Introduction to Optimization Lecture 2: Continuous Optimization I

September 28, 2018 TC2 - Optimisation Université Paris-Saclay

Dimo Brockhoff Inria Saclay – Ile-de-France

Course Overview

Date		Торіс
Fri, 27.9.2019	DB	Introduction
Fri, 4.10.2019 (4hrs)	AA	Continuous Optimization I: differentiability, gradients, convexity, optimality conditions
Fri, 11.10.2019 (4hrs)	AA	Continuous Optimization II: constrained optimization, gradient-based algorithms, stochastic gradient
Fri, 18.10.2019 (4hrs)	DB	Continuous Optimization III: stochastic algorithms, derivative-free optimization, critical performance assessment [1 st written test]
Wed, 30.10.2019	DB	Discrete Optimization I: graph theory, greedy algorithms
Fri, 15.11.2019	DB	Discrete Optimization II: dynamic programming, heuristics [2 nd written test]
Fri, 22.11.2018		final exam

Details on Continuous Optimization Lectures

- **Introduction to Continuous Optimization**
- examples (from ML / black-box problems)
- typical difficulties in optimization

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
 - first and second order conditions
 - convexity
- constraint optimization

Gradient-based Algorithms

- stochastic gradient
- quasi-Newton method (BFGS)

Learning in Optimization / Stochastic Optimization

- CMA-ES (adaptive algorithms / Information Geometry)
- PhD thesis possible on this topic

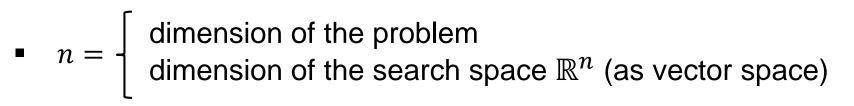
method strongly related to ML / new promising research area

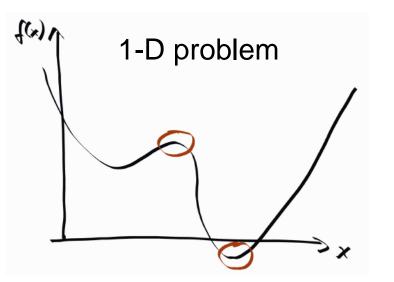
interesting open questions

Continuous Optimization

• Optimize
$$f: \begin{cases} \Omega \subset \mathbb{R}^n \to \mathbb{R} \\ x = (x_1, \dots, x_n) \to f(x_1, \dots, x_n) \\ \searrow_{\in \mathbb{R}} \end{cases}$$
 unconstrained optimization

• Search space is continuous, i.e. composed of real vectors $x \in \mathbb{R}^n$





2-D level sets

What Makes a Function Difficult to Solve?

dimensionality

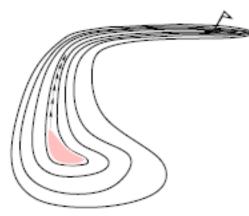
(considerably) larger than three

non-separability

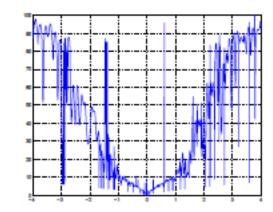
dependencies between the objective variables

- ill-conditioning
- ruggedness

non-smooth, discontinuous, multimodal, and/or noisy function



a narrow ridge



cut from 3D example, solvable with an evolution strategy

Curse of Dimensionality

- The term Curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.
- Example: Consider placing 100 points onto a real interval, say [0,1]. To get similar coverage, in terms of distance between adjacent points, of the 10-dimensional space [0,1]¹⁰ would require 100¹⁰ = 10²⁰ points. The original 100 points appear now as isolated points in a vast empty space.
- Consequently, a search policy (e.g. exhaustive search) that is valuable in small dimensions might be useless in moderate or large dimensional search spaces.

Definition (Separable Problem)

A function f is separable if

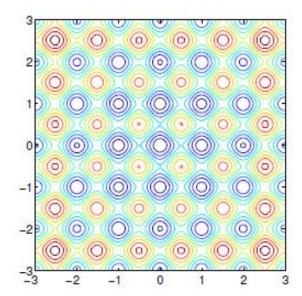
$$\operatorname{argmin}_{(x_1,\ldots,x_n)} f(x_1,\ldots,x_n) = \left(\operatorname{argmin}_{x_1} f(x_1,\ldots),\ldots,\operatorname{argmin}_{x_n} f(\ldots,x_n) \right)$$

 \Rightarrow it follows that f can be optimized in a sequence of *n* independent 1-D optimization processes

Example:

