Introduction to Optimization
 Lectures 5\&6: Benchmarking + Discrete Optimization

October 30 and November 15, 2019
TC2 - Optimisation
Université Paris-Saclay

Anne Auger and Dimo Brockhoff Inria Saclay - Ile-de-France

Course Overview

Date		Topic
Fri, 27.9.2019	DB	Introduction
Fri, 4.10.2019 (4hrs)	AA	Continuous Optimization I: differentiability, gradients, convexity, optimality conditions
Fri, 11.10.2019 (4hrs)	AA	Continuous Optimization II: constrained optimization, gradient-based algorithms, stochastic gradient
Fri, 18.10.2019 (4hrs)	DB	Continuous Optimization III: stochastic algorithms, derivative-free optimization, critical performance assessment [1st written test]
Wed, 30.10.2019	DB	Benchmarking + Discrete Optimization I: graph theory, greedy algorithms
Fri, 15.11.2019	DB	Discrete Optimization II: dynamic programming, heuristics [2
Fri, written test]		

Little Quiz (not graded)

CMA-ES as a stochastic search algorithm:

1) What's the underlying probability distribution?
2) How to update the mean?
3) When the progress is slower than expected, then ...
4) When the progress is faster than expected, then ...
5) With respect to which transformations is CMA-ES invariant?
6) How does the
constant stepsize (1+1)-ES looks like on this graph?

$$
\begin{aligned}
& f(x)=\sum_{i=1}^{n} x_{i}^{2} \\
& \text { in }[-0.2,0.8]^{n} \\
& \text { for } n=10
\end{aligned}
$$

Little Quiz II (also not graded)

7) Is the function, optimized by CMA-ES here, separable?

4 ㅁ.
62 / 81

Benchmarking Optimization Algorithms

or: critical performance assessment

Practical (Numerical) Blackbox Optimization

Given:

$f(x) \in \mathbb{R}^{k}$
derivatives not available or not useful
Not clear:
which of the many algorithms should I use on my problem?

Need: Benchmarking

- understanding of algorithms
- algorithm selection
- putting algorithms to a standardized test
- simplify judgement
- simplify comparison
- regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

- choosing (and implementing) problems, performance measures, visualization, stat. tests, ...
- running a set of algorithms

Do you remember the last Exercise?

How would you compare algorithms?

assumptions:

- continuous search space \mathbb{R}^{n}
- blackbox scenario w/o constraints
- two algorithms
a) Define a concrete experimental setup
- What to do if I want to compare algorithms A and B ?
- Which experiment parameters you have to decide on?
b) What would you display to compare the performance?
c) Generalize
- arbitrary search space
- constraints
- any number of algorithms
- deterministic vs. stochastic algorithms

wouldn't automatized benchmarking be cool?

for this, we developed COCO

Comparing Continuous Optimizers Platform https://github.com/numbbo/coco

benchmarking is non-trivial

hence, COCO implements a reasonable, well-founded, and well-documented pre-chosen methodology

How to benchmark algorithms with COCO?

https：／／github．com／numbbo／coco

— 回
numbbo／coco：Numerical ．．．\times
A GitHub，Inc．（US）https：／／github．com／numbbo／coco \qquad

－numb bo／coco
＜＞Code
（1）Issues 133
18 Pull requests 1
III Projects 9
Settings
Insights＊

Numerical Black－Box Optimization Benchmarking Framework http：／／coco．gforge．inria．fr／
Add topics
（1） 16,007 commits
\＆ 11 branches
31 releases
215 contributors

https：／／github．com／numbbo／coco

－■

■－

numbbo／coco：Numerical ．．．\times
（4）（i）GitHub，Inc．（US）https：／／github．com／numbbo／coco
C
${ }^{9}{ }^{\oplus}$ Search

む 自
，会 \equiv
（2）Most Visite
C．Getting Started

© numbbo／numbbo \cdot Gi．．．
RandOpt CMAPInria GitLab RER B from lab
numbbo／coco

（－）Unwatch＊	15	\star Unstar	38	8 Fork

```
＜＞Code
（1）Issues 133
17 Pull requests 1
III Projects 9
Settings
Insights＊
```

Numerical Black－Box Optimization Benchmarking Framework http：／／coco．gforge．inria．fr／
Add topics
（1） 16,007 commits
\＆ 11 branches
$\bigcirc 31$ releases
215 contributors

https://github.com/numbbo/coco

$$
\text { () numbbo/coco: Numerical ... } \times
$$

(-) (i) GitHub, Inc. (US) https://github.com/numbbo/coco
$\mathrm{C} \stackrel{\oplus}{\text { Search }}^{\text {S }}$
A
 fr/

Add topics
(1) 16,007 commits
\& 11 branches
$\bigcirc 31$ releases
215 contributors

国 README.md

https：／／github．com／numbbo／coco

numbbo／coco：Numerical ．．．\times
（ ）（i）GitHub，Inc．（US）https：／／github．com／numbbo／coco
C．$C_{\text {Search }}$
$\underset{\sim}{\aleph}$

， \equiv
（2）Most Visited Getting Started coco－Algorithms numbbo／numbbo．Gi．．． Ca RandOpt CMAP Inria GitLab ReR B from lab
Branch：master New pull request

Create new file	Upload files	Find file

III brockho committed on GitHub Merge pull request \＃1352 from numbbo／development ．．．
－code－experiments
－code－postprocessing
E code－preprocessing
E howtos
目．clang－format
目 ．hgignore
目 AUTHORS
目 LICENSE
目 README．md
目 do．py
目 doxygen．ini

A little more verbose error message when suite regression test fai

Hashes are back on the plots．

Fixed preprocessing to work correctly with the extended biobjectiv
Update create-a-suite-howto.md
raising an error in bbob2009＿logger．c when best＿value is NULL．Plus s．．．

Added link to \＃1335 before closing．
refactoring here and there in do．py to get closer to PEP8 specifications
moved all files into code－experiments／folder besides the do．py scrip．．．

Clone with HTTPS（？）
Use SSH
Use Git or checkout with SVN using the web URL．
https：／／github．com／numbbo／coco．git

Open in Desktop Download ZIP

2 years ago
raising an error in bbob2009＿logger．c when best＿value is NULL．Plus s．．． 2 years ago
small correction in AUTHORS a year ago
Update LICENSE 11 months ago
a month ago
2 months ago
2 years ago

国 README．md

numbbo／coco：Comparing Continuous Optimizers

https：／／github．com／numbbo／coco

numbbo／coco：Numerical ．．．\times
（－）（i）GitHub，Inc．（US）https：／／github．com／numbbo／coco
C ${ }^{\oplus}$ Search
$\hat{*}$
自
，
个 \equiv

2）Most Visited Getting Started coco－Algorithms numbbo／numbbo．Gi．．．RandOpt CMAP Inria GitLab RER B from lab

E．code－preprocessinghowtos
目．clang－format
目 ．hgignore
目 AUTHORS
目 LICENSE
目 README．md
目 do．py
目 doxygen．ini

