
Introduction to Optimization
Lectures 6 and 7: Discrete Optimization

October 19, 2018 and October 26, 2018

TC2 - Optimisation

Université Paris-Saclay, Orsay, France

Dimo Brockhoff

Inria Saclay – Ile-de-France

2TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 2

Mastertitelformat bearbeitenDate Topic

1 Mon, 17.9.2018

Thu, 20.9.2018

Monday's lecture: introduction, example problems, problem types

groups defined via wiki

everybody went (actively!) through the Getting Started part of

github.com/numbbo/coco

2 Fri, 21.9.2018 lecture "Benchmarking", final adjustments of groups everybody can run

and postprocess the example experiment (~1h for final questions/help

during the lecture)

3 Fri, 28.9.2018 lecture "Introduction to Continuous Optimization"

4 Fri, 5.10.2018 lecture "Gradient-Based Algorithms" + DFO

5 Fri, 12.10.2018 lecture "Stochastic Algorithms", in particular CMA-ES

6 Fri, 19.10.2018 lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr."

deadline for submitting data sets

7

Wed, 24.10.2018

Fri, 26.10.2018

deadline for paper submission

final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

29.10.-2.11.2018 vacation aka learning for the exams

Thu, 8.11.2018 /

Fri, 9.11.2018

oral presentations (individual time slots)

Fri, 16.11.2018 written exam

Course Overview

All deadlines:

23:59pm Paris time

All deadlines:

23:59pm Paris time

3TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 3

Mastertitelformat bearbeitenDate Topic

1 Mon, 17.9.2018

Thu, 20.9.2018

Monday's lecture: introduction, example problems, problem types

groups defined via wiki

everybody went (actively!) through the Getting Started part of

github.com/numbbo/coco

2 Fri, 21.9.2018 lecture "Benchmarking", final adjustments of groups everybody can run

and postprocess the example experiment (~1h for final questions/help

during the lecture)

3 Fri, 28.9.2018 lecture "Introduction to Continuous Optimization"

4 Fri, 5.10.2018 lecture "Gradient-Based Algorithms" + DFO

5 Fri, 12.10.2018 lecture "Stochastic Algorithms", in particular CMA-ES

6 Fri, 19.10.2018 lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr."

deadline for submitting data sets

7

Wed, 24.10.2018

Fri, 26.10.2018

deadline for paper submission

final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

29.10.-2.11.2018 vacation aka learning for the exams

Thu, 8.11.2018 /

Fri, 9.11.2018

oral presentations (individual time slots)

Fri, 16.11.2018 written exam

Course Overview

All deadlines:

23:59pm Paris time

All deadlines:

23:59pm Paris time

Let's check the schedule

in the wiki!

Let's check the schedule

in the wiki!

4TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 4

Mastertitelformat bearbeiten

Context discrete optimization:

 discrete variables

 or optimization over discrete structures (e.g. graphs)

 search space often finite, but typically too large for enumeration

 need for smart algorithms

Algorithms for discrete problems:

 typically problem-specific

 but some general concepts are repeatedly used:

 greedy algorithms

 branch and bound

 dynamic programming

 randomized search heuristics

Motivation for this Part:

 get an idea of the most common algorithm design principles

Discrete Optimization

before 2 excursions:

the O-notation

& graph theory

before 2 excursions:

the O-notation

& graph theory

5TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 5

Mastertitelformat bearbeiten

Exact

 brute-force often too slow

 better strategies such as dynamic programming & branch

and bound

 still: often exponential runtime

Approximation Algorithms

 guarantee of low run time

 guarantee of high quality solution

 obstacle: difficult to prove these guarantees

Heuristics

 intuitive algorithms

 guarantee to run in short time

 often no guarantees on solution quality

Remark: Coping with Difficult Problems

we will see all 3 kinds

of algorithms here...

we will see all 3 kinds

of algorithms here...

6TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 6

Mastertitelformat bearbeiten

Excursion: The O-Notation

7TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 7

Mastertitelformat bearbeiten

Motivation:

 we often want to characterize how quickly a function f(x) grows

asymptotically

 e.g. when we say an algorithm takes quadratically many steps

(in the input size) to find the optimum of a problem with n

(binary) variables, it is most likely not exactly n2, but maybe n2+1

or (n+1)2

Big-O Notation

should be known, here mainly restating the definition:

we also view O(g(x)) as a set of functions growing at most as

quick as g(x) and write f(x)O(g(x))

Excursion: The O-Notation

8TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 8

Mastertitelformat bearbeiten

 f(x) + c = O(f(x)) [if f(x) does not go to zero for x to infinity]

 c·f(x) = O(f(x))

 f(x) · g(x) = O(f(x) · g(x))

 3n4 + n2 – 7 = O(n4)

Intuition of the Big-O:

 if f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically)

for f excluding constants and lower order terms

 With Big-O, you should have ‘≤’ in mind

 An algorithm that solves a problem in polynomial time is "efficient"

 An algorithm that solves a problem in exponential time is not

 But be aware:

In practice, often the line between efficient and non-efficient lies

around 𝑛 log 𝑛 or even 𝑛 (or even log 𝑛 in the big data context) and

the constants matter!!!

Big-O: Examples

9TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 9

Mastertitelformat bearbeiten

Further definitions to generalize from ‘≤’ to ‘≥‘ and ‘=‘:

 f(x) = Ω(g(x)) if g(x) = O(f(x))

 f(x) = Θ(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x))

Note: extensions to ‘<‘ and ‘>’ exist as well, but are not needed here.

Example:

 Algo A solves problem P in time O(n)

 Algo B solves problem P in time O(n2)

 which one is faster?

Excursion: The O-Notation

only proving upper

bounds to compare

algorithms is not sufficient!

only proving upper

bounds to compare

algorithms is not sufficient!

10TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 10

Mastertitelformat bearbeiten

Further definitions to generalize from ‘≤’ to ‘≥‘ and ‘=‘:

 f(x) = Ω(g(x)) if g(x) = O(f(x))

 f(x) = Θ(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x))

Note: extensions to ‘<‘ and ‘>’ exist as well, but are not needed here.

Example:

 Algo A solves problem P in time O(n)

 Algo B solves problem P in time O(n2) Ω(n2)

 which one is faster?

Excursion: The O-Notation

only proving upper

bounds to compare

algorithms is not sufficient!

only proving upper

bounds to compare

algorithms is not sufficient!

11TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 11

Mastertitelformat bearbeiten

 Please order the following functions in terms of their asymptotic

behavior (from smallest to largest):

 exp(n2)

 log n

 ln n / ln ln n

 n

 n log n

 exp(n)

 ln n!

 Pick one pair of runtimes and give a formal proof for the relation.

Exercise O-Notation

12TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 12

Mastertitelformat bearbeiten

Correct ordering:

= O(log n) log n = O(n) n = O(n log n)

n log n = Θ(ln(n!)) ln(n!)= O(en) en = O(en^2)

but for example en^2 ≠ O(en)

One exemplary proof:

= O(log n):

Exercise O-Notation (Solution)

))ln(ln(

n)ln(

n

))ln(ln(

n)ln(

n

|)log(|3
))ln(ln(

)log(3

))ln(ln()log(

)log(

))ln(ln(

)ln(
n

n

n

ne

n

n

n

for 𝑛 > 15for 𝑛 > 1

13TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 13

Mastertitelformat bearbeiten

One additional proof: ln n! = O(n log n)

 Stirling’s approximation: or even

 ln 𝑛! ≤ ln(𝑒𝑛𝑛+
1

2𝑒−𝑛) = 1 + 𝑛 +
1

2
ln 𝑛 − 𝑛

≤ 𝑛 +
1

2
ln 𝑛 ≤ 2𝑛 ln 𝑛 = 2𝑛

log 𝑛

log 𝑒
= 𝑐 ∙ 𝑛 log 𝑛

okay for 𝑐 = 2/ log 𝑒 and all 𝑛 ∈ ℕ

 n ln n = O(ln n!) proven in a similar vein

Exercise O-Notation (Solution)

14TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 14

Mastertitelformat bearbeiten

Excursion:

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

15TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 15

Mastertitelformat bearbeiten

 vertices = nodes

 edges = lines

 Note: edges cover two unordered vertices (undirected graph)

 if they are ordered, we call G a directed graph

Graphs

16TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 16

Mastertitelformat bearbeiten

 G is called empty if E empty

 u and v are end vertices of an edge {u,v}

 Edges are adjacent if they share an end vertex

 Vertices u and v are adjacent if {u,v} is in E

 The degree of a vertex is the number of times it is an end vertex

 A complete graph contains all possible edges (once):

Graphs: Basic Definitions

a loop

K1 K2 K3 K4

17TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 17

Mastertitelformat bearbeiten

A walk is

 closed if first and last node coincide

 a trail if each edge traversed at most once

 a path if each vertex is visited at most once

 a closed path is a circuit or cycle

 a closed path involving all vertices of G is a Hamiltonian cycle

Walks, Paths, and Circuits

18TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 18

Mastertitelformat bearbeiten

 Two vertices are called connected if there is a walk between

them in G

 If all vertex pairs in G are connected, G is called connected

 The connected components of G are the (maximal) subgraphs

which are connected.

Graphs: Connectedness

19TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 19

Mastertitelformat bearbeiten

 A forest is a cycle-free graph

 A tree is a connected forest

A spanning tree of a connected graph G is a tree in G which

contains all vertices of G

Trees and Forests

20TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 20

Mastertitelformat bearbeiten

Greedy Algorithms

21TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 21

Mastertitelformat bearbeiten

From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem

solving heuristic of making the locally optimal choice at each

stage with the hope of finding a global optimum.”

 Note: typically greedy algorithms do not find the global optimum

 We will see later when this is the case

Greedy Algorithms

22TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 22

Mastertitelformat bearbeiten

What we will see:

 Example 1: Money Change problem

 Example 2: Minimal Spanning Trees (MST) and the algorithm of

Kruskal

 Example 3: An approximation algorithm for Bin Packing

Lecture Outline Greedy Algorithms

23TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 23

Mastertitelformat bearbeiten

Change-making problem

 Given n coins of distinct values w1=1, w2, ..., wn and a total

change W (where w1, ..., wn, and W are integers).

 Minimize the total amount of coins Σxi such that Σwixi = W and

where xi is the number of times, coin i is given back as change.

Greedy Algorithm

Unless total change not reached:

add the largest coin which is not larger than the remaining

amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:

finishing darts (from 501 to 0 with 9 darts)

Example 1: Money Change

24TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 24

Mastertitelformat bearbeiten

Outline:

 problem definition

 Kruskal’s algorithm

 analysis of its running time

 proof of its correctness

Example 2: Minimal Spanning Trees (MST)

25TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 25

Mastertitelformat bearbeiten

Minimum Spanning Tree problem:

Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the spanning tree with the smallest weight among all

spanning trees.

weight of a spanning tree:

w(T) = Σ wi

ei in T

w(T) = 33

Applications

Setting up a new wired telecommunication/water

supply/electricity network

Constructing minimal delay trees for broadcasting in networks

Minimum Spanning Trees (MST)

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

26TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 26

Mastertitelformat bearbeiten

Algorithm, see [1]

 Create forest F = (V,{}) with n components and no edge

 Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

 While S non-empty and F not spanning:

 delete cheapest edge from S

 add it to F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the

traveling salesman problem". Proceedings of the American Mathematical

Society 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal’s Algorithm: Idea

27TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 27

Mastertitelformat bearbeitenKruskal’s Algorithm: Example

E

B

G

L

F H

C

K

D

I MJ

A
4 12

7
22

2
21 17

16

3 6

11

20 8

10 19

9

1

18

13

15 14 5

28TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 28

Mastertitelformat bearbeitenKruskal’s Algorithm: Example

E

B

G

L

F H

C

K

D

I MJ

A
4 12

7
22

2
21 17

16

3 6

11

20 8

10 19

9

1

18

13

15 14 5

29TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 29

Mastertitelformat bearbeiten

First question: how to implement the algorithm?

 sorting of edges needs O(|E| log |E|)

Kruskal’s Algorithm: Runtime Considerations

Algorithm

Create forest F = (V,{}) with n components and no edge

Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

While S non-empty and F not spanning:

delete cheapest edge from S
add it to F if no cycle is introduced

simple ?
forest implementation:

Disjoint-set

data structure

30TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 30

Mastertitelformat bearbeiten

Data structure: ground set 1...N grouped to disjoint sets

Operations:

 FIND(i): to which set does i belong?

 UNION(i,j): union the sets of i and j!

Implemented as trees:

 UNION(T1, T2): hang root node of smaller tree under root

node of larger tree (constant time), thus

 FIND(u): traverse tree from u to root (to return a representative

of u’s set) takes logarithmic time in total number of nodes

Disjoint-set Data Structure (“Union&Find”)

1 2 3 4

1 2 3 4

1

2

3

4

5

6

31TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 31

Mastertitelformat bearbeiten

Algorithm, rewritten with UNION-FIND:

 Create initial disjoint-set data structure, i.e. for each vertex vi,

store vi as representative of its set

 Create empty forest F = {}

 Sort edges such that w.l.o.g. w1 < w2 < ... < w|E|

 for each edge ei={u,v} starting from i=1:

 if FIND(u) ≠ FIND(v): # no cycle introduced?

 F = F ∪ {{u,v}}

 UNION(u,v)

 return F

Implementation of Kruskal’s Algorithm

32TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 32

Mastertitelformat bearbeiten

 Sorting of edges needs O(|E| log |E|)

 forest: Disjoint-set data structure

 initialization: O(|V|)

 log |V| to find out whether the minimum-cost edge {u,v}

connects two sets (no cycle induced) or is within a set (cycle

would be induced)

 2x FIND + potential UNION needs to be done O(|E|) times

 total O(|E| log |V|)

 Overall: O(|E| log |E|)

Back to Runtime Considerations

33TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 33

Mastertitelformat bearbeiten

Two parts needed:

 Algo always produces a spanning tree

final F contains no cycle and is connected by definition

 Algo always produces a minimum spanning tree

 argument by induction

 P: If F is forest at a given stage of the algorithm, then there

is some minimum spanning tree that contains F.

 clearly true for F = (V, {})

 assume that P holds when new edge e is added to F and

be T a MST that contains F

 if e in T, fine

 if e not in T: T + e has cycle C with edge f in C but not

in F (otherwise e would have introduced a cycle in F)

 now T – f + e is a tree with same weight as T (since

T is a MST and f was not chosen to F)

 hence T – f + e is MST including F + e (i.e. P holds)

Kruskal’s Algorithm: Proof of Correctness

34TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 34

Mastertitelformat bearbeiten

Bin Packing Problem

Given a set of n items with sizes a1, a2, ..., an. Find an

assignment of the ai’s to bins of size V such that the number of

bins is minimal and the sum of the sizes of all items assigned to

each bin is ≤ V.

Applications

similar to multiprocessor scheduling of n jobs to m processors

Example 3: Bin Packing (BP)

35TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 35

Mastertitelformat bearbeiten

Bin Packing Problem

Given a set of n items with sizes a1, a2, ..., an. Find an

assignment of the ai’s to bins of size V such that the number of

bins is minimal and the sum of the sizes of all items assigned to

each bin is ≤ V.

Known Facts

 no optimization algorithm reaches a better than 3/2

approximation in polynomial time (not shown here)

 greedy first-fit approach already yields an approximation

algorithm with approximation ratio of 2

Example 3: Bin Packing (BP)

36TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 36

Mastertitelformat bearbeiten

First-Fit Algorithm

 without sorting the items do:

 put each item into the first bin where it fits

 if it does not fit anywhere, open a new bin

Theorem: First-Fit algorithm is a 2-approximation algorithm

Proof: Assume First Fit uses m bins. Then, at least m-1 bins are more

than half full (otherwise, move items).

because m and OPT are integer

First-Fit Approach

0.5 0.8 0.20.40.3 0.2 0.2

0.5 0.3 0.4

0.8

0.2 0.2 0.2

means: algo always finds

a solution with f-value of ≤ 2OPT

means: algo always finds

a solution with f-value of ≤ 2OPT

37TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 37

Mastertitelformat bearbeiten

What we have seen so far:

 two problems where a greedy algorithm was optimal

 money change

 minimum spanning tree (Kruskal’s algorithm)

 but also: greedy not always optimal

 see the example of bin packing

 this is true in particular for so-called NP-hard problems

Obvious Question: when is greedy good?

Answer: if the problem is a matroid (not covered here)

From Wikipedia: [...] a matroid is a structure that captures and

generalizes the notion of linear independence in vector

spaces. There are many equivalent ways to define a matroid,

the most significant being in terms of independent sets,

bases, circuits, closed sets or flats, closure operators, and

rank functions.

Conclusion Greedy Algorithms I

38TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 38

Mastertitelformat bearbeiten

I hope it became clear...

...what a greedy algorithm is

...that it not always results in the optimal solution

...but that it does if and only if the problem is a matroid

Conclusions Greedy Algorithms II

39TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 39

Mastertitelformat bearbeiten

Dynamic Programming

40TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 40

Mastertitelformat bearbeiten

Wikipedia:

“[...] dynamic programming is a method for solving a complex

problem by breaking it down into a collection of simpler

subproblems.”

