= Back to some examples of optimization problems in Machine
Learning ...
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Supervised Learning

= Classification

= Is there a cat on the picture?

Yes /No
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Supervised Learning

= Classification

= Is there a cat on the picture?

No
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Supervised Learning

= Labelled data / training sets

Input or
features

3 - _ 1 Output
labels
Target

Given a set of examples {(z!,y!), ..., (2™, y™)}with ¢ the

features and ¢ labels/targets
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Supervised Learning

Given a set of examples {(z!, y1),..., (2™, y™)}with z* the

features and ¢’ labels/targets

Find a mapping h: x € X — y € R that will assign the

“correct” target to each input

New image (not in the training set) -

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Sacla



Example 1: Linear Regression

Hypothesis: linear model

0 =1
hy () = wo +wix1 + ... + Wg_1Tg— :( T)

Find h,, () via solving the minimization problem
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Example 1: Linear Regression

Hypothesis: linear model

0 =1
hy () = wo +wix1 + ... + Wg_1Tg— :( T)

Find h,, () via solving the minimization problem

min — Y (hy(z') —y')?

weRE M 4
1=1

P o] - Ao
In this case we find an analytical solution of the optimization

problem (exercice)

N/
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Generalization: Parametrization of the Hypothesis

d—1
Linear:  hy(x) = (w,x) = szazz
1=0
d—1 [
Polynomial:  hw(z) = Z Wi, T4 5 « x
i,j=0 ;

Neural network:

INPUT HIDDEN OUTPUT
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Generalization: Different Loss Functions

Start from the linear regression problem:
1 . .

min — ho(24) — y*)?

i, (o) )

Let Yh — hw(x)

Loss function: [: R xR — Ry For linear regression
— _ 2
(Y, y) — Wyn,y) [(Ynsy) = (Yn — )

Training (optimization) problem:
1 n
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Generalization: Different loss functions

g(yhal)
Quadratic loss: [(yn,vy) = (yn — y)* tl i
1 Yh

0if yr = U(yn, 1)
Binary loss: I(yp,y) = 1 = h
Lif yp # y
1 Yn
g(yfwl)
Hinge loss: [(yn,y) = max{0,1 — ypy} ﬁ
1 Yh
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Exercice - Linear Regression

= Show that we can formulate the problem of linear regression as
minimizing the following function:

fw) = [Xw-y|* X eRr

= Show that f is convex
= Deduce that w, is solution of Vf(wy,) = 0

op
= Show that
Wopt = (X' X)71X Ty

if X' X invertible
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Numerical Optimization

Very often it is not possible to solve analytically the equation Vf(x) =0
and we have to resort to an iterative algorithm (or numerical
optimization algorithm) that will generate a sequence of points

{xy : k> 0} that should converge to argmin, f(x)

Optimization algorithm:

input f, V£, (V2f)

initialize k = 0, xg [other state variables] Goal:

while not happy do
update xy,
k=k+1

end-do

return xg, k

limg o0 f(7g) = ming f(z)
f(xry1) < flar) (typically)

limg oo ||z — 2*|| =0

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Sacla



Algorithm Classes

Depending on the information the algorithm is using to create a new
point (or iterate) we distinguish

/ero-order’s algorithms: only use f (no gradients, ..). Those methods
are also called derivative-free optimization algorithms. Used when
gradient or Hessian are difficult to compute, or when the functions
are not differentiable.

First-order algorithms: use f and Vf. Standard algorithms when f is
differentiable, convex.

Second-order algorithms: use f,VfandVv2f. When we can have an
“easy access to the Hessian matrix.
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Descent Algorithm

descent direction

ation idea from “Alexander & Michael Bronstein” Numerical Optimization slide
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Descent Algorithm

Generic algorithm:

choose an initial point g, k=0

while not happy
choose a descent direction dg
ine-search: choose a step-size ok
Th41 = Xf + okdy

k=k-+1
Line search: 1-d minimization along

the descent direction
g — f(il?k -+ O'dk)

Descent direction: direction such that for 0 small enough
flzg +ody) < f(xg)
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Stopping criteria

When are we “happy”, i.e. when do we stop the algorithm?

= when gradient norm becomes small

IVf(zr)l < e

= when step-size becomes small

|Zr1 — ]| <€

= when progress in f becomes small

f@ry1)—fzr)] ¢
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Newton’s Algorithm

Take as descent direction the Newton step:
d = —[V*f(2)] 'V f ()

The Newton's direction minimizes the best locally quadratic
approximation of f. Indeed, by Taylor's expansion we can

approximate f locally in x by

g(h) = f(z) + Vf(z) h+ 5h"V2f(z)h
~ f(z+h)

Minimizing g with respect to h yields:

h=—[V2f(2)]"'Vf(z)
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Quasi-Newton’s Methods

In quasi-Newton’'s methods, the Newton direction is approximated by
using solely first order information (gradient)

Key idea: successive iterates xk, xk+1 and gradientsV f(z)

yield second order information

qr ~ V2 f(xri1)pr

Pk = Tkt1 — Tk Gk = Vf(Tr1) — Vf(xg)
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Broyden—Fletcher-Goldfarb—Shanno (BFGS) algc

BFGS algorithm:

By approximation of Hessian matrix
dp, = —B];1Vf(a?k)
Tr11 = Tk + opdg (find o via line-search)
ye = Vf(@g41) — Vf(zk)

T T
Bpdid, By,

Byy1 = By + 2% :
k1 ko y, okdy d,| Bydy,

efficient update to compute the inverse of By

Considered as the state-of-the-art quasi-Newton's algorithm.
Implemented in all (good) optimization toolboxes
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Gradient Descent - Simple Theoretical Analysis

Theorem/|Linear convergence of gradient descent] Assume f : R — R is twice contin-
uously differentiable, convex and for all =, ul; < V2f(x) < LI; with u > 0. Let * be
the unique global minimum of f. The gradient descent algorithm with fixed step-size

op = % satisfies

g — |2 < (1= 2 g — 2"

That is the algorithm converges geometrically (also called linearly):

X % X
e —a* |2 < (1= %) llao — 2|

algorithm slower and slower with increasing condition
number

In comparison, convergence of Newton’'s method is quadratic:

|21 — ¥ < cllzg — z*|]* with ¢ < 1

|zpr1 — 2*))2 < & (lzg — 2*)?)° with ¢ < 1
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Gradient Descent - Simple Theoretical Analysis

Remarks:

A < B means ! Az < x! Bz for all

For f twice continuous differentiable ul; < V2f(z) is called p~Strong convexity

a strongly convex function does not need to be twice continuously differentiable
(it is assumed for the sake of simplicity)

nly < V2f(x) < Ll;is equivalent to the eigenvalues of the Hessian
of f are in between mu and L
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Stochastic Gradient - Motivation

We now come back to our training optimization problem

1 .
. - l h 1 1
st 2 L))
1=1

fi(w) the f; can include a

_ regularization term
Gradient descent update:

1 n
Wkl = Wk — Ok 2 V fi(wg)
1=

Problem: each iteration requires to compute a gradient Vf;(w) for each
data point. We don't want to do that when n is large (quite typical).
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Stochastic Gradient

The gradient of f(w) = £ 5" | fi(w) is approximated by the gradient of a single data
function f;(w) at each iteration

Vf(w) ~ Vf;(w) for j chosen at random

Stochastic gradient descent update:

sample j € {1,...,n}
Wr+1 = Wk — 0V fi(wg)
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