Fixed preprocessing to work correctly with the extended biobjectiv Update create－a－suite－howto．md

Open in Desktop

4 months ago
raising an error in bbob2009＿logger．c when best＿value is NULL．Plus s．．．
raising an error in bbob2009＿logger．c when best＿value is NULL．Plus s．．．
small correction in AUTHORS
a year ago
Update LICENSE
11 months ago
Added link to \＃1335 before closing．
a month ago
refactoring here and there in do．py to get closer to PEP8 specifications
moved all files into code－experiments／folder besides the do．py scrip．．．

2 years ago

国 README．md

numbbo／coco：Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform，now rewritten fully in ANSI C with other languages calling the C code．As the name suggests，the code provides a platform to benchmark and compare continuous optimizers，AKA non－linear solvers for numerical optimization．Languages currently available are
－ $\mathrm{C} / \mathrm{C}++$
－Java
－MATLAB／Octave

https：／／github．com／numbbo／coco

numbbo／coco：Numerical ．．．\times
（i）GitHub，Inc．（US）https：／／github．com／numbbo／coco
C Ce Search
$ふ$ ∇ \＆ \equiv

2）Most Visited Getting Started coco－Algorithms numbbo／numbbo．Gi．．．GandOpt CMAP Inria GitLab RER B from lab

目 LICENSE

目 README．md
首 do．pydoxygen．ini

Update LICENSE

Added link to \＃1335 before closing．
a month ago
refactoring here and there in do．py to get closer to PEP8 specifications
2 months ago
moved all files into code－experiments／folder besides the do．py scrip．．．README．md

numbbo／coco：Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform，now rewritten fully in ANSI C with other languages calling the C code．As the name suggests，the code provides a platform to benchmark and compare continuous optimizers，AKA non－linear solvers for numerical optimization．Languages currently available are
－ $\mathrm{C} / \mathrm{C}++$
－Java
－MATLAB／Octave
－Python
Contributions to link further languages（including a better example in C_{++}）are more than welcome．
For more information，
－read our benchmarking guidelines introduction
－read the COCO experimental setup description

https：／／github．com／numbbo／coco

（2）Most Visited Getting Started L COCO－Algorithms \qquad

numbbo／coco：Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform，now rewritten fully in ANSI C with other languages calling the C code．As the name suggests，the code provides a platform to benchmark and compare continuous optimizers，AKA non－linear solvers for numerical optimization．Languages currently available are
－C／C＋＋
－Java
－MATLAB／Octave
－Python
Contributions to ink further languages（including a better example in $\mathrm{C}++$ ）are more than welcome．
For more information，
－read our benchmarking guidelines introduction
－read the COCO experimental setup description
－see the bbob－biobj and bbob－biobj－ext COCO multi－objective functions testbed documentation and the specificities of the performance assessment for the bi－objective testbeds．
－consult the BBOB workshops series，
－consider to register here for news，
－see the previous COCO home page here and
－see the links below to learn more about the ideas behind CoCO．

https://github.com/numbbo/coco

numbbo/coco: Numerical ... \times
(i) GitHub, Inc. (US) https://github.com/numbbo/coco

C C ${ }_{\text {Search }}$
会
\& $\widehat{1}$ \equiv
(2) Most Visited Getting Started coco-Algorithms numbbo/numbbo. Gi... GandOpt CMAP Inria GitLab RER B from lab

Gettina Started

0 . Check out the Requirements above.

requirements \& download

- either by clicking the Download ZIP button and unzip the zip file,
- or by typing git clone https://github.com/numbbo/coco.git. This way allows to remain up-to-date easily (but needs git to be installed). After cloning, git pull keeps the code up-to-date with the latest release.

The record of official releases can be found here. The latest release corresponds to the master branch as linked above.
2. In a system shell, cd into the coco or coco-<version> folder (framework root), where the file do.py can be found. Type, i.e. execute, one of the following commands once

> python do.py run-c
> python do.py run-java
> python do.py run-matlab
> python do.py run-octave
> python do.py run-python
depending on which language shall be used to run the experiments. run-* will build the respective code and run the example experiment once. The build result and the example experiment code can be found under code-experiments/build /<language> (<language>=matlab for Octave). python do.py lists all available commands.
3. On the computer where experiment data shall be post-processed, run

https://github.com/numbbo/coco

numbbo/coco: Numerical ... \times
(1) GitHub, Inc. (US) https://github.com/numbbo/coco

C C^{\oplus} Search
分$\sqrt{6}$ \equiv
(2) Most Visited Getting Started coco-Algorithms numbbo/numbbo. Gi... GandOpt CMAP Inria GitLab RERB from lab

Getting Started

0 . Check out the Requirements above.

1. Download the COCO framework code from github,

- either by clicking the Download ZIP button and unzip the zip file,
- or by typing git clone https://github.com/numbbo/coco.git. This way allows to remain up-to-date easily (but needs git to be installed). After cloning, git pull keeps the code up-to-date with the latest release.

The record of official releases can be found here. The latest release corresponds to the master branch as linked above.
2. In a system shell, cd into the coco or coco-<version> folder (framework root), where the file do.py can be found. Type, i.e. execute, one of the following com
python do.py run-c
python do.py run-java
installation I: experiments python do.py run-matlab
python do.py run-python
depending on which language shall be used to run the experiments. run-* will build the respective code and run the example experiment once. The build result and the example experiment code can be found under code-experiments/build /<language> (<language>=matlab for Octave). python do.py lists all available commands.
3. On the computer where experiment data shall be post-processed, run

https：／／github．com／numbbo／coco

2）Most Visited Getting Started coco－Algorithms numbbo／numbbo．Gi．．．GandOpt CMAP Inria GitLab RER B from lab example experıment once．The buld result and the example experıment code can be tound under code－experiments／build ／＜language＞（＜language＞＝matlab for Octave）．python do．py lists all available commands．

3．On the computer where experiment data shall b
python do．py install－postprocessing

installation II：postprocessing

to（user－locally）install the post－processing．From here on，do．py has done its Job and is only neeaed again tor upaating the builds to a new release．

4．Copy the folder code－experiments／build／YOUR－FAVORITE－LANGUAGE and its content to another location．In Python it is sufficient to copy the file example＿experiment．py．Run the example experiment（it already is compiled）．As the details vary，see the respective read－me＇s and／or example experiment files：
－c read me and example experiment
－Java read me and example experiment
－Matlab／Octave read me and example experiment
－Python read me and example experiment
If the example experiment runs，connect your favorite algorithm to Coco：replace the call to the random search optimizer in the example experiment file by a call to your algorithm（see above）．Update the output result＿folder，the algorithm＿name and algorithm＿info of the observer options in the example experiment file．

