algorithm
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 EAs are generic algorithms (randomized search heuristics, 

meta-heuristics, ...) for black box optimization

no or almost no assumptions on the objective function

 They are typically less efficient than problem-specific 

(exact) algorithms (in terms of #funevals)

less differences in the continuous case (as we have seen)

 Allow for an easy and rapid implementation and therefore 

to find good solutions fast

easy to incorporate (and recommended!) to incorporate 

problem-specific knowledge to improve the algorithm

Conclusions
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I hope it became clear...

...that heuristics is what we typically can afford in practice (no 

guarantees and no proofs)

...what are the main ideas behind evolutionary algorithms

...and that evolutionary algorithms and genetic algorithms are no 

synonyms

Conclusions