Additively decomposable functions

$$f(x_1, \dots, x_n) = \sum_{\substack{i=1\\ \text{Rastrigin function}}}^n f_i(x_i)$$

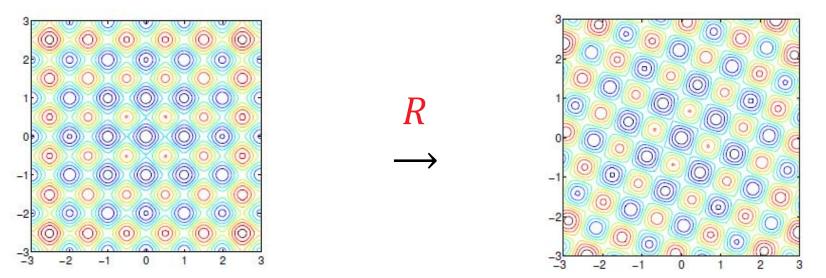


Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system

- $f: \mathbf{x} \mapsto f(\mathbf{x})$ separable
- $f: x \mapsto f(Rx)$ non-separable

R rotation matrix



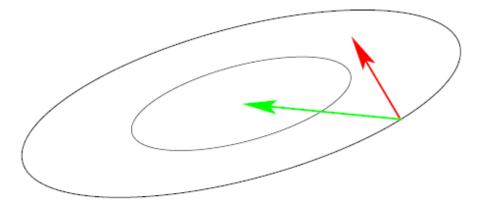
 N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation". Sixth ICGA, pp. 57-64, Morgan Kaufmann
 R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

III-Conditioned Problems: Curvature of Level Sets

Consider the convex-quadratic function

$$f(\mathbf{x}) = \frac{1}{2}(\mathbf{x} - \mathbf{x}^*)^T H(\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} h_{i,i} x_i^2 + \frac{1}{2} \sum_{i,j} h_{i,j} x_i x_j$$

H is Hessian matrix of f and symmetric positive definite



gradient direction $-f'(x)^T$ Newton direction $-H^{-1}f'(x)^T$

Ill-conditioning means squeezed level sets (high curvature). Condition number equals nine here. Condition numbers up to 10¹⁰ are not unusual in real-world problems.

If $H \approx I$ (small condition number of H) first order information (e.g. the gradient) is sufficient. Otherwise second order information (estimation of H^{-1}) information necessary.

© Anne Auger and Dimo Brockhoff, Inria

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 4, 2019

Reminder: Different Notions of Optimum

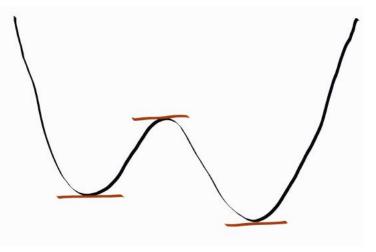
Unconstrained case

- Iocal vs. global
 - local minimum x^* : \exists a neighborhood V of x^* such that $\forall x \in V: f(x) \ge f(x^*)$
 - global minimum: $\forall x \in \Omega: f(x) \ge f(x^*)$
- strict local minimum if the inequality is strict

Mathematical Characterization of Optima

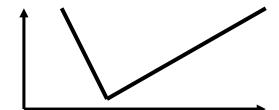
Objective: Derive general characterization of optima

Example: if $f: \mathbb{R} \to \mathbb{R}$ differentiable, f'(x) = 0 at optimal points



- generalization to $f: \mathbb{R}^n \to \mathbb{R}$?
- generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

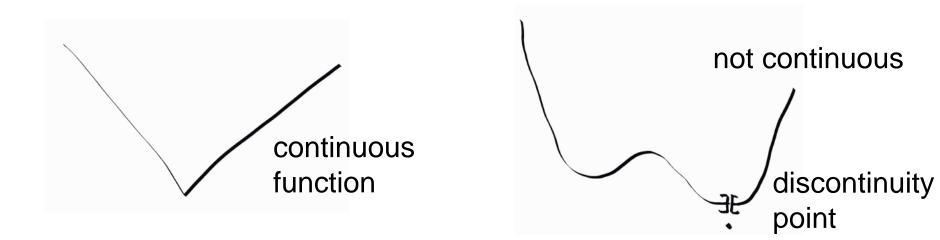


optima of such function can be easily approached by certain type of methods

© Anne Auger and Dimo Brockhoff, Inria

Reminder: Continuity of a Function

 $f: (V, || ||_V) \rightarrow (W, || ||_W)$ is continuous in $x \in V$ if $\forall \epsilon > 0, \exists \eta > 0$ such that $\forall y \in V: ||x - y||_V \leq \eta; ||f(x) - f(y)||_W \leq \epsilon$