But that’s not all:

 dynamic programming also makes sure that the subproblems are

not solved too often but only once by keeping the solutions of

simpler subproblems in memory (“trading space vs. time”)

 it is an exact method, i.e. in comparison to the greedy approach, it

always solves a problem to optimality

Note:

the reason why the approach is called "dynamic programming" is

historical: at the time of invention by Richard Bellman, no

computer "program" existed

Dynamic Programming

41TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 41

Mastertitelformat bearbeiten

Optimal Substructure

A solution can be constructed efficiently from optimal solutions of

sub-problems

Overlapping Subproblems

Wikipedia: “[...] a problem is said to have overlapping

subproblems if the problem can be broken down into

subproblems which are reused several times or a recursive

algorithm for the problem solves the same subproblem over and

over rather than always generating new subproblems.”

Note: in case of optimal substructure but independent subproblems,

often greedy algorithms are a good choice; in this case, dynamic

programming is often called “divide and conquer” instead

Two Properties Needed

42TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 42

Mastertitelformat bearbeiten

Main idea: solve larger subproblems by breaking them down to

smaller, easier subproblems in a recursive manner

Typical Algorithm Design:

 decompose the problem into subproblems and think about how

to solve a larger problem with the solutions of its subproblems

 specify how you compute the value of a larger problem

recursively with the help of the optimal values of its subproblems

(“Bellman equation”)

 bottom-up solving of the subproblems (i.e. computing their

optimal value), starting from the smallest by using the Bellman

equality and a table structure to store the optimal values

(top-down approach also possible, but less common)

 eventually construct the final solution (can be omitted if only the

value of an optimal solution is sought)

Main Idea Behind Dynamic Programming

Introduction to Optimization
Lecture 7: Discrete Optimization

October 26, 2018

TC2 - Optimisation

Université Paris-Saclay, Orsay, France

Dimo Brockhoff

Inria Saclay – Ile-de-France

44TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 44

Mastertitelformat bearbeitenDate Topic

1 Mon, 17.9.2018

Thu, 20.9.2018

Monday's lecture: introduction, example problems, problem types

groups defined via wiki

everybody went (actively!) through the Getting Started part of

github.com/numbbo/coco

2 Fri, 21.9.2018 lecture "Benchmarking", final adjustments of groups everybody can run

and postprocess the example experiment (~1h for final questions/help

during the lecture)

3 Fri, 28.9.2018 lecture "Introduction to Continuous Optimization"

4 Fri, 5.10.2018 lecture "Gradient-Based Algorithms" + DFO

5 Fri, 12.10.2018 lecture "Stochastic Algorithms", in particular CMA-ES

6 Fri, 19.10.2018 lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr."

deadline for submitting data sets

7

Wed, 24.10.2018

Fri, 26.10.2018

deadline for paper submission

final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

29.10.-2.11.2018 vacation aka learning for the exams

Thu, 8.11.2018 /

Fri, 9.11.2018

oral presentations (individual time slots)

Fri, 16.11.2018 written exam

Course Overview

All deadlines:

23:59pm Paris time

All deadlines:

23:59pm Paris time

46TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 46

Mastertitelformat bearbeiten

 O-notation

 graphs

 greedy algorithms

 dynamic programming

 branch and bound

 randomized search heuristics

Remaining Lecture Overview

47TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 47

Mastertitelformat bearbeiten

Dynamic Programming

 exact algorithm

 solve problem via solutions of subproblems ("optimal substructure")

 not solving overlapping subproblems twice, but store solutions

Reminder Dynamic Programming (DP)

48TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 48

Mastertitelformat bearbeiten

What we will see:

 Example 1: The All-Pairs Shortest Path Problem

 Example 2: The knapsack problem

 Example 3: An approximation algorithm for the knapsack problem

Lecture Outline Dynamic Programming (DP)

49TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 49

Mastertitelformat bearbeiten

Shortest Path problem:

Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the shortest path from a vertex v to a vertex u, i.e., the path

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is

minimized.

Obvious Applications

Google maps

Autonomous cars

Finding routes for packages in a computer network

...

Example 1: The Shortest Path Problem

u v

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

50TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 50

Mastertitelformat bearbeiten

Shortest Path problem:

Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the shortest path from a vertex v to a vertex u, i.e., the path

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is

minimized.

Note:

We can often assume that

the edge weights are stored

in a distance matrix D of

dimension |E|x|E| where

an entry Di,j gives the weight between nodes i and j and “non-

edges” are assigned a value of ∞

Why important? determines input size

Example 1: The Shortest Path Problem

u v

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

51TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 51

Mastertitelformat bearbeiten

Optimal Substructure

The optimal path from u to v, if it contains another vertex p can

be constructed by simply joining the optimal path from u to p with

the optimal path from p to v.

Overlapping Subproblems

Optimal shortest

sub-paths can be reused

when computing longer paths:

e.g. the optimal path from u to p

is contained in the optimal path from

u to q and in the optimal path from u to v.

Opt. Substructure and Overlapping Subproblems

u vq

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1
p

52TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 52

Mastertitelformat bearbeiten

All Pairs Shortest Path problem:

Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the shortest path from each source vertex v to each other

target vertex u, i.e., the paths (v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u)

such that w1 + ... + wk is minimized for all pairs (u,v) in V2.

The All Pairs Shortest Paths Problem

u v

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

53TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 53

Mastertitelformat bearbeiten

Idea:

 if we knew that the shortest path between source and target

goes through node v, we would be able to construct the

optimal path from the shorter paths “sourcev” and “vtarget”

 subproblem P(k): compute all shortest paths where the

intermediate nodes can be chosen from v1, ..., vk

AllPairsShortestPathFloyd(G, D)

 Init: for all 1 ≤ i,j ≤ |V|: dist(i,j) = Di,j

 For k = 1 to |V| # solve subproblems P(k)

 for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

 dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

Note: Bernard Roy in 1959 and Stephen Warshall in 1962 essentially proposed the

same algorithm independently.