Another entry point for your own experiments can be the code－experiments／examples folder．
5．Now you can run your favorite algorithm on the bbob suite（for single－objective algorithms）or on the bbob－biobj and bbob－biobj－ext suites（for multi－objective algorithms）．Output is automatically generated in the specified data result＿folder．By now，more suites might be available，see below．

https：／／github．com／numbbo／coco

9）Most Visited Getting Started coco－Algorithms numbbo／numbbo．Gi．．．KandOpt CMAP Inria GitLab RER B from lab example experıment once．The buld result and the example experıment code can be tound under code－experiments／build ／＜language＞（＜language＞＝matlab for Octave）．python do．py lists all available commands．

3．On the computer where experiment data shall be post－processed，run
to（user－locally）install the post－processing．From here on，do．py has done its job and is only needed again for updating the builds to a new release．

4．Copy the folder code－experiments／build／YOUR－FAVORITE－LANGUAGE and its content to another location．In Python it is sufficient to copy the file example＿experiment．py．Run the example experiment（it already is compiled）．As the details vary，see the respective read－me＇s and／or example experiment files：
－C read me and example experiment
－Java read me and example experiment
－Matlab／Octave read me and example experiment

coupling algo＋COCO

－Python read me and example experiment
If the example experiment runs，connect your favorite algorithm to Coco：replace the call to the random search optimizer in the example experiment file by a call to your algorithm（see above）．Update the output result＿folder，the algorithm＿name and algorithm＿info of the observer options in the example experiment file．

Another entry point for your own experiments can be the code－experiments／examples folder．
5．Now you can run your favorite algorithm on the bbob suite（for single－objective algorithms）or on the bbob－biobj and bbob－biobj－ext suites（for multi－objective algorithms）．Output is automatically generated in the specified data result＿folder．By now，more suites might be available，see below．

Simplified Example Experiment in Python

```
import cocoex
import scipy.optimize
### input
suite_name = "bbob"
output_folder = "scipy-optimize-fmin"
fmin = scipy.optimize.fmin
### prepare
suite = cocoex.Suite(suite_name, "", "")
observer = cocoex.Observer(suite_name,
"result_folder: " + output_folder)
```

\#\#\# go
for problem in suite: \# this loop will take several minutes
problem.observe_with(observer) \# generates the data for
\# cocopp post-processing
fmin (problem, problem.initial_solution)

Note: the actual example_experiment.py contains more advanced things like restarts, batch experiments, other algorithms (e.g. CMA-ES), etc.

https://github.com/numbbo/coco

https：／／github．com／numbbo／coco

（i）GitHub，Inc．（US）https：／／github．com／numbbo／coco／tree／development
（2）Most Visited（7）Getting Started coco－Algorithms numbbo／numbbo．Gi．．．CandOpt CMAP Inria GitLab RER B from lab
Another entry point for your own experiments can be the code－experiments／examples folder．
5．Now you can run your favorite algorithm on the bbob suite（for single－objective algorithms）or on the bbob－biobj and bbob－biobj－ext suites（for multi－objective algorithms）．Output is automatically generated in the specified data result＿folder．By now，more suites might be available，see below．

6．Postprocess the data from the results folder by typing
python－m cocopp［－o OUTPUT＿FOLDERNAME］YOURDATAFOLDER［MORE＿DATAFOLDERS］

Any subfolder in the folder arguments will be searched for logged data．That is，experiments from different batches can be in different folders collected under a single＂root＂Yourdatafolder specifying several data result folders generated by different algc

A folder，ppdata by default，will be generated，which contains

data from 200＋algorithms can be accessed directly through its name（see

http：／／coco．gforge．inria．fr／doku．php？id＝algorithms ）

automatically）．Results of each batch must be kept under their separate folder as is．These folders then must be

Result Folder

Automatically Generated Results

Post processing results
(5) file:///C:/Users/dimo/Desktop/coco/BBOB/data-archive/data/gecco-bbob-1-24/2009.
C
\square Q Search
A

(2) Most Visited - Getting Started COCO-Algorithms numbbo/numbbo. Gi Gr RandOpt CMAP (7) Inria GitLab RER B from lab

Post processing results

Single algorithm data

BIPOP-CMA-ES hansen noiseless

Automatically Generated Results

Home

Runtime distributions (ECDFs) per function
Runtime distributions (ECDFs) summary and function groups
Scaling with dimension for selected targets
Tables for selected targets
Runtime distribution for selected targets and f-distributions
Runtime loss ratios
Runtime distributions (ECDFs) over all targets

Automatically Generated Results

Overview page

Runtime distributions (ECDFs) per function

Automatically Generated Results

P) Most Visited Getting Started COCO-Algorithms numbbo/numbbo Gi... RandOpt CMAP Inria GitLab RER B from lab

Overview page

Average number of \boldsymbol{f}-evaluations to reach target

so far:

data for 300+ algorithm variants
(some of which on noisy or multiobjective test functions) 143 workshop papers
by 109 authors from 28 countries

Measuring Performance

On

- real world problems
- expensive
- comparison typically limited to certain domains
- experts have limited interest to publish
- "artificial" benchmark functions
- cheap
- controlled
- data acquisition is comparatively easy
- problem of representativeness

Test Functions

- define the "scientific question"
the relevance can hardly be overestimated
- should represent "reality"
- are often too simple?
remind separability
- a number of testbeds are around
- account for invariance properties
prediction of performance is based on "similarity", ideally equivalence classes of functions

Available Test Suites in COCO

- bbob
- bbob-noisy
- bbob-biobj
- bbob-largescale
- bbob-mixint
- bbob-biobj-mixint 92 mixed integer fcts

24 mixed integer fcts

24 noiseless fcts
30 noisy fcts
55 bi-objective fcts
24 noiseless fcts

220+ algo data sets 40+ algo data sets 30+ algo data sets
11 algo data sets

How Do We Measure Performance?

Meaningful quantitative measure

- quantitative on the ratio scale (highest possible)
"algo A is two times better than algo B " is a meaningful statement
- assume a wide range of values
- meaningful (interpretable) with regard to the real world possible to transfer from benchmarking to real world

runtime or first hitting time is the prime candidate (we don't have many choices anyway)

How Do We Measure Performance?

Two objectives:

- Find solution with small(est possible) function/indicator value
- With the least possible search costs (number of function evaluations)

For measuring performance: fix one and measure the other

Measuring Performance Empirically convergence graphs is all we have to start with...

number of function evaluations

ECDF:
 Empirical Cumulative Distribution Function of the Runtime
 [aka data profile]

A Convergence Graph

First Hitting Time is Monotonous

15 Runs

15 Runs ≤ 15 Runtime Data Points

Empirical Cumulative Distribution

the ECDF of run lengths to reach the target

- has for each data point a vertical step of constant size
- displays for
0.2 each x-value (budget) the count of observations to the left (first hitting times)

Empirical Cumulative Distribution

1 interpretations possible:

- 80% of the runs reached the target
- e.g. 60% of the runs need between 2000 and 4000 evaluations

Reconstructing A Single Run

Reconstructing A Single Run

50 equally spaced targets

Reconstructing A Single Run

Reconstructing A Single Run

Reconstructing A Single Run

the empirical
CDF makes a step for each star, is monotonous and displays for each budget the fraction of targets achieved within the budget

Reconstructing A Single Run

the ECDF recovers the monotonous graph, discretized and flipped

Reconstructing A Single Run

the ECDF recovers the monotonous graph, discretized and flipped

Aggregation

Aggregation

Aggregation

15 runs 50 targets

Aggregation

15 runs
 50 targets

ECDF with 750 steps

Aggregation

50 targets from 15 runs

...integrated in
a single graph

Interpretation

50 targets from 15 runs integrated in a single graph area over the ECDF curve =
average log runtime
(or geometric avg. . runtime) over all targets (difficult and easy) and all runs

Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

- never aggregate over dimension
- but often over targets and functions
- can show data of more than 1 algorithm at a time

Another Interesting Plot...