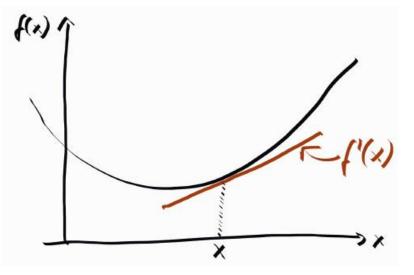
Reminder: Differentiability in 1D (n=1)

 $f: \mathbb{R} \to \mathbb{R}$ is differentiable in $x \in \mathbb{R}$ if

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ exists, } h \in \mathbb{R}$$

Notation:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$



The derivative corresponds to the slope of the tangent in x.

Reminder: Differentiability in 1D (n=1)

Taylor Formula (Order 1)

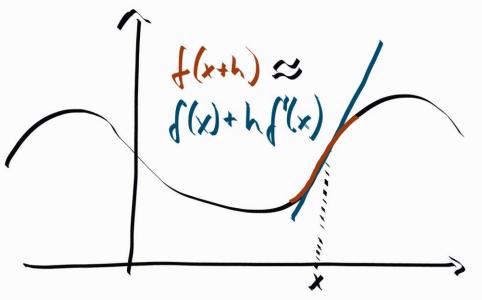
If *f* is differentiable in *x* then f(x+h) = f(x) + f'(x)h + o(||h||)

i.e. for *h* small enough, $h \mapsto f(x+h)$ is approximated by $h \mapsto f(x) + f'(x)h$

 $h \mapsto f(x) + f'(x)h$ is called a first order approximation of f(x + h)

Reminder: Differentiability in 1D (n=1)

Geometrically:



The notion of derivative of a function defined on \mathbb{R}^n is generalized via this idea of a linear approximation of f(x + h) for h small enough.

How to generalize this to arbitrary dimension?

Gradient Definition Via Partial Derivatives

• In $(\mathbb{R}^n, || ||_2)$ where $||x||_2 = \sqrt{\langle x, x \rangle}$ is the Euclidean norm deriving from the scalar product $\langle x, y \rangle = x^T y$

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Reminder: partial derivative in x₀

$$f_{i}: y \to f\left(x_{0}^{1}, \dots, x_{0}^{i-1}, y, x_{0}^{i+1}, \dots, x_{0}^{n}\right)$$
$$\frac{\partial f}{\partial x_{i}}(x_{0}) = f_{i}'(x_{0})$$

Exercise: Gradients

Exercise:

Compute the gradients of a) $f(x) = x_1$ with $x \in \mathbb{R}^n$ b) $f(x) = a^T x$ with $a, x \in \mathbb{R}^n$ c) $f(x) = x^T x (= ||x||^2)$ with $x \in \mathbb{R}^n$

Exercise: Gradients

Exercise:

Compute the gradients of a) $f(x) = x_1$ with $x \in \mathbb{R}^n$ b) $f(x) = a^T x$ with $a, x \in \mathbb{R}^n$ c) $f(x) = x^T x (= ||x||^2)$ with $x \in \mathbb{R}^n$

Some more examples:

- in \mathbb{R}^n , if $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, then $\nabla f(\mathbf{x}) = (A + A^T) \mathbf{x}$
- in \mathbb{R} , $\nabla f(\mathbf{x}) = f'(\mathbf{x})$

Gradient: Geometrical Interpretation

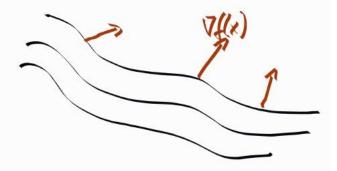
Exercise:

Let $L_c = \{x \in \mathbb{R}^n \mid f(x) = c\}$ be again a level set of a function f(x). Let $x_0 \in L_c \neq \emptyset$.

Compute the level sets for $f_1(x) = a^T x$ and $f_2(x) = ||x||^2$ and the gradient in a chosen point x_0 and observe that $\nabla f(x_0)$ is *orthogonal* to the level set in x_0 .

Again: if this seems too difficult, do it for two variables (and a concrete $a \in \mathbb{R}^2$) and draw the level sets and the gradients.

More generally, the gradient of a differentiable function is orthogonal to its level sets.



