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Date Topic

Fri, 27.9.2019 DB Introduction

Fri, 4.10.2019 

(4hrs)

AA Continuous Optimization I: differentiability, gradients, 

convexity, optimality conditions

Fri, 11.10.2019 

(4hrs)

AA Continuous Optimization II: constrained optimization, 

gradient-based algorithms, stochastic gradient

Fri, 18.10.2019 

(4hrs)

DB Continuous Optimization III: stochastic algorithms, 

derivative-free optimization, critical performance 

assessment [1st written test]

Wed, 30.10.2019 DB Discrete Optimization I: graph theory, greedy 

algorithms

Fri, 15.11.2019 DB Discrete Optimization II: dynamic programming, 

heuristics [2nd written test]

Fri, 22.11.2018 final exam

Course Overview
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Introduction to Continuous Optimization

 examples (from ML / black-box problems)

 typical difficulties in optimization

Mathematical Tools to Characterize Optima

 reminders about differentiability, gradient, Hessian matrix

 unconstraint optimization

 first and second order conditions

 convexity

 constraint optimization

Gradient-based Algorithms

 quasi-Newton method (BFGS)

DFO: trust-region method (Nelder-Mead)

Learning in Optimization / Stochastic Optimization 

 CMA-ES (adaptive algorithms / Information Geometry)

 PhD thesis possible on this topic

method strongly related to ML / new promising research area 

interesting open questions

Details on Continuous Optimization Lectures
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CMA-ES in a Nutshell

Goal:

Understand the main principles

of this state-of-the-art algorithm.
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 Last slide was taken from 
http://www.cmap.polytechnique.fr/~nikolaus.hansen/co

penhagen-cma-es.pdf (copyright by Nikolaus Hansen, one of 

the main inventors of the CMA-ES algorithms)

 In the following, I will borrow more slides from there and from 
http://www.cmap.polytechnique.fr/~dimo.brockhoff/opt

imizationSaclay/2015/slides/20151106-

continuousoptIV.pdf

(by Anne Auger)

 In the following and the online material in particular, I refer to 

these pdfs as [Hansen, p. X] and [Auger, p. Y] respectively.

Copyright Notice

http://www.cmap.polytechnique.fr/~dimo.brockhoff/optimizationSaclay/2015/slides/20151106-continuousoptIV.pdf
http://www.cmap.polytechnique.fr/~nikolaus.hansen/copenhagen-cma-es.pdf
http://www.cmap.polytechnique.fr/~nikolaus.hansen/copenhagen-cma-es.pdf
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Back to CMA-ES

Goal:

Understand the main principles

of this state-of-the-art algorithm.
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A stochastic blackbox search template to minimize 𝒇:ℝ𝒏 → ℝ

Initialize distribution parameters 𝜃, set population size 𝜆 ∈ ℕ

While happy do:

 Sample distribution 𝑃 𝒙 𝜃 → 𝒙1, … , 𝒙𝜆 ∈ ℝ𝑛

 Evaluate 𝒙1, … , 𝒙𝜆 on 𝑓

 Update parameters 𝜃 ← 𝐹𝜃(𝜃, 𝒙1, … , 𝒙𝜆, 𝑓 𝒙1 , … , 𝑓 𝒙𝜆 )

For CMA-ES and evolution strategies in general: 

sample distributions = multivariate Gaussian distributions

CMA-ES: Stochastic Search Template
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it remains to show how to adapt the parameters, but for now: normal 

distributions

Sampling New Candidate Solutions (Offspring)

from [Auger, p. 10]
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Excursion: Normal Distributions

from [Auger, p. 11]
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Excursion: Normal Distributions

from [Auger, p. 12]
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Excursion: Normal Distributions

from [Auger, p. 13]
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Excursion: Normal Distributions

from [Auger, p. 13]
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Excursion: Normal Distributions

from [Auger, p. 13]
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Covariance Matrix: Lines of Equal Density

from [Auger, p. 14]
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Covariance Matrix: Lines of Equal Density

from [Auger, p. 14]
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Covariance Matrix: Lines of Equal Density

from [Auger, p. 14]
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Adaptation of Sample Distribution Parameters

from [Auger, p. 16]
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Adaptation of the Mean
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Plus and Comma Selection

from [Hansen, p. 35]
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Non-Elitism and Weighted Recombination

from [Hansen, p. 34]
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Invariance Against Order-Preserving 𝑓-Transformations

from [Hansen, p. 37]
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Invariance Against Translations in Search Space

from [Hansen, p. 38]
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Invariance Against Search Space Rotations

from [Hansen, p. 39]
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Invariance Against Rigid Search Space Transformations

from [Hansen, p. 40

]
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Invariance Against Rigid Search Space Transformations

from [Hansen, p. 41]
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Invariance Against Rigid Search Space Transformations

mainly Nelder-Mead and CMA-ES

have this property
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Invariances: Summary

from [Hansen, p. 43]
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Step-Size Adaptation
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Recap CMA-ES: What We Have So Far

from [Hansen, p. 45]
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Why At All Step-Size Adaptation?