...compares average runtimes over several algorithms

Another Interesting Plot...

...compares average runtimes over several algorithms

Another Interesting Plot...

...compares average runtimes over several algorithms

Another Interesting Plot...

...compares average runtimes over several algorithms

Interesting for 2 Algorithms...

dimensions:
...are scatter plots

Take Home Messages Benchmarking

I hope it became clear...
...that benchmarking is a non-trivial task
...details matter when comparing algorithms
...and that the COCO platform allows for an automated benchmarking and provides data from hundreds of benchmarking experiments

Discrete Optimization

Discrete Optimization

Context discrete optimization:

- discrete variables
- or optimization over discrete structures (e.g. graphs)
- search space often finite, but typically too large for enumeration
- \rightarrow need for smart algorithms

Algorithms for discrete problems:

- typically problem-specific
- but some general concepts are repeatedly used:
- greedy algorithms
- [branch and bound]
- dynamic programming
- randomized search heuristics
before 2 excursions: the O-notation
\& graph theory

Motivation for this Part:

- get an idea of the most common algorithm design principles

Excursion: The O-Notation

Excursion: The O-Notation

Motivation:

- we often want to characterize how quickly a function $f(x)$ grows asymptotically
- e.g. when we say an algorithm takes quadratically many steps (in the input size) to find the optimum of a problem with n (binary) variables, it is most likely not exactly n^{2}, but maybe $n^{2}+1$ or $(n+1)^{2}$

Big-O Notation

should be known, here mainly restating the definition:

Definition 1 We write $f(x)=O(g(x))$ iff there exists a constant $c>0$ and an $x_{0}>0$ such that $|f(x)| \leq c \cdot g(x)$ holds for all $x>x_{0}$
we also view $O(g(x))$ as a set of functions growing at most as quick as $g(x)$ and write $f(x) \in O(g(x))$

Big-O: Examples

- $f(x)+c=O(f(x)) \quad[i f f(x)$ does not go to zero for x to infinity]
- $\quad c \cdot f(x)=O(f(x))$
- $f(x) \cdot g(x)=O(f(x) \cdot g(x))$
- $3 n^{4}+n^{2}-7=O\left(n^{4}\right)$

Intuition of the Big-O:

- if $f(x)=O(g(x))$ then $g(x)$ gives an upper bound (asymptotically) for f

- With Big-O, you should have ' \leq ' in mind
- An algorithm that solves a problem in polynomial time is "efficient"
- An algorithm that solves a problem in exponential time is not
- But be aware:

In practice, often the line between efficient and non-efficient lies
around $n \log n$ or even n (or even $\log n$ in the big data context) and the constants do matter!!!

Excursion: The O-Notation

Further definitions to generalize from ‘ \leq ' to ' \geq ' and ' $=$ ':

- $f(x)=\Omega(g(x))$ if $g(x)=O(f(x))$
- $f(x)=\Theta(g(x))$ if $f(x)=O(g(x))$ and $g(x)=O(f(x))$

Note: extensions to '<' and '>’ exist as well, but are not needed here.

Example:

- Algo A solves problem P in time $\mathrm{O}(\mathrm{n})$
- Algo B solves problem P in time $O\left(n^{2}\right)$
- which one is faster?
only proving upper bounds to compare algorithms is not sufficient!

Excursion: The O-Notation

Further definitions to generalize from ‘ \leq ' to ' \geq ' and ' $=$ ':

- $f(x)=\Omega(g(x))$ if $g(x)=O(f(x))$
- $f(x)=\Theta(g(x))$ if $f(x)=O(g(x))$ and $g(x)=O(f(x))$

Note: extensions to '<' and '>' exist as well, but are not needed here.

Example:

- Algo A solves problem P in time $\mathrm{O}(\mathrm{n})$
- Algo B solves problem P in time (nin $\left.^{2}\right) \Omega\left(n^{2}\right)$
- which one is faster?
only proving upper bounds to compare algorithms is not sufficient!

Exercise O-Notation

(1) Please order the following functions in terms of their asymptotic behavior (from smallest to largest):

- $\exp \left(n^{2}\right)$
- $\log n$
- $\ln n / \ln \ln n$
- n
- $n \log n$
- $\exp (n)$
- In n !
(2) Pick one pair of runtimes and give a formal proof for the relation.

Excursion:

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

Graphs

Definition 1 An undirected graph G is a tupel $G=(V, E)$ of edges $e=\{u, v\} \in$ E over the vertex set V (i.e., $u, v \in V$).

- vertices = nodes
- edges = lines

- Note: edges cover two unordered vertices (undirected graph)
- if they are ordered, we call G a directed graph

Graphs: Basic Definitions

- G is called empty if E empty
- u and v are end vertices of an edge $\{u, v\}$
- Edges are adjacent if they share an end vertex
- Vertices u and v are adjacent if $\{u, v\}$ is in E

Walks, Paths, and Circuits

Definition $1 A$ walk in a graph $G=(V, E)$ is a sequence

$$
v_{i_{0}}, e_{i_{1}}=\left(v_{i_{0}}, v_{i_{1}}\right), v_{i_{1}}, e_{i_{2}}=\left(v_{i_{1}}, v_{i_{2}}\right), \ldots, e_{i_{k}}, v_{i_{k}}
$$

alternating vertices and adjacent edges of G.

A walk is

- closed if first and last node coincide
- a trail if each edge traversed at most once
- a path if each vertex is visited at most once
a closed path is called a circuit or cycle

Graphs: Connectedness

- Two vertices are called connected if there is a walk between them in G
- If all vertex pairs in G are connected, G is called connected
- The connected components of G are the (maximal) subgraphs which are connected.

Trees and Forests

- A forest is a cycle-free graph
- A tree is a connected forest

A spanning tree of a connected graph G is a tree in G which contains all vertices of G

Greedy Algorithms

Greedy Algorithms

From Wikipedia:
"A greedy algorithm is an algorithm that follows the problem solving heuristic of making the locally optimal choice at each stage with the hope of finding a global optimum."