Differentiability in \mathbb{R}^n

Taylor Formula – Order One

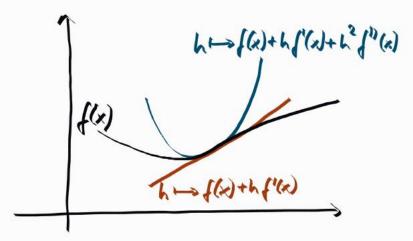
$$f(\boldsymbol{x} + \boldsymbol{h}) = f(\boldsymbol{x}) + (\nabla f(\boldsymbol{x}))^T \boldsymbol{h} + o(||\boldsymbol{h}||)$$

Reminder: Second Order Derivability in 1D

- Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function and let $f': x \to f'(x)$ be its derivative.
- If f' is differentiable in x, then we denote its derivative as f''(x)
- f''(x) is called the second order derivative of f.

Taylor Formula: Second Order Derivative

- If f: ℝ → ℝ is two times differentiable then
 f(x + h) = f(x) + f'(x)h + f''(x)h² + o(||h||²)
 i.e. for h small enough, h → f(x) + hf'(x) + h²f''(x)
 approximates h → f(x + h)
- $h \to f(x) + hf'(x) + h^2 f''(x)$ is a quadratic approximation (or order 2) of f in a neighborhood of x



• The second derivative of $f: \mathbb{R} \to \mathbb{R}$ generalizes naturally to larger dimension.

Hessian Matrix

In $(\mathbb{R}^n, \langle x, y \rangle = x^T y), \nabla^2 f(x)$ is represented by a symmetric matrix called the Hessian matrix. It can be computed as

$$\nabla^{2}(f) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}} & \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}} \end{bmatrix}$$

Exercise on Hessian Matrix

Exercise:

Let
$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T A \mathbf{x}, \mathbf{x} \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}$$
.

Compute the Hessian matrix of f.

If it is too complex, consider
$$f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ x \to \frac{1}{2} x^T A x \end{cases}$$
 with $A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$

Second Order Differentiability in \mathbb{R}^n

Taylor Formula – Order Two

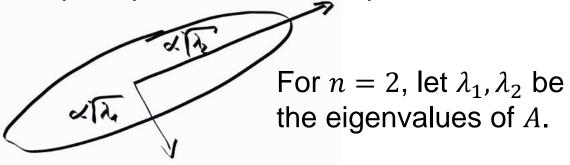
$$f(\boldsymbol{x} + \boldsymbol{h}) = f(\boldsymbol{x}) + \left(\nabla f(\boldsymbol{x})\right)^T \boldsymbol{h} + \frac{1}{2}\boldsymbol{h}^T \left(\nabla^2 f(\boldsymbol{x})\right) \boldsymbol{h} + o(||\boldsymbol{h}||^2)$$

Back to III-Conditioned Problems

We have seen that for a convex quadratic function

 $f(x) = \frac{1}{2}(x - x_0)^T A(x - x_0) + b \text{ of } x \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}, A \text{ SPD}, b \in \mathbb{R}^n:$

1) The level sets are ellipsoids. The eigenvalues of *A* determine the lengths of the principle axes of the ellipsoid.



2) The Hessian matrix of f equals to A.

Ill-conditioned convex quadratic problems are problems with large ratio between largest and smallest eigenvalue of *A* which means large ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Gradient Direction Vs. Newton Direction

Gradient direction: $\nabla f(x)$ **Newton direction:** $(H(x))^{-1} \cdot \nabla f(x)$ with $H(x) = \nabla^2 f(x)$ being the Hessian at x

Exercise:

Let again
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x}, \mathbf{x} \in \mathbb{R}^2, A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}.$$

Plot the gradient and Newton direction of f in a point $x \in \mathbb{R}^n$ of your choice (which should not be on a coordinate axis) into the same plot with the level sets, we created before.

Optimality Conditions for Unconstrained Problems

Optimality Conditions: First Order Necessary Cond.

For 1-dimensional optimization problems $f: \mathbb{R} \to \mathbb{R}$

Assume f is differentiable

• x^* is a local optimum $\Rightarrow f'(x^*) = 0$

not a sufficient condition: consider $f(x) = x^3$ proof via Taylor formula: $f(x^* + h) = f(x^*) + f'(x^*)h + o(||h||)$

• points y such that f'(y) = 0 are called critical or stationary points

Generalization to *n*-dimensional functions

If $f: U \subset \mathbb{R}^n \mapsto \mathbb{R}$ is differentiable

necessary condition: If x* is a local optimum of f, then $\nabla f(x^*) = 0$ proof via Taylor formula

Second Order Necessary and Sufficient Opt. Cond.