The Algorithm of Robert Floyd (1962)

54TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 54

Mastertitelformat bearbeitenExample

k=0 1 2 3 4 5

1

2

3

4

5

1

3

5

4

2

7

2

-1

-1
3

5
9

55TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 55

Mastertitelformat bearbeitenExample

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

56TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 56

Mastertitelformat bearbeitenExample

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3

4

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

57TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 57

Mastertitelformat bearbeitenExample

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3

4

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

58TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 58

Mastertitelformat bearbeitenExample

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3

4

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

59TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 59

Mastertitelformat bearbeitenExample

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3 9

4 1

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

60TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 60

Mastertitelformat bearbeitenExample

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

61TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 61

Mastertitelformat bearbeitenExample

1

3

5

4

2

7

2

-1

-1
3

5
9

allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

62TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 62

Mastertitelformat bearbeitenExample

1

3

5

4

2

7

2

-1

-1
3

5
9

allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

63TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 63

Mastertitelformat bearbeitenExample

1

3

5

4

2

7

2

-1

-1
3

5
9

allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

64TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 64

Mastertitelformat bearbeitenExample

1

3

5

4

2

7

2

-1

-1
3

5
9

allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

65TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 65

Mastertitelformat bearbeitenExample

1

3

5

4

2

7

2

-1

-1
3

5
9

allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 11 ∞

2 9 ∞

3 7 9 18 8 ∞

4 10 3

5 5 ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

66TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 66

Mastertitelformat bearbeitenExample

1

3

5

4

2

7

2

-1

-1
3

5
9

allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

67TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 67

Mastertitelformat bearbeitenExample

1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

68TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 68

Mastertitelformat bearbeitenExample

1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 1

2 -1

3 8

4 -1 1 10 0 3

5 13

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

69TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 69

Mastertitelformat bearbeitenExample

1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

70TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 70

Mastertitelformat bearbeitenExample

1

3

5

4

2

7

2

-1

-1
3

5
9

allow all nodes as intermediate nodes

k=5 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

71TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 71

Mastertitelformat bearbeitenExample

1

3

5

4

2

7

2

-1

-1
3

5
9

allow all nodes as intermediate nodes

k=5 1 2 3 4 5

1 0 2 9 1 4

2 -2 0 7 -1 2

3 7 9 16 8 11

4 -1 1 8 0 3

5 12 14 5 13 16

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

72TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 72

Mastertitelformat bearbeiten

O(|V|3) easy to show

 O(|V|2) many distances need to be updated O(|V|) times

Correctness

 given by the Bellman equation

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

 only correct if cycles do not have negative total weight (can

be checked in final distance matrix if diagonal elements are

negative)

Runtime Considerations and Correctness

73TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 73

Mastertitelformat bearbeiten

 Construct matrix of predecessors 𝑃 alongside distance matrix

 𝑃𝑖,𝑗(𝑘) = predecessor of node j on path from i to j (at algo. step k)

 no extra costs (asymptotically)

𝑃𝑖,𝑗 0 =
0
𝑖

if 𝑖 = 𝑗 or 𝑑𝑖,𝑗 = ∞

in all other cases

𝑃𝑖,𝑗 𝑘 =
𝑃𝑖,𝑗(𝑘 − 1)

𝑃𝑘,𝑗 𝑘 − 1

if dist 𝑖, 𝑗 ≤ dist 𝑖, 𝑘 + dist(𝑘, 𝑗)

if dist 𝑖, 𝑗 > dist(𝑖, 𝑘) + dist(𝑘, 𝑗)

But How Can We Actually Construct the Paths?

74TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 74

Mastertitelformat bearbeiten

Knapsack Problem

Example 2: The Knapsack Problem (KP)

Dake

75TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 75

Mastertitelformat bearbeiten

Consider the following subproblem:

𝑃(𝑖, 𝑗): optimal profit when packing the first 𝑖 items into a

knapsack of size 𝑗

Optimal Substructure

The optimal choice of whether taking item 𝑖 or not can be made

easily for a knapsack of weight 𝑗 if we know the optimal choice

for items 1… 𝑖 − 1:

𝑃 𝑖, 𝑗 =

0
𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑖 = 0 or 𝑗 = 0

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

Overlapping Subproblems

a recursive implementation of the Bellman equation is simple,

but the 𝑃(𝑖, 𝑗) might need to be computed more than once!

Opt. Substructure and Overlapping Subproblems

76TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 76

Mastertitelformat bearbeiten

To circumvent computing the subproblems more than once, we can

store their results (in a matrix for example)...

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 ... W-1 W

0

1 P(i,j)

2

...

n-1

n

it
e
m

s

knapsack weight

best achievable

profit with items 1...i

and a knapsack of

size j

77TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 77

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

it
e
m

s

knapsack weight

initialization:

𝑃 𝑖, 𝑗 = 0 if 𝑖 = 0 or 𝑗 = 0

78TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 78

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

it
e
m

s

knapsack weight

initialization:

𝑃 𝑖, 𝑗 = 0 if 𝑖 = 0 or 𝑗 = 0

79TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 79

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

80TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 80

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0

2 0

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

81TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 81

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0

2 0

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

82TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 82

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

2 0

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

83TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 83

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

2 0

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝1(= 4)
4

84TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 84

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4

2 0

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝1(= 4)
4

85TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 85

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

86TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 86

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

87TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 87

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝2(= 10)
10

88TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 88

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

89TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 89

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

90TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 90

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
4

91TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 91

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
4

92TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 92

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4

4 0

5 0

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
10 etc.

93TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 93

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

94TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 94

Mastertitelformat bearbeiten

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

95TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 95

Mastertitelformat bearbeiten

Question: How to obtain the actual packing?

Answer: we just need to remember where the max came from!

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e
m

s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

𝒙𝟓 = 𝟎

𝒙𝟒 = 𝟏

𝒙𝟑 = 𝟎

𝒙𝟐 = 𝟏

𝒙𝟏 = 𝟎

96TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 96

Mastertitelformat bearbeiten

 Simple to prove runtime of the previous algorithm as 𝑂(𝑛𝑊)

 In practice, i.e. for large 𝑛 and 𝑊, computing the exact optimum

for the knapsack problem might be too costly.

no polynomial-time algo exists under famous P≠NP hypothesis

 If we want to have a polynomial-time algorithm, we have to trade

for approximation quality.

Example 3: Approximating the Knapsack Problem

97TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 97

Mastertitelformat bearbeiten

 An algorithm is a ρ-approximation algorithm for problem Π if, for

each problem instance of Π, it outputs a feasible solution which

function value is within a ratio ρ of the true optimum for that

instance.

 An algorithm A is an approximation scheme for a maximization

problem Π if for any instance I of Π and a parameter ε>0, it

outputs a solution s with f Π(I,s) ≥ (1-ε) ∙ OPT .

 An approximation scheme is called polynomial time

approximation scheme (PTAS) if for a fixed ε>0, its running time

is polynomially bounded in the size of the instance I.

note: runtime might be exponential in 1/ε actually!

 An approximation scheme is a fully polynomial time

approximation scheme (FPTAS) if its running time is bounded

polynomially in both the size of the input I and in 1/ε.

Approximations, PTAS, and FPTAS

remember the 2-approximation algo for bin packing?

98TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 98

Mastertitelformat bearbeiten

Similar to the previous dynamic programming algorithm, we can

design a dynamic programming algorithm for which

 a subproblem is restricting the items to {1, ..., k} and

searches for the lightest packing with prefixed profit P

 runs in 𝑂(𝑛2𝑃max) [idea: fill matrix of size 𝑛 × 𝑛𝑃max]

What strange runtime is 𝑶(𝒏𝟐𝑷𝐦𝐚𝐱)?

Answer: pseudo-polynomial (polynomial if 𝑃max would be

polynomial in input size)

Idea behind FPTAS:

 scale all profits 𝑝𝑖 smartly to
𝑝𝑖𝑛

𝜀𝑃max
to make 𝑃max

polynomially bounded

 prove that dynamic programming approach computes profit

of at least (1-ε)∙OPT (not shown here)

An FPTAS for the Knapsack Problem

99TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 99

Mastertitelformat bearbeiten

Branch and Bound

100TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 100

Mastertitelformat bearbeiten

 Systematic enumeration of candidate solutions in terms of a

rooted tree

 Each tree node corresponds to a set of solutions; the whole

search space on the root

 At each tree node, the corresponding subset of the search space

is split into (non-overlapping) sub-subsets:

 the optimum of the larger problem must be contained in at

least one of its subproblems

 If tree nodes correspond to small enough subproblems, they are

solved exhaustively.

 The smart part of the algorithm is the estimation of upper and

lower bounds on the optimal function value achieved by

solutions in the tree nodes

 the exploration of a tree node is stopped ("pruning the tree")

if a node’s upper bound is already lower than the lower

bound of an already explored node (assuming maximization)

Branch and Bound: General Ideas

101TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 101

Mastertitelformat bearbeiten

Needed for successful application of branch and bound:

 optimization problem

 finite (or at least countable) set of solutions

 clear idea of how to split problem into smaller subproblems

 efficient calculation of the following modules:

 upper bound calculation

 lower bound calculation

Applying Branch and Bound

102TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 102

Mastertitelformat bearbeiten

Assume w.l.o.g. maximization of f(x) here

Lower Bounds

 any actual feasible solution will give a lower bound (which will be

exact if the solution is the optimal one for the subproblem)

 hence, sampling a (feasible) solution can be one strategy

 using a heuristic to solve the subproblem another one

Upper Bounds

 upper bounds can be achieved by solving a relaxed version of

the problem formulations (i.e. by either loosening or removing

constraints)

Note: the better/tighter the bounds, the quicker the branch and

bound tree can be pruned

Computing Bounds (Maximization Problems)

103TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 103

Mastertitelformat bearbeiten

 Exact, global solver

 Can be slow; only exponential worst-case runtime

 due to the exhaustive search behavior if no pruning of the

search tree is possible

 but might work well in some cases

Advantages:

 can be stopped if lower and upper bound are “close enough” in

practice (not necessarily exact anymore then)

 can be combined with other techniques, e.g. “branch and cut”

(not covered here)

Properties of Branch and Bound Algorithms

104TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 104

Mastertitelformat bearbeiten

0-1 problems:

 choose unfixed variable xi

 one subproblem defined by setting xi to 0

 one subproblem defined by setting xi to 1

General integer problem:

 choose unfixed variable xi

 choose a value c that xi can take

 one subproblem defined by restricting xi ≤ c

 one subproblem defined by restricting xi > c

Combinatorial Problems:

 branching on certain discrete choices, e.g. an edge/vertex is

chosen or not chosen

The branching decisions are then induced as additional constraints

when defining the subproblems.

Example Branching Decisions

105TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 105

Mastertitelformat bearbeiten

Several strategies (again assuming maximization):

 choose the subproblem with highest upper bound

 gain the most in reducing overall upper bound

 if upper bound not the optimal value, this problem needs to

be branched upon anyway sooner or later

 choose the subproblem with lowest lower bound

 simple depth-first search or breadth-first search

see for example

https://en.wikipedia.org/wiki/Depth-first_search

https://en.wikipedia.org/wiki/Breadth-first_search

 problem-specific approach most likely to be a good choice

Which Tree Node to Branch on?

106TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 106

Mastertitelformat bearbeiten

Concrete steps when designing a branch and bound algorithm:

 How to split a problem into subproblems (“branching”)?

 How to compute upper bounds (assuming maximization)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

4 Steps Towards a Branch and Bound Algorithm

107TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 107

Mastertitelformat bearbeiten

The ILP formalization covers many problems such as

 Traveling Salesperson Person (TSP)

 Vertex Cover and other covering problems

 Set packing and other packing problems

 Boolean satisfiability (SAT)

Example: Application to ILPs

108TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 108

Mastertitelformat bearbeiten

 Do not restrict the solutions to integers and round the solution

found of the relaxed problem (=remove the integer constraints)

by a continuous solver (i.e. solving the so-called LP relaxation)

 no guarantee to be exact

 Exploiting the instance property of A being total unimodular:

 feasible solutions are guaranteed to be integer in this case

 algorithms for continuous relaxation can be used (e.g. the

simplex algorithm)

 Using heuristic methods (typically without any quality guarantee)

 we’ll see these type of algorithms later in the lecture

 Using exact algorithms such as branch and bound

Possible Ways to Solve an ILP

109TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 109

Mastertitelformat bearbeiten

Here, we just give an idea instead of a concrete algorithm...

 How to split a problem into subproblems (“branching”)?

 How to compute upper bounds (assuming maximization)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

Branch and Bound for ILPs

110TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 110

Mastertitelformat bearbeiten

Here, we just give an idea instead of a concrete algorithm...

 How to compute upper bounds (assuming maximization)?

 How to split a problem into subproblems (“branching”)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

Branch and Bound for ILPs

111TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 111

Mastertitelformat bearbeiten

How to compute upper bounds (assuming maximization)?

 drop the integer constraints and solve the so-called LP-

relaxation

 can be done by standard LP algorithms such as
scipy.optimize.linprog or Matlab’s linprog

What’s then?

 The LP has no feasible solution. Fine. Prune.

 We found an integer solution. Fine as well. Might give us a

new lower bound to the overall problem.

 The LP problem has an optimal solution which is worse than

the highest lower bound over all already explored

subproblems. Fine. Prune.

 Otherwise: Branch on this subproblem: e.g. if optimal

solution has xi=2.7865, use xi≤2 and xi≥3 as new constraints

Branch and Bound for ILPs

112TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 112

Mastertitelformat bearbeiten

How to split a problem into subproblems (“branching”)?

 mainly needed if the solution of the LP-relaxation is not

integer

 branch on a variable which is rational

Not discussed here in depth due to time:

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

 seems to be good choice: subproblem with largest upper

bound of LP-relaxation

Branch and Bound for ILPs

113TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 113

Mastertitelformat bearbeiten

I hope it became clear...

...what the algorithm design ideas of dynamic programming and

branch and bound are

...and for which problem types they are supposed to be suitable

Conclusions

114TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 114

Mastertitelformat bearbeiten

(Randomized) Search Heuristics

115TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 115

Mastertitelformat bearbeiten

 often, problem complicated and not much time available to

develop a problem-specific algorithm

 search heuristics are a good choice:

 relatively easy to implement

 easy to adapt/change/improve

 e.g. when the problem formulation changes in an early

product design phase

 or when slightly different problems need to be solved

over time

 randomized/stochastic algorithms are a good choice because

they are robust to noise

Motivation General Search Heuristics

116TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 116

Mastertitelformat bearbeiten

Which algorithms will we touch?

 Randomized Local Search (RLS)

 Variable Neighborhood Search (VNS)

 Tabu Search (TS)

 Evolutionary Algorithms (EAs)

Lecture Outline Randomized Search Heuristics

117TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 117

Mastertitelformat bearbeiten

For most (stochastic) search heuristics, we need to define a

neighborhood structure

 which search points are close to each other?

Example: k-bit flip / Hamming distance k neighborhood

 search space: bitstrings of length n (Ω={0,1}n)

 two search points are neighbors if their Hamming

distance is k

 in other words: x and y are neighbors if we can flip

exactly k bits in x to obtain y

 0001001101 is neighbor of

0001000101 for k=1

0101000101 for k=2

1101000101 for k=3

Neighborhoods

118TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 118

Mastertitelformat bearbeiten

Example: possible neighborhoods for the knapsack problem

 search space again bitstrings of length n (Ω={0,1}n)

 Hamming distance 1 neighborhood:

 add an item or remove it from the packing

 replacing 2 items neighborhood:

 replace one chosen item with an unchosen one

 makes only sense in combination with other

neighborhoods because the number of items stays

constant

 Hamming distance 2 neighborhood on the contrary:

 allows to change 2 arbitrary items, e.g.

 add 2 new items

 remove 2 chosen items

 or replace one chosen item with an unchosen one

Neighborhoods II

119TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 119

Mastertitelformat bearbeiten

Idea behind (Randomized) Local Search:

 explore the local neighborhood of the current solution (randomly)

Pure Random Search:

 go to randomly chosen neighbor

First Improvement Local Search:

 go to first (randomly) chosen neighbor which is better

Best Improvement strategy:

 always go to the best neighbor

 not random anymore

 computationally expensive if neighborhood large

Randomized Local Search (RLS)

120TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 120

Mastertitelformat bearbeiten

Main Idea: [Mladenovic and P. Hansen, 1997]

 change the neighborhood from time to time

 local optima are not the same for different neighborhood

operators

 but often close to each other

 global optimum is local optimum for all neighborhoods

 rather a framework than a concrete algorithm

 e.g. deterministic and stochastic neighborhood changes

 typically combined with (i) first improvement, (ii) a random

order in which the neighbors are visited and (iii) restarts

N. Mladenovic and P. Hansen (1997). "Variable neighborhood search". Computers
and Operations Research 24 (11): 1097–1100.

