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▪ Back to some examples of optimization problems in Machine 
Learning …
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▪ Classification 

▪ Is there a cat on the picture?

Supervised Learning

Yes / No



TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

3

▪ Classification 

▪ Is there a cat on the picture?

Supervised Learning

Yes
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▪ Classification 

▪ Is there a cat on the picture?

Supervised Learning

Yes
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▪ Classification 

▪ Is there a cat on the picture?

Supervised Learning

No
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▪ Labelled data / training sets 

Supervised Learning

x1 x2 x3

y1 = 1 y2 = 1 y3 = − 1

Given a set of examples                              with     the      
features and     labels/targets                                 

{(x1, y1), . . . , (xn, yn)} xi

yi

Input or 
features

Output
labels
Target
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Supervised Learning

Given a set of examples                              with     the      
features and     labels/targets                                 

{(x1, y1), . . . , (xn, yn)} xi

yi

Find a mapping                          that will assign the 
“correct” target to each input

h : x 2 X ! y 2 R

Learning algorithm

h

New image (not in the training set)

= − 1
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Example 1: Linear Regression

Hypothesis: linear model 

hw(x) = w0 + w1x1 + . . .+ wd�1xd�1 = hw, xi
x0 = 1

Find         via solving the minimization problemhw(x)

min
w2Rd

1

n

nX

i=1

(hw(x
i)� yi)2

x

hw(x)

xi

yi
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Example 1: Linear Regression

Hypothesis: linear model 

hw(x) = w0 + w1x1 + . . .+ wd�1xd�1 = hw, xi
x0 = 1

Find         via solving the minimization problemhw(x)

x

hw(x)

min
w2Rd

1

n

nX

i=1

(hw(x
i)� yi)2
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hw(x)

x

Example 1: Linear Regression

Hypothesis: linear model 

hw(x) = w0 + w1x1 + . . .+ wd�1xd�1 = hw, xi
x0 = 1

Find         via solving the minimization problemhw(x)

min
w2Rd

1

n

nX

i=1

(hw(x
i)� yi)2

In this case we find an analytical solution of the optimization 
problem (exercice)
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Generalization: Parametrization of the Hypothesis

Linear: hw(x) = hw, xi =
d�1X

i=0

wixi

Polynomial: hw(x) =
d�1X

i,j=0

wi,jxixj

Neural network: hw(x)

x1

x2



TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

12

Generalization: Different Loss Functions

Start from the linear regression problem:

Loss function:

min
w2Rd

1

n

nX

i=1

(hw(x
i)� yi)2

Let yh := hw(x)

l : R⇥ R ! R+

(yh, y) ! l(yh, y)

Training (optimization) problem:

min
w2Rd

1

n

nX

i=1

l(hw(x
i), yi)

l(yh, y) = (yh � y)2
For linear regression
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Generalization: Different loss functions

Quadratic loss: l(yh, y) = (yh � y)2

Hinge loss: l(yh, y) = max{0, 1� yhy}

l(yh, y) =

(
0 if yh = y

1 if yh 6= y
Binary loss:
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▪ Show that we can formulate the problem of linear regression as 
minimizing the following function: 
 
 
 

▪ Show that   is convex 

▪ Deduce that  is solution of  
▪ Show that 

f
wopt ∇f(wopt) = 0

Exercice - Linear Regression

f(w) := kXw � yk2 X 2 Rn⇥d

wopt = (X>X)�1X>y

if X>X invertible
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Numerical Optimization

Very often it is not possible to solve analytically the equation  
and we have to resort to an iterative algorithm (or numerical 
optimization algorithm) that will generate a sequence of points            
ds               that should converge to   

rf(x) = 0

{xk : k � 0} argminxf(x)

Optimization algorithm:

initialize
while not happy do

end-do

[other state variables]k = 0, x0

return

update xk
k = k + 1

input

xk, k

f , rf , (r2f)

f(xk+1)  f(xk) (typically)

Goal:
limk!1 f(xk) = minx f(x)

limk!1 kxk � x⇤k = 0
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Algorithm Classes

Zero-order’s algorithms: only use f (no gradients, …). Those methods 
are also called derivative-free optimization algorithms. Used when 
gradient or Hessian are difficult to compute, or when the functions 
are not differentiable.