If *f* is twice continuously differentiable

• Necessary condition: if x^* is a local minimum, then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semi-definite

proof via Taylor formula at order 2

• Sufficient condition: if $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite, then x^* is a strict local minimum

Proof of Sufficient Condition:

• Let $\lambda > 0$ be the smallest eigenvalue of $\nabla^2 f(x^*)$, using a second order Taylor expansion, we have for all **h**:

•
$$f(\mathbf{x}^* + \mathbf{h}) - f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T \nabla^2 f(\mathbf{x}^*) \mathbf{h} + o(||\mathbf{h}||^2)$$

 $> \frac{\lambda}{2} ||\mathbf{h}||^2 + o(||\mathbf{h}||^2) = \left(\frac{\lambda}{2} + \frac{o(||\mathbf{h}||^2)}{||\mathbf{h}||^2}\right) ||\mathbf{h}||^2$

Convex Functions

Let *U* be a convex open set of \mathbb{R}^n and $f: U \to \mathbb{R}$. The function *f* is said to be convex if for all $x, y \in U$ and for all $t \in [0,1]$

$$f((1-t)\mathbf{x} + t\mathbf{y}) \le (1-t)f(\mathbf{x}) + tf(\mathbf{y})$$

Theorem

If f is differentiable, then f is convex if and only if for all x, y

$$f(\mathbf{y}) - f(\mathbf{x}) \ge (\nabla f(\mathbf{x}))^T (\mathbf{y} - \mathbf{x})$$

if n = 1, the curve is on top of the tangent

If *f* is twice continuously differentiable, then *f* is convex if and only if $\nabla^2 f(x)$ is positive semi-definite for all *x*.

Convex Functions: Why Convexity?

Examples of Convex Functions:

- $f(\mathbf{x}) = a^T \mathbf{x} + b$
- $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} + a^T \mathbf{x} + b$, A symmetric positive definite
- the negative of the entropy function (i.e. $f(x) = -\sum_{i=1}^{n} x_i \ln(x_i)$)

Exercise:

Let $f: U \to \mathbb{R}$ be a convex and differentiable function on a convex open U. Show that if $\nabla f(\mathbf{x}^*) = 0$, then \mathbf{x}^* is a global minimum of f

Why is convexity an important concept?

Constrained Optimization

Equality Constraint

Objective:

Generalize the necessary condition of $\nabla f(x) = 0$ at the optima of f when f is in C^1 , i.e. is differentiable and its differential is continuous

Theorem:

Be *U* an open set of (E, || ||), and $f: U \to \mathbb{R}$, $g: U \to \mathbb{R}$ in C^1 . Let $a \in E$ satisfy

$$\begin{cases} f(a) = \inf \{f(x) \mid x \in \mathbb{R}^n, g(x) = 0\} \\ g(a) = 0 \end{cases}$$

i.e. *a* is optimum of the problem

If $\nabla g(a) \neq 0$, then there exists a constant $\lambda \in \mathbb{R}$ called *Lagrange multiplier*, such that

$$\nabla f(a) + \lambda \nabla g(a) = 0$$
 Euler – Lagrange equation

i.e. gradients of f and g in a are colinear

Geometrical Interpretation Using an Example

Exercise:

Consider the problem

inf
$$\{ f(x,y) \mid (x,y) \in \mathbb{R}^2, g(x,y) = 0 \}$$

 $f(x, y) = y - x^2$ $g(x, y) = x^2 + y^2 - 1 = 0$

- 1) Plot the level sets of f, plot g = 0
- 2) Compute ∇f and ∇g
- 3) Find the solutions with $\nabla f + \lambda \nabla g = 0$
 - equation solving with 3 unknowns (x, y, λ)
- 4) Plot the solutions of 3) on top of the level set graph of 1)

Interpretation of Euler-Lagrange Equation

Intuitive way to retrieve the Euler-Lagrange equation:

- In a local minimum a of a constrained problem, the hypersurfaces (or level sets) f = f(a) and g = 0 are necessarily tangent (otherwise we could decrease f by moving along g = 0).
- Since the gradients ∇f(a) and ∇g(a) are orthogonal to the level sets f = f(a) and g = 0, it follows that ∇f(a) and ∇g(a) are colinear.