- Note: typically greedy algorithms do not find the global optimum

Lecture Outline Greedy Algorithms

What we will see:

(1) Example 1: Money Change problem
(2) Example 2: Minimal Spanning Trees (MST) and the algorithm of Kruskal

Example 1: Money Change

Change-making problem

- Given n coins of distinct values $w_{1}=1, w_{2}, \ldots, w_{n}$ and a total change W (where $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$, and W are integers).
- Minimize the total amount of coins Σx_{i} such that $\Sigma w_{i} x_{i}=W$ and where x_{i} is the number of times, coin i is given back as change.

Greedy Algorithm

Unless total change not reached:
add the largest coin which is not larger than the remaining amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:

finishing darts (from 501 to 0 with 9 darts)

Example 2: Minimum Spanning Trees (MST)

Minimum Spanning Tree problem:

Given a graph $G=(V, E)$ with edge weights w_{i} for each edge e_{i}.
Find the spanning tree with the smallest weight among all spanning trees.
weight of a spanning tree:

$$
w(T)=\sum_{e_{i} \text { in } T} w_{i}
$$

Applications

Setting up a new wired telecommunication/water supply/electricity network
Constructing minimal delay trees for broadcasting in networks

Kruskal's Algorithm: Idea

Algorithm, see [1]

- Create forest $F=(\mathrm{V},\{ \})$ with n components and no edge
- Put sorted edges (such that w.l.o.g. $\mathrm{w}_{1}<\mathrm{w}_{2}<\ldots<\mathrm{w}_{|\mathrm{E}|}$) into set S
- While S non-empty and F not spanning:
- delete cheapest edge from S
- add it to F if no cycle is introduced
[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the traveling salesman problem". Proceedings of the American Mathematical Society 7: 48-50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal's Algorithm: Example

Kruskal's Algorithm: Example

Kruskal's Algorithm: Runtime Considerations

First question: how to implement the algorithm?

- sorting of edges needs $\mathrm{O}(|\mathrm{E}| \log |\mathrm{E}|)$

Algorithm

Create forest $\mathrm{F}=(\mathrm{V},\{ \})$ with n components and no edge
Put sorted edges (such that wh $\mathrm{w}_{1}<\mathrm{w}_{2}<\ldots<\mathrm{w}_{|\mathrm{E}|}$) into set S While S non-empty and not spanning.

forest implementation:
Disjoint-set data structure

Disjoint-set Data Structure ("Union\&Find")

Data structure: ground set $1 \ldots \mathrm{~N}$ grouped to disjoint sets Operations:

- FIND(i): to which set does i belong?
- UNION(i, j): union the sets of i and j !

Implemented as trees:

- UNION(T1, T2): hang root node of smaller tree under root node of larger tree (constant time), thus
- FIND(u): traverse tree from u to root (to return a representative of u's set) takes logarithmic time in total number of nodes

Implementation of Kruskal's Algorithm

Algorithm, rewritten with UNION-FIND:

- Create initial disjoint-set data structure, i.e. for each vertex v_{i}, store v_{i} as representative of its set
- Create empty forest $F=\{ \}$
- Sort edges such that w.l.o.g. $\mathrm{w}_{1}<\mathrm{w}_{2}<\ldots<\mathrm{w}_{|\mathrm{E}|}$
- for each edge $e_{i}=\{u, v\}$ starting from $i=1$:
- if FIND(u) \neq FIND(v): \# no cycle introduced?
- $F=F \cup\{\{u, v\}\}$
- UNION(u,v)
- return F

Back to Runtime Considerations

- Sorting of edges needs $\mathrm{O}(|\mathrm{E}| \log |\mathrm{E}|)$
- forest: Disjoint-set data structure
- initialization: O(|V|)
- $\log |\mathrm{V}|$ to find out whether the minimum-cost edge $\{u, v\}$ connects two sets (no cycle induced) or is within a set (cycle would be induced)
- $2 x$ FIND + potential UNION needs to be done $\mathrm{O}(|\mathrm{E}|)$ times
- total $O(|E| \log |V|)$
- Overall: O(|E| $\log |E|)$

Kruskal's Algorithm: Proof of Correctness

Two parts needed:

(1) Algo always produces a spanning tree
final F contains no cycle and is connected by definition
2 Algo always produces a minimum spanning tree

- argument by induction
- P : If F is forest at a given stage of the algorithm, then there is some minimum spanning tree that contains F.
- clearly true for $\mathrm{F}=(\mathrm{V},\{ \})$
- assume that P holds when new edge e is added to F and be T a MST that contains F
- if e in T, fine
- if e not in T: T + e has cycle C with edge f in C but not in F (otherwise e would have introduced a cycle in F)
- now $T-f+e$ is a tree with same weight as T (since T is a MST and f was not chosen to F)
- hence $T-f+e$ is MST including $F+e$ (i.e. P holds)

Conclusion Greedy Algorithms I

What we have seen so far:

- two problems where a greedy algorithm was optimal
- money change
- minimum spanning tree (Kruskal's algorithm)
- but also: greedy not always optimal
- for some sets of coins for example

Obvious Question: when is greedy good?
Answer: if the problem is a matroid (no further details here)
From Wikipedia: [...] a matroid is a structure that captures and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid, the most significant being in terms of independent sets, bases, circuits, closed sets or flats, closure operators, and rank functions.

Conclusions Greedy Algorithms II

I hope it became clear...
...what a greedy algorithm is
...that it not always results in the optimal solution
...but that it does if and only if the problem is a matroid

Dynamic Programming

Dynamic Programming

Wikipedia:

"[...] dynamic programming is a method for solving a complex problem by breaking it down into a collection of simpler subproblems."

But that's not all:

- dynamic programming also makes sure that the subproblems are not solved too often but only once by keeping the solutions of simpler subproblems in memory ("trading space vs. time")
- it is an exact method, i.e. in comparison to the greedy approach, it always solves a problem to optimality

Note:

the reason why the approach is called "dynamic programming" is historical: at the time of invention by Richard Bellman, no computer "program" existed

Two Properties Needed

Optimal Substructure
A solution can be constructed efficiently from optimal solutions of sub-problems

Overlapping Subproblems
Wikipedia: "[...] a problem is said to have overlapping subproblems if the problem can be broken down into subproblems which are reused several times or a recursive algorithm for the problem solves the same subproblem over and over rather than always generating new subproblems."

Note: in case of optimal substructure but independent subproblems, often greedy algorithms are a good choice; in this case, dynamic programming is often called "divide and conquer" instead

Main Idea Behind Dynamic Programming

Main idea: solve larger subproblems by breaking them down to smaller, easier subproblems in a recursive manner

Typical Algorithm Design:

(1) decompose the problem into subproblems and think about how to solve a larger problem with the solutions of its subproblems
(2) specify how you compute the value of a larger problem recursively with the help of the optimal values of its subproblems ("Bellman equation")
(3) bottom-up solving of the subproblems (i.e. computing their optimal value), starting from the smallest by using the Bellman equality and a table structure to store the optimal values (top-down approach also possible, but less common)
(4) eventually construct the final solution (can be omitted if only the value of an optimal solution is sought)

Lecture Outline Dynamic Programming (DP)

What we will see:

(1) Example 1: The All-Pairs Shortest Path Problem
(2) Example 2: The knapsack problem

Example 1: The Shortest Path Problem

Shortest Path problem:

Given a graph $G=(V, E)$ with edge weights w_{i} for each edge e_{i}. Find the shortest path from a vertex v to a vertex u, i.e., the path $\left(v, e_{1}=\left\{v, v_{1}\right\}, v_{1}, \ldots, v_{k}, e_{k}=\left\{v_{k}, u\right\}, u\right.$) such that $w_{1}+\ldots+w_{k}$ is minimized.