What do you think will happen for a

(1+1)-ES with constant step-size?

from [Auger, p. 22]



31TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 18, 2019© Anne Auger and Dimo Brockhoff, Inria 31

Why Step-Size Adaptation?

from [Auger, p. 22]
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Optimal Step-Size

from [Hansen, p. 47]
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Optimal Step-Size vs. Step-Size Control 

from [Hansen, p. 48]
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Optimal Step-Size vs. Step-Size Control 

from [Hansen, p. 49]
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Question:

How to actually adapt the step-size during the optimization?

Most common:

 1/5 success rule

 Cumulative Step-Size Adaptation (CSA, as in standard CMA-ES)

 others possible (Two-Point Adaptation, self-adaptive step-size, ...) 

Adapting the Step-Size
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One-Fifth Success Rule

from [Auger, p. 32]



37TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 18, 2019© Anne Auger and Dimo Brockhoff, Inria 37

One-Fifth Success Rule

from [Auger, p. 33]
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One-Fifth Success Rule

from [Auger, p. 34]
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One-Fifth Success Rule

from [Auger, p. 35]
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Cumulative Step-Size Adaptation (CSA)

from [Auger, p. 36]
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Cumulative Step-Size Adaptation (CSA)

from [Auger, p. 37]
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Cumulative Step-Size Adaptation (CSA)

from [Auger, p. 38]
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Covariance Matrix Adaptation
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Recap CMA-ES: What We Have So Far

from [Auger, p. 40]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]



49TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 18, 2019© Anne Auger and Dimo Brockhoff, Inria 49

Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]



54TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 18, 2019© Anne Auger and Dimo Brockhoff, Inria 54

Rank-One Update of Covariance Matrix

from [Auger, p. 42]
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Rank-One Update: Summary

from [Hansen, p. 71]
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Evolution Path

from [Auger, p. 44]
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Utilizing the Evolution Path

from [Auger, p. 45]
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Utilizing the Evolution Path

from [Auger, p. 45



59TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 18, 2019© Anne Auger and Dimo Brockhoff, Inria 59

Utilizing the Evolution Path

from [Auger, p. 45]
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Rank-𝝁 Update

from [Auger, p. 47]
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Rank-𝝁 Update

from [Auger, p. 47]
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Rank-𝝁 Update

from [Auger, p. 47]
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Illustration of Rank-𝝁 Update

from [Auger, p. 48]
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Illustration of Rank-𝝁 Update

from [Auger, p. 48]
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Illustration of Rank-𝝁 Update

from [Auger, p. 48]
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The rank-𝝁 update

 increases the possible learning rate for large populations

"large" when 𝜆 ≥ 3𝑛 + 10

 is the primary mechanism whenever a large population size 

is used

 can be easily combined with rank-one update

Rank-𝝁 Update: Summary
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CMA-ES in a Nutshell

Promised:

Understand the main principles

of this state-of-the-art algorithm.
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CMA-ES in a Nutshell
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CMA-ES: Almost Parameterless

from [Hansen, p. 90]
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Experimental Considerations
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Experimentum Crucis with CMA-ES

from [Hansen, p. 91]
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Experimentum Crucis with CMA-ES

from [Hansen, p. 92]
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Experimentum Crucis with CMA-ES

from [Hansen, p. 93]
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Influence of Condition Number + Invariance
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Influence of Condition Number + Invariance
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Influence of Condition Number + Invariance
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Performance on BBOB Testbed: Data Profile



78TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 18, 2019© Anne Auger and Dimo Brockhoff, Inria 78

Summary CMA-ES I
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Summary CMA-ES II
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I hope it became clear...

...that CMA-ES samples according to multivariate normal distributions

...how CMA-ES updates its mean, stepsize, and covariance matrix

...and what are the invariance properties of CMA-ES

Conclusions
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Benchmarking Optimization Algorithms

or: critical performance assessment
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challenging optimization problems

appear in many

scientific, technological and industrial domains
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Given:

Not clear:

which of the many algorithms should I use on my 
problem?

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Practical (Numerical) Blackbox Optimization

derivatives not available or not useful
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Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]

Simplex downhill [Nelder & Mead 1965] 

Pattern search [Hooke and Jeeves 1961] 

Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain) 
• Differential Evolution [Storn & Price 1997] 

• Particle Swarm Optimization [Kennedy & Eberhart 1995] 

• Evolution Strategies, CMA-ES
[Rechenberg 1965, Hansen & Ostermeier 2001] 

• Estimation of Distribution Algorithms (EDAs) 
[Larrañaga, Lozano, 2002] 

• Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004] 

• Genetic Algorithms [Holland 1975, Goldberg 1989] 

Simulated annealing [Kirkpatrick et al. 1983]

Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000] 

Numerical Blackbox Optimizers
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• understanding of algorithms

• algorithm selection

• putting algorithms to a standardized test
• simplify judgement

• simplify comparison

• regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

• choosing (and implementing) problems, performance 
measures, visualization, stat. tests, ...

• running a set of algorithms

Need: Benchmarking
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Exercise

How would you compare algorithms?

assumptions:

• continuous search space ℝ𝑛

• blackbox scenario w/o constraints

• two algorithms

a) Define a concrete experimental setup

• What to do if I want to compare algorithms A and B?

• Which experiment parameters you have to decide on?

b) What would you display to compare the performance?

c) Generalize

• arbitrary search space

• constraints

• any number of algorithms

• deterministic vs. stochastic algorithms