Generalization to More than One Constraint

Theorem

- Assume $f: U \to \mathbb{R}$ and $g_k: U \to \mathbb{R}$ $(1 \le k \le p)$ are \mathcal{C}^1 .
- Let *a* be such that $\begin{cases}
 f(a) = \inf \{f(x) \mid x \in \mathbb{R}^n, \quad g_k(x) = 0, \quad 1 \le k \le p\} \\
 g_k(a) = 0 \text{ for all } 1 \le k \le p
 \end{cases}$
- If (∇g_k(a))_{1≤k≤p} are linearly independent, then there exist p real constants (λ_k)_{1≤k≤p} such that

$$\nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0$$

Lagrange multiplier

again: a does not need to be global but local minimum

The Lagrangian

- Define the Lagrangian on $\mathbb{R}^n \times \mathbb{R}^p$ as $\mathcal{L}(x, \{\lambda_k\}) = f(x) + \sum_{k=1}^p \lambda_k g_k(x)$
- To find optimal solutions, we can solve the optimality system $\begin{cases}
 \text{Find } (x, \{\lambda_k\}) \in \mathbb{R}^n \times \mathbb{R}^p \text{ such that } \nabla f(x) + \sum_{k=1}^p \lambda_k \nabla g_k(x) = 0 \\
 g_k(x) = 0 \text{ for all } 1 \le k \le p
 \end{cases}$ $\Leftrightarrow \begin{cases}
 \text{Find } (x, \{\lambda_k\}) \in \mathbb{R}^n \times \mathbb{R}^p \text{ such that } \nabla_x \mathcal{L}(x, \{\lambda_k\}) = 0 \\
 \nabla_{\lambda_k} \mathcal{L}(x, \{\lambda_k\})(x) = 0 \text{ for all } 1 \le k \le p
 \end{cases}$

Inequality Constraint: Definitions

Let $\mathcal{U} = \{x \in \mathbb{R}^n \mid g_k(x) = 0 \text{ (for } k \in E), g_k(x) \le 0 \text{ (for } k \in I)\}.$

Definition:

The points in \mathbb{R}^n that satisfy the constraints are also called *feasible* points.

Definition:

Let $a \in U$, we say that the constraint $g_k(x) \le 0$ (for $k \in I$) is *active* in *a* if $g_k(a) = 0$.

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):

Let *U* be an open set of $(\mathbb{R}^n, || ||)$ and $f: U \to \mathbb{R}, g_k: U \to \mathbb{R}$, all \mathcal{C}^1 Furthermore, let $a \in U$ satisfy

$$\begin{cases} f(a) = \inf(f(x) \mid x \in \mathbb{R}^n, g_k(x) = 0 \text{ (for } k \in E), g_k(x) \le 0 \text{ (for } k \in I) \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \le 0 \text{ (for } k \in I) \end{cases} \text{ also works again for } a \\ \text{being a local minimum} \end{cases}$$

Let I_a^0 be the set of constraints that are active in *a*. Assume that $(\nabla g_k(a))_{k \in E \cup I_a^0}$ are linearly independent.

Then there exist $(\lambda_k)_{1 \le k \le p}$ that satisfy

$$\begin{cases} \nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0\\ g_k(a) = 0 \text{ (for } k \in E)\\ g_k(a) \le 0 \text{ (for } k \in I)\\ \lambda_k \ge 0 \text{ (for } k \in I_a^0)\\ \lambda_k g_k(a) = 0 \text{ (for } k \in E \cup I) \end{cases}$$

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):

Let *U* be an open set of (E, || ||) and $f: U \to \mathbb{R}$, $g_k: U \to \mathbb{R}$, all \mathcal{C}^1 Furthermore, let $a \in U$ satisfy

$$\begin{cases} f(a) = \inf(f(x) \mid x \in \mathbb{R}^n, g_k(x) = 0 \text{ (for } k \in E), g_k(x) \le 0 \text{ (for } k \in I) \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \le 0 \text{ (for } k \in I) \end{cases}$$

Let I_a^0 be the set of constraints that are active in *a*. Assume that $(\nabla g_k(a))_{k \in E \cup I_a^0}$ are linearly independent.

Then there exist $(\lambda_k)_{1 \le k \le p}$ that satisfy

$$\begin{cases} \nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0\\ g_k(a) = 0 \text{ (for } k \in E)\\ g_k(a) \leq 0 \text{ (for } k \in I)\\ \lambda_k \geq 0 \text{ (for } k \in I_a^\circ)\\ \lambda_k g_k(a) = 0 \text{ (for } k \in E \cup I) \end{cases} \text{ either active constraint}$$

Descent Methods

General principle

- choose an initial point x_0 , set t = 0
- e while not happy
 - choose a descent direction $d_t \neq 0$
 - line search:
 - choose a step size $\sigma_t > 0$

• set
$$x_{t+1} = x_t + \sigma_t d_t$$

• set t = t + 1

Remaining questions

- how to choose d_t ?
- how to choose σ_t ?