Obvious Applications

Google maps
Autonomous cars
Finding routes for packages in a computer network

Example 1: The Shortest Path Problem

Shortest Path problem:

Given a graph $G=(V, E)$ with edge weights w_{i} for each edge e_{i}. Find the shortest path from a vertex v to a vertex u, i.e., the path $\left(v, e_{1}=\left\{v, v_{1}\right\}, v_{1}, \ldots, v_{k}, e_{k}=\left\{v_{k}, u\right\}, u\right)$ such that $w_{1}+\ldots+w_{k}$ is minimized.

Note:

We can often assume that the edge weights are stored in a distance matrix D of dimension $|E| x|E|$ where
 an entry $D_{i, j}$ gives the weight between nodes i and j and "nonedges" are assigned a value of ∞

Why important? \Rightarrow determines input size

Opt. Substructure and Overlapping Subproblems

Optimal Substructure
The optimal path from u to v, if it contains another vertex p can be constructed by simply joining the optimal path from u to p with the optimal path from p to v .

Overlapping Subproblems Optimal shortest sub-paths can be reused when computing longer paths:
 e.g. the optimal path from u to p is contained in the optimal path from u to q and in the optimal path from u to v .

The All Pairs Shortest Paths Problem

All Pairs Shortest Path problem:

Given a graph $G=(V, E)$ with edge weights w_{i} for each edge e_{i}. Find the shortest path from each source vertex v to each other target vertex u, i.e., the paths $\left(v, e_{1}=\left\{v, v_{1}\right\}, v_{1}, \ldots, v_{k}, e_{k}=\left\{v_{k}, u\right\}, u\right)$ such that $w_{1}+\ldots+w_{k}$ is minimized for all pairs (u, v) in V^{2}.

The Algorithm of Robert Floyd (1962)

Idea:

- if we knew that the shortest path between source and target goes through node v, we would be able to construct the optimal path from the shorter paths "source $\rightarrow v$ " and " $v \rightarrow$ target"
- subproblem $\mathrm{P}(\mathrm{k})$: compute all shortest paths where the intermediate nodes can be chosen from $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$

AllPairsShortestPathFloyd(G, D)

- Init: for all $1 \leq \mathrm{i}, \mathrm{j} \leq|\mathrm{V}|$: $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\mathrm{D}_{\mathrm{i}, \mathrm{j}}$
- For $k=1$ to $/ V / \quad \#$ solve subproblems $P(k)$
- for all pairs of nodes (i.e. $1 \leq i, j \leq|V|)$:
- $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

Note: Bernard Roy in 1959 and Stephen Warshall in 1962 essentially proposed the same algorithm independently.

Example

Example

$k=0$	1	2	3	4	$\mathbf{5}$
1	∞	2	∞	∞	∞
2	∞	∞	9	-1	∞
$\mathbf{3}$	7	∞	∞	∞	∞
4	-1	∞	∞	∞	3
$\mathbf{5}$	∞	∞	5	∞	∞

Example

for all pairs of nodes (i.e. $1 \leq \mathrm{i}, \mathrm{j} \leq|\mathrm{V}|$): $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

allow 1 as intermediate node

$\mathbf{k}=0$	1	2	3	4	5	$\mathrm{k}=1$	1	2	3	4	5
1	∞	2	∞	∞	∞	1					
2	∞	∞	9	-1	∞	2					
3	7	∞	∞	∞	∞	3					
4	-1	∞	∞	∞	3	4					
5	∞	∞	5	∞	∞	5					

Example

for all pairs of nodes (i.e. $1 \leq i, j \leq|V|$): $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

allow 1 as intermediate node

$\mathrm{k}=0$	1	2	3	4	5	$\mathrm{k}=1$	1	2	3	4	5
1	∞	2	∞	∞	∞	1					
2	∞	∞ 9 -1 ∞ 2									
3	-	∞	∞	∞	∞	3					
4	1	∞	∞	∞	3	4					
5	∞	∞	5	∞	∞	5					

Example

for all pairs of nodes (i.e. $1 \leq \mathrm{i}, \mathrm{j} \leq|\mathrm{V}|$): $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

allow 1 as intermediate node

$\mathrm{k}=0$	1	2	3	4	5	$\mathrm{k}=1$	1	2	3	4	5
1	∞	2	∞	∞	∞	1					
2	∞	∞ 9 -1 ∞ 2									
3	-	∞	∞	∞	∞	3					
4	-	∞	∞	∞	3	4					
5	∞	∞	5	∞	∞	5					

Example

for all pairs of nodes (i.e. $1 \leq i, j \leq|V|$): $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

allow 1 as intermediate node

$\mathrm{k}=0$	1	2	3	4	5	$\mathrm{k}=1$	1	2	3	4	5
1	∞	2	∞	∞	∞	1					
2	∞	∞	9	-1	∞	2					
3	-	∞	∞	∞	∞	3		9			
4	-	∞	∞	∞	3	4		1			
5	∞	∞	5	∞	∞	5					

Example

for all pairs of nodes (i.e. $1 \leq i, j \leq|V|$): $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

allow 1 as intermediate node

$\mathrm{k}=0$	1	2	3	4	5	$\mathrm{k}=1$	1	2	3	4	5
1	∞	2	∞	∞	∞	1	∞	2	∞	∞	∞
2	∞	∞	9	-1	∞	2	∞	∞	9	-1	∞
3	-	∞	∞	∞	∞	3	7	9	∞	∞	∞
4	-	∞	∞	∞	3	4	-1	1	∞	∞	3
5	∞	∞									

Example

for all pairs of nodes (i.e. $1 \leq \mathrm{i}, \mathrm{j} \leq|\mathrm{V}|$): $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

allow 1 \& 2 as intermediate nodes

$\mathrm{k}=1$	1	2	3	4	5	$\mathrm{k}=2$	1	2	3	4	5
1	∞	2	∞	∞	∞	1	∞	2	∞	∞	∞
2	∞	∞	9	-1	∞	2	∞	∞	9	-1	∞
3	7	9	∞	∞	∞	3	7	9	∞	∞	∞
4	-1	1	∞	∞	3	4	-1	1	∞	∞	3
5	∞	∞									