Variable Neighborhood Search

121TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 121

Mastertitelformat bearbeiten

Disadvantages of local searches (with or without varying

neighborhoods)

 they get stuck in local optima

 have problems to traverse large plateaus of equal objective

function value (“random walk”)

Tabu search addresses these by

 allowing worsening moves if all neighbors are explored

 introducing a tabu list of temporarily not allowed moves

 those restricted moves are

 problem-specific and

 can be specific solutions or not permitted “search

directions” such as “don’t include this edge anymore” or

“do not flip this specific bit”

 the tabu list is typically restricted in size and after a while,

restricted moves are permitted again

Tabu Search

122TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 122

Mastertitelformat bearbeiten

One class of (bio-inspired) stochastic optimization algorithms:

Evolutionary Algorithms (EAs)

 Class of optimization algorithms

originally inspired by the idea of

biological evolution

 selection, mutation, recombination

Stochastic Optimization Algorithms

1859

123TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 123

Mastertitelformat bearbeiten

Classical Optimization Evolutionary Computation

variables or parameters variables or chromosomes

candidate solution

vector of decision variables /

design variables / object

variables

individual, offspring, parent

set of candidate solutions population

objective function

loss function

cost function

error function

fitness function

iteration generation

Metaphors

124TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 124

Mastertitelformat bearbeitenGeneric Framework of an EA

Important:

representation (search space)

Important:

representation (search space)

initialization

evaluation

evaluation

potential

parents

offspring

parents

crossover/

mutation

mating

selection

environmental

selection

stop?

best individual

stochastic operators

“Darwinism”

stopping criteria

125TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 125

Mastertitelformat bearbeiten

Genetic Algorithms (GA)

J. Holland 1975 and D. Goldberg (USA)

Evolution Strategies (ES)

I. Rechenberg and H.P. Schwefel, 1965 (Berlin)

Evolutionary Programming (EP)

L.J. Fogel 1966 (USA)

Genetic Programming (GP)

J. Koza 1990 (USA)

nowadays one umbrella term: evolutionary algorithms

The Historic Roots of EAs

126TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 126

Mastertitelformat bearbeiten

The genotype – phenotype mapping

 related to the question: how to come up with a fitness

("quality") of each individual from the representation?

 related to DNA vs. actual animal (which then has a fitness)

fitness of an individual not always = f(x)

 include constraints

 include diversity

 others

 but needed: always a total order on the solutions

Genotype – Phenotype mapping

127TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 127

Mastertitelformat bearbeiten

Several possible ways to handle constraints, e.g.:

 resampling until a new feasible point is found (“often bad idea”)

 penalty function approach: add constraint violation term

(potentially scaled)

 repair approach: after generation of a new point, repair it (e.g.

with a heuristic) to become feasible again if infeasible

 continue to use repaired solution in the population or

 use repaired solution only for the evaluation?

 multiobjective approach: keep objective function and constraint

functions separate and try to optimize all of them in parallel

 ...

Handling Constraints

128TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 128

Mastertitelformat bearbeiten

Examples for some EA parts

129TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 129

Mastertitelformat bearbeiten

Selection is the major determinant for specifying the trade-off

between exploitation and exploration

Selection is either

stochastic or deterministic

e.g. fitness proportional

e.g. via a tournament

Mating selection (selection for variation): usually stochastic

Environmental selection (selection for survival): often deterministic

Selection

Disadvantage:

depends on

scaling of f

Disadvantage:

depends on

scaling of f

e.g. (µ+λ), (µ,λ)

best µ from

offspring and

parents

best µ from

offspring only

130TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 130

Mastertitelformat bearbeiten

Variation aims at generating new individuals on the basis of those

individuals selected for mating

Variation = Mutation and Recombination/Crossover

mutation: mut:

recombination: recomb: where and

 choice always depends on the problem and the chosen

representation

 however, there are some operators that are applicable to a wide

range of problems and tailored to standard representations such

as vectors, permutations, trees, etc.

Variation Operators

131TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 131

Mastertitelformat bearbeiten

Two desirable properties for mutation operators:

 every solution can be generation from every other with a

probability greater than 0 (“exhaustiveness”)

(“locality”)

Desirable property of recombination operators (“in-between-ness”):

Variation Operators: Guidelines

132TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 132

Mastertitelformat bearbeiten

Swap:

Scramble:

Invert:

Insert:

Examples of Mutation Operators on Permutations

133TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 133

Mastertitelformat bearbeiten

1-point crossover

n-point crossover

uniform crossover

Examples of Recombination Operators: {0,1}n

choose each bit

independently from

one parent or another

choose each bit

independently from

one parent or another

134TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 134

Mastertitelformat bearbeiten

 binary search space, maximization

 uniform initialization

 generational cycle: of the population

 evaluation of solutions

 mating selection (e.g. roulette wheel)

 crossover (e.g. 1-point)

 environmental selection (e.g. plus-selection)

A Canonical Genetic Algorithm

135TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 135

Mastertitelformat bearbeiten

 EAs are generic algorithms (randomized search heuristics,

meta-heuristics, ...) for black box optimization

no or almost no assumptions on the objective function

 They are typically less efficient than problem-specific

(exact) algorithms (in terms of #funevals)

less differences in the continuous case (as we have seen)

 Allow for an easy and rapid implementation and therefore

to find good solutions fast

easy to incorporate (and recommended!) to incorporate

problem-specific knowledge to improve the algorithm

Conclusions

136TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 19&26, 2018© Dimo Brockhoff, Inria 136

Mastertitelformat bearbeiten

I hope it became clear...

...that heuristics is what we typically can afford in practice (no

guarantees and no proofs)

...what are the main ideas behind evolutionary algorithms

...and that evolutionary algorithms and genetic algorithms are no

synonyms

Conclusions