Gradient Descent

Rationale: $d_t = -\nabla f(x_t)$ is a descent direction

indeed for f differentiable

 $f(x - \sigma \nabla f(x)) = f(x) - \sigma ||\nabla f(x)||^2 + o(\sigma ||\nabla f(x)||)$ < f(x) for σ small enough

Step-size

- optimal step-size: $\sigma_t = \underset{\sigma}{\operatorname{argmin}} f(\mathbf{x}_t \sigma \nabla f(\mathbf{x}_t))$
- Line Search: total or partial optimization w.r.t. σ
 Total is however often too "expensive" (needs to be performed at each iteration step)

 Partial optimization: execute a limited number of trial steps until a loose approximation of the optimum is found. Typical rule for partial optimization: Armijo rule (see next slides)

Typical stopping criterium:

norm of gradient smaller than ϵ

Choosing the step size:

- Only to decrease *f*-value not enough to converge (quickly)
- Want to have a reasonably large decrease in f

Armijo-Goldstein rule:

- also known as backtracking line search
- starts with a (too) large estimate of σ and reduces it until f is reduced enough
- what is enough?
 - assuming a linear f e.g. $m_k(x) = f(x_k) + \nabla f(x_k)^T (x x_k)$
 - expected decrease if step of σ_k is done in direction d: $\sigma_k \nabla f(x_k)^T d$
 - actual decrease: $f(x_k) f(x_k + \sigma_k d)$
 - stop if actual decrease is at least constant times expected decrease (constant typically chosen in [0, 1])

The Actual Algorithm:

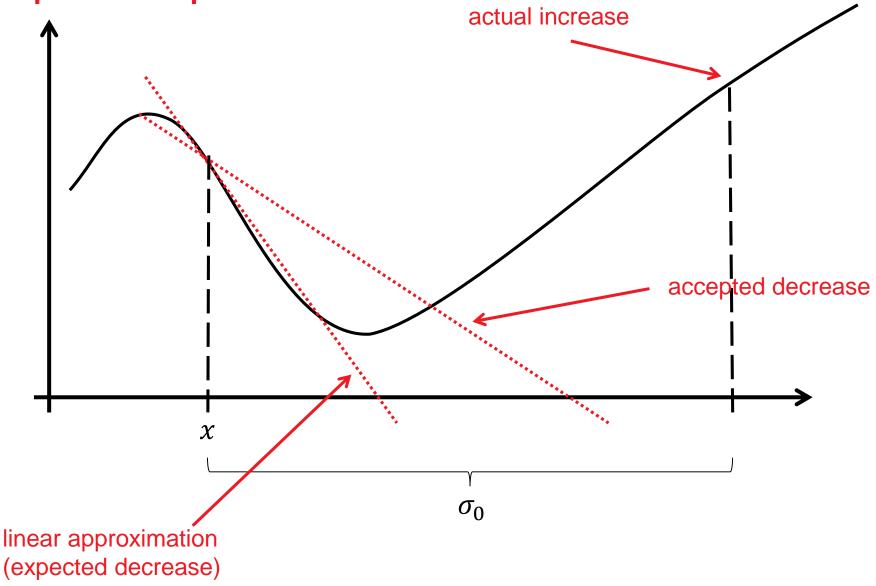
Input: descent direction **d**, point **x**, objective function $f(\mathbf{x})$ and its gradient $\nabla f(\mathbf{x})$, parameters $\sigma_0 = 10, \theta \in [0, 1]$ and $\beta \in (0, 1)$ **Output:** step-size σ

Initialize
$$\sigma: \sigma \leftarrow \sigma_0$$

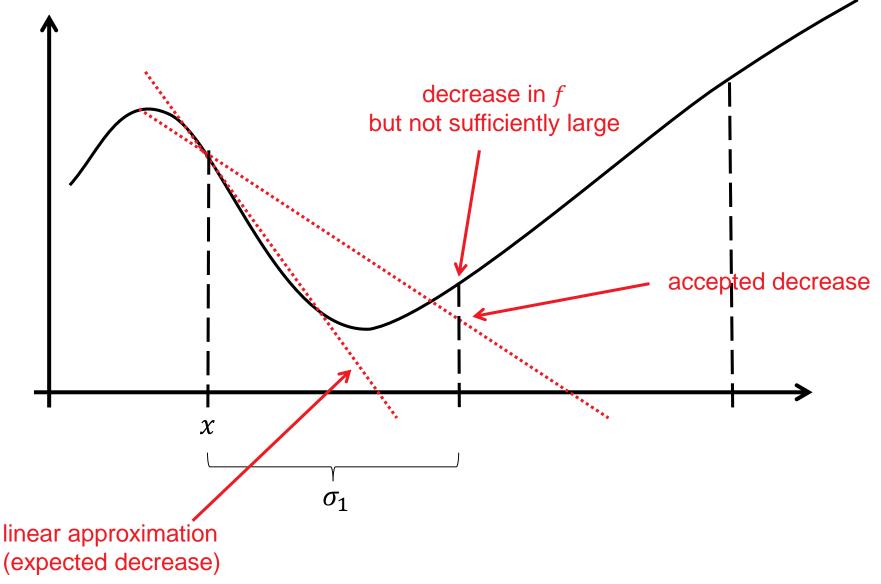
while $f(\mathbf{x} + \sigma \mathbf{d}) > f(\mathbf{x}) + \theta \sigma \nabla f(\mathbf{x})^T \mathbf{d}$ do
 $\sigma \leftarrow \beta \sigma$
end while