Example

for all pairs of nodes (i.e. $1 \leq i, j \leq|V|$): $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

allow $1 \& 2$ as intermediate nodes

$\mathrm{k}=1$	1	2	3	4	5	$\mathrm{k}=2$	1	2	3	4	5
1	∞	∞	∞	∞	1	∞	2	∞	∞	∞	
2	∞	∞	∞	∞	∞	2	∞	∞	9	-1	∞
3	1	9	∞	∞	∞	3	7	9	∞	∞	∞
4	-1		∞	∞	3	4	-1	1	∞	∞	3
5	∞	∞									

Example

for all pairs of nodes (i.e. $1 \leq i, j \leq|V|$): $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

allow $1 \& 2$ as intermediate nodes

$\mathrm{k}=1$	1	2	3	4	5	$\mathrm{k}=2$	1	2	3	4	5
1			∞	∞	∞	1	∞	2	11	1	∞
2	∞				∞	2	∞	∞	9	-1	∞
3	7		∞	∞	∞	3	7	9	18	8	∞
4	1		∞	∞	3	4	-1	1	10	0	3
5	∞	∞									

Example

for all pairs of nodes (i.e. $1 \leq i, j \leq|V|$): $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

allow $\{1,2,3\}$ as intermediate nodes

$\mathrm{k}=2$	1	2	3	4	5	$\mathrm{k}=3$	1	2	3	4	5
1	∞	2	11	1	∞	1	∞	2	11	1	∞
2	∞	∞	9	-1	∞	2	∞	∞	9	-1	∞
3	7	9	18	8	∞	3	7	9	18	8	∞
4	-1	1	10	0	3	4	-1	1	10	0	3
5	∞	∞									

Example

for all pairs of nodes (i.e. $1 \leq i, j \leq|V|$): $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

allow $\{1,2,3\}$ as intermediate nodes

$\mathrm{k}=2$	1	2	3	4	5	$\mathrm{k}=3$	1	2	3	4	5
$\mathbf{1}$	∞	2	11	1	∞	1			11		∞
2	∞	∞	9	-1	∞	2			9		∞
3	7	9	18	8	∞	3	7	9	18	8	∞
4	-1	1	10	0	3	4			10		3
5	∞	∞	5	∞	∞	5			5		∞

Example

for all pairs of nodes (i.e. $1 \leq i, j \leq|V|$): $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

allow $\{1,2,3\}$ as intermediate nodes

$\mathrm{k}=2$	1	2	3	4	5	$\mathrm{k}=3$	1	2	3	4	5
1	∞	2	11	1	∞	1	18	2	11	1	∞
2	∞	∞	9	-1	∞	2	16	18	9	-1	∞
3	7	9	18	8	∞	3	7	9	18	8	∞
4	-1	1	10	0	3	4	-1	1	10	0	3
5	∞	∞	5	∞	∞	5	12	14	5	13	∞

Example

for all pairs of nodes (i.e. $1 \leq i, j \leq|V|$): $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

allow $\{1,2,3,4\}$ as intermediate nodes

$\mathrm{k}=3$	1	2	3	4	5	$\mathrm{k}=4$	1	2	3	4	5
1	18	2	11	1	∞	1	18	2	11	1	∞
2	16	18	9	-1	∞	2	16	18	9	-1	∞
3	7	9	18	8	∞	3	7	9	18	8	∞
4	-1	1	10	0	3	4	-1	1	10	0	3
5	12	14	5	13	∞	5	12	14	5	13	∞

Example

for all pairs of nodes (i.e. $1 \leq i, j \leq|V|$): $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

allow $\{1,2,3,4\}$ as intermediate nodes

$\mathbf{k}=3$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{k}=4$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	18	2	11	1	∞	1				1	
$\mathbf{2}$	16	18	9	-1	∞	2				-1	
$\mathbf{3}$	7	9	18	8	∞	3				8	
4	-1	1	10	0	3	4	-1	1	10	0	3
$\mathbf{5}$	12	14	5	13	∞	$\mathbf{5}$				13	

Example

for all pairs of nodes (i.e. $1 \leq i, j \leq|V|$): $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

allow $\{1,2,3,4\}$ as intermediate nodes

$\mathbf{k}=3$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathrm{k}=4$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	18	2	11	1	∞	$\mathbf{1}$	0	2	11	1	4
$\mathbf{2}$	16	18	9	-1	∞	2	-2	0	9	-1	2
$\mathbf{3}$	7	9	18	8	∞	3	7	9	18	8	11
4	-1	1	10	0	3	4	-1	1	10	0	3
$\mathbf{5}$	12	14	5	13	∞	5	12	14	5	13	16

Example

for all pairs of nodes (i.e. $1 \leq i, j \leq|V|$): $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

allow all nodes as intermediate nodes

$\mathrm{k}=4$	1	2	3	4	5	$\mathrm{k}=5$	1	2	3	4	5
1	0	2	11	1	4	1	0	2	11	1	4
2	-2	0	9	-1	2	2	-2	0	9	-1	2
3	7	9	18	8	11	3	7	9	18	8	11
4	-1	1	10	0	3	4	-1	1	10	0	3
5	12	14	5	13	16	5	12	14	5	13	16

Example

for all pairs of nodes (i.e. $1 \leq i, j \leq|V|$): $\operatorname{dist}(\mathrm{i}, \mathrm{j})=\min \{\operatorname{dist}(\mathrm{i}, \mathrm{j}), \operatorname{dist}(\mathrm{i}, \mathrm{k})+\operatorname{dist}(\mathrm{k}, \mathrm{j})\}$

allow all nodes as intermediate nodes

$\mathrm{k}=4$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	$\mathrm{k}=5$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	0	2	11	1	4	$\mathbf{1}$	0	2	9	1	4
$\mathbf{2}$	-2	0	9	-1	2	2	-2	0	7	-1	2
$\mathbf{3}$	7	9	18	8	11	3	7	9	16	8	11
$\mathbf{4}$	-1	1	10	0	3	4	-1	1	8	0	3
5	12	14	5	13	16	5	12	14	5	13	16

Runtime Considerations and Correctness

$\mathrm{O}\left(|\mathrm{V}|^{3}\right)$ easy to show

- $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ many distances need to be updated $\mathrm{O}(|\mathrm{V}|)$ times

Correctness

- given by the Bellman equation

$$
\operatorname{dist}(i, j)=\min \{\operatorname{dist}(i, j), \operatorname{dist}(i, k)+\operatorname{dist}(k, j)\}
$$

- only correct if cycles do not have negative total weight (can be checked in final distance matrix if diagonal elements are negative)

But How Can We Actually Construct the Paths?