Depending on the information the algorithm is using to create a new 
point (or iterate) we distinguish

First-order algorithms: use   and    . Standard algorithms when    is 
differentiable, convex.

f

rf r2f

f

Second-order algorithms: use  ,    and     . When we can have an 
“easy” access to the Hessian matrix.

f

rf
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Descent Algorithm

descent direction
step-size

Illustration idea from “Alexander & Michael Bronstein” Numerical Optimization slides
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Descent Algorithm

Line search: 1-d minimization along  
the descent direction

Generic algorithm:

choose an initial point       ,              
while not happy

choose a descent direction
line-search: choose a step-size

x0

xk+1 = xk + �kdk

k = 0

�k

dk

k = k + 1

� ! f(xk + �dk)

Descent direction: direction such that for    small enough 
f(xk + �dk) < f(xk)

�
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Stopping criteria

When are we “happy”, i.e. when do we stop the algorithm?

•when gradient norm becomes small

krf(xk)k  ✏

•when step-size becomes small

•when progress in f becomes small

kxk+1 � xkk  ✏

|f(xk+1)�f(xk)|
|f(xk)|  ✏
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Newton’s Algorithm

Take as descent direction the Newton step:
dk = �[r2f(xk)]�1rf(xk)

The Newton’s direction minimizes the best locally quadratic 
approximation of f. Indeed, by Taylor’s expansion we can 
approximate f locally in x by

⇡ f(x+ h)

Minimizing g with respect to h yields:

h = �[r2f(x)]�1rf(x)

g(h) = f(x) +rf(x)>h+ 1
2h

>r2f(x)h
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Quasi-Newton’s Methods

In quasi-Newton’s methods, the Newton direction is approximated by 
using solely first order information (gradient)

Key idea: successive iterates xk, xk+1 and gradients   
yield second order information

pk = xk+1 � xk, qk = rf(xk+1)�rf(xk)

qk ⇡ r2f(xk+1)pk

rf(xk)
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Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm

BFGS algorithm:

Bk approximation of Hessian matrix

dk = �B�1
k rf(xk)

xk+1 = xk + �kdk (find �k via line-search)

yk = rf(xk+1)�rf(xk)

Bk+1 = Bk +
yky>k

y>k �kdk
� Bkdkd>k Bk

d>k Bkdk

Considered as the state-of-the-art quasi-Newton’s algorithm. 
Implemented in all (good) optimization toolboxes

efficient update to compute the inverse of Bk
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Gradient Descent - Simple Theoretical Analysis

algorithm slower and slower with increasing condition 
number

kxk+1 � x⇤k  c kxk � x⇤k2 with c < 1

In comparison, convergence of Newton’s method is quadratic:

kxk+1 � x⇤k2  c2
�
kxk � x⇤k2

�2
with c < 1

Theorem[Linear convergence of gradient descent] Assume f : Rd ! R is twice contin-
uously di↵erentiable, convex and for all x, µId 4 r2f(x) 4 LId with µ > 0. Let x⇤ be
the unique global minimum of f . The gradient descent algorithm with fixed step-size
�t =

1
L satisfies

kxk+1 � x⇤k2 
⇣
1� µ

L

⌘
kxk � x⇤k2 .

That is the algorithm converges geometrically (also called linearly):

kxk � x⇤k2 
⇣
1� µ

L

⌘k
kx0 � x⇤k2
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Gradient Descent - Simple Theoretical Analysis

Remarks:

A 4 B means xTAx  xTBx for all x

µId 4 r2f(x) 4 LId                         is equivalent to the eigenvalues of the Hessian 
of f are in between mu and L

a strongly convex function does not need to be twice continuously differentiable 
(it is assumed for the sake of simplicity)

For f twice continuous di↵erentiable µId 4 r2f(x) is called µ -strong convexity
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Stochastic Gradient - Motivation

We now come back to our training optimization problem

Gradient descent update:

wk+1 = wk � �k
1

n

nX

i=1

rfi(wk)

min
w2Rd

1

n

nX

i=1

l(hw(x
i), yi)| {z }

fi(w) the fi can include a 
regularization term 

Problem: each iteration requires to compute a gradient         for each 
data point. We don’t want to do that when n is large (quite typical).        

rfi(w)
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Stochastic Gradient

The gradient of f(w) = 1
n

Pn
i=1 fi(w) is approximated by the gradient of a single data

function fi(w) at each iteration

rf(w) ⇡ rfi(w) for j chosen at random

wk+1 = wk � �krfi(wk)

Stochastic gradient descent update:

sample j 2 {1, . . . , n}