Armijo, in his original publication chose $\beta = \theta = 0.5$. Choosing $\theta = 0$ means the algorithm accepts any decrease.

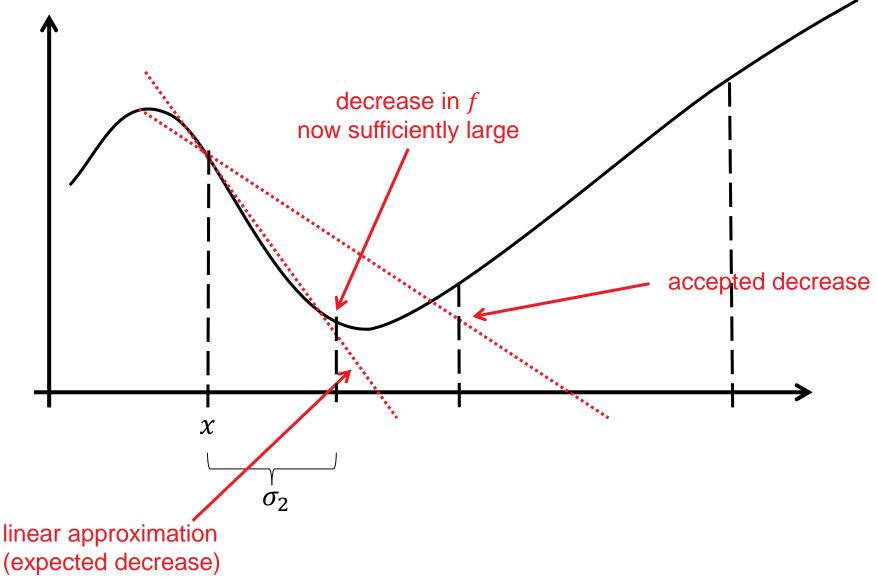
Graphical Interpretation



Graphical Interpretation



Graphical Interpretation



© Anne Auger and Dimo Brockhoff, Inria

Newton Algorithm

Newton Method

- descent direction: $-[\nabla^2 f(x_k)]^{-1}\nabla f(x_k)$ [so-called Newton direction]
- The Newton direction:
 - minimizes the best (locally) quadratic approximation of f: $\tilde{f}(x + \Delta x) = f(x) + \nabla f(x)^T \Delta x + \frac{1}{2} (\Delta x)^T \nabla^2 f(x) \Delta x$
 - points towards the optimum on $f(x) = (x x^*)^T A(x x^*)$
- however, Hessian matrix is expensive to compute in general and its inversion is also not easy

quadratic convergence

(i.e.
$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = \mu > 0$$
)

Remark: Affine Invariance

Affine Invariance: same behavior on f(x) and f(Ax + b) for $A \in$ GLn(\mathbb{R}) = set of all invertible $n \times n$ matrices over \mathbb{R}

Newton method is affine invariant

```
See http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/
Lecture 6 Scribe Notes.final.pdf
```

- same convergence rate on all convex-quadratic functions
- Gradient method not affine invariant

Quasi-Newton Method: BFGS

 $x_{t+1} = x_t - \sigma_t H_t \nabla f(x_t)$ where H_t is an approximation of the inverse Hessian

Key idea of Quasi Newton:

successive iterates x_t , x_{t+1} and gradients $\nabla f(x_t)$, $\nabla f(x_{t+1})$ yield second order information

$$q_t \approx \nabla^2 f(x_{t+1}) p_t$$

where
$$p_t = x_{t+1} - x_t$$
 and $q_t = \nabla f(x_{t+1}) - \nabla f(x_t)$

Most popular implementation of this idea: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

default in MATLAB's fminunc and python's scipy.optimize.minimize

I hope it became clear...

...what are the difficulties to cope with when solving numerical optimization problems

in particular dimensionality, non-separability and ill-conditioning ...what are gradient and Hessian

...what is the difference between gradient and Newton direction ...and that adapting the step size in descent algorithms is crucial.