- Construct matrix of predecessors P alongside distance matrix - $\quad P_{i, j}(k)=$ predecessor of node j on path from ito j (at algo. step k) - no extra costs (asymptotically)

$$
\begin{gathered}
P_{i, j}(0)= \begin{cases}0 & \text { if } i=j \text { or } d_{i, j}=\infty \\
i & \text { in all other cases }\end{cases} \\
P_{i, j}(k)= \begin{cases}P_{i, j}(k-1) & \text { if } \operatorname{dist}(i, j) \leq \operatorname{dist}(i, k)+\operatorname{dist}(k, j) \\
P_{k, j}(k-1) & \text { if } \operatorname{dist}(i, j)>\operatorname{dist}(i, k)+\operatorname{dist}(k, j)\end{cases}
\end{gathered}
$$

Example 2: The Knapsack Problem (KP)

Knapsack Problem

$$
\begin{array}{ll}
\max . & \sum_{j=1}^{n} p_{j} x_{j} \text { with } x_{j} \in\{0,1\} \\
& \text { s.t. } \sum_{j=1}^{n} w_{j} x_{j} \leq W
\end{array}
$$

Opt. Substructure and Overlapping Subproblems

Consider the following subproblem:
$P(i, j)$: optimal profit when packing the first i items into a knapsack of size j

Optimal Substructure

The optimal choice of whether taking item i or not can be made easily for a knapsack of weight j if we know the optimal choice for items $1 \ldots i-1$:

$$
P(i, j)=\left\{\begin{array}{cc}
0 & \text { if } i=0 \text { or } j=0 \\
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Overlapping Subproblems

a recursive implementation of the Bellman equation is simple, but the $P(i, j)$ might need to be computed more than once!

Dynamic Programming Approach to the KP

To circumvent computing the subproblems more than once, we can store their results (in a matrix for example)...
knapsack weight

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits $(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

P(i,j)	0	1	2	3	4	5	6	7	8	9	10	11
0												
1												
2												
3												
4												
5												

initialization:

$$
P(i, j)=0 \text { if } i=0 \text { or } j=0
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

P(i,j)	0	1			3	4	5		6	7	8	9	10	11
0	0	0			0	0	0		0	0	0	0	0	0
1	0													
2	0													
3	0													
4	0													
5	0													

initialization:

$$
P(i, j)=0 \text { if } i=0 \text { or } j=0
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

P(i, $)^{\text {a }}$	0	1	2		3	4	5	6	7	8	9	10	11
0	0	0	0		0	0	0	0	0	0	0	0	0
1	0												
2	0												
3	0												
4	0												
5	0												

for $i=1$ to n :
for $j=1$ to W :

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

P(i, ${ }^{\text {) }}$	0	1	2	3			5	6	7	8	10	11
0	0	0	0	0		0	0	0	0	0	0	0
1	0	0										
2	0											
3	0											
4	0											
5	0											

for $i=1$ to n :
for $j=1$ to W :

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

P(i, ${ }^{\text {) }}$	0	1	2	3	4	5		6	7	8	9	10	11
0	0	0	0	0	0	0		0	0	0	0	0	0
1	0	0	0										
2	0												
3	0												
4	0												
5	0												

for $i=1$ to n :
for $j=1$ to W :

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

$\mathrm{P}(\mathrm{i}, \mathrm{j})$	0	1	2	3		5	6	7	8	9	10	11
0	0	0	0	0		0	0	0	0	0	0	0
1	0	0	0	0								
2	0											
3	0											
4	0											
5	0											

for $i=1$ to n :
for $j=1$ to W :

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

P(i, ${ }^{\text {) }}$	0	1	2	3	4		5	6	7	8	9	10	11
0	0	0	0	0	0		0	0	0	0	0	0	0
1	0	0	0	0			4						
2	0												
3	0												
4	0												
5	0												

for $i=1$ to n :
for $j=1$ to W :

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

for $i=1$ to n :
for $j=1$ to W :

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

P(i, ${ }^{\text {) }}$	0	1	2	3		4	5	6	7	8		10	11
0	0	0	0	0		0	0	0	0	0		0	0
1	0	0	0	0		0	4	4	4	4		4	4
2	0												
3	0												
4	0												
5	0												

for $i=1$ to n :
for $j=1$ to W :

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

P(i, $\mathrm{j}^{\text {a }}$	0	1	2	3	4	5	6	7	8	11
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	4	4	4	4	4
2	0	0	0	0	0	4	4			
3	0									
4	0									
5	0									

for $i=1$ to n :

$$
\text { for } j=1 \text { to } W \text { : }
$$

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

for $i=1$ to n :
for $j=1$ to W :

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

P(i, $\mathrm{j}^{\text {a }}$	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	4	4	4	4	4	4	4
2	0	0	0	0	0	4	4	10	10	10	10	10
3	0											
4	0											
5	0											

for $i=1$ to n :

$$
\text { for } j=1 \text { to } W \text { : }
$$

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

P(i, $\mathrm{j}^{\text {a }}$	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	4	4	4	4	4	4	4
2	0	0	0	0	0	4	4	10	10	10	10	10
3	0	0	3	3	3							
4	0											
5	0											

for $i=1$ to n :

$$
\text { for } j=1 \text { to } W \text { : }
$$

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

P(i, ${ }^{\text {) }}$	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	4	4	4	4	4	4	4
2	0	0	0	0	0	\uparrow^{4}	4	10	10	10	10	10
3	0	0	3	3	3	4						
4	0											
5	0											

for $i=1$ to n :
for $j=1$ to W :

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

P(i, $\mathrm{j}^{\text {a }}$	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	4	4	4	4	4	4	4
2	0	0	0	0	0	4	4	10	10	10	10	10
3	0	0	3	3	3	${ }_{3}^{4}$						
4	0											
5	0											

for $i=1$ to n :

$$
\text { for } j=1 \text { to } W \text { : }
$$

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

P(i, ${ }^{\text {) }}$	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	4	4	4	4	4	4	4
2	0	0	0	0	0	4	4	10	10	10	10	10
3	0	0	3	3	3	4	4	10	etc.			
4	0											
5	0											

for $i=1$ to n :

$$
\text { for } j=1 \text { to } W \text { : }
$$

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

P(i, $\mathrm{j}^{\text {a }}$	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	4	4	4	4	4	4	4
2	0	0	0	0	0	4	4	10	10	10	10	10
3	0	0	3	3	3	4	4	10	10	13	1	13
4	0	0	3	3	5	5	8	10	10	13	13	15
5	0	0	3	3	5	6	8	10	10	13	13	15

for $i=1$ to n :

$$
\text { for } j=1 \text { to } W \text { : }
$$

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
$(5,4),(7,10),(2,3),(4,5)$, and $(3,3)$. Weight restriction is $W=11$.
knapsack weight

P(i,j)	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	4	4	4	4	4	4	4
2	0	0	0	0	0	4	4	10	10	10	10	10
3	0	0	3	3	3	4	4	10	10	13	13	13
4	0	0	3	3	5	5	8	10	10	13	13	15
5	0	0	3	3	5	6	8	10	10	13	13	15

for $i=1$ to n :

$$
\text { for } j=1 \text { to } W \text { : }
$$

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Dynamic Programming Approach to the KP

Question: How to obtain the actual packing?
Answer: we just need to remember where the max came from!
knapsack weight

P(i,j)	0	1	2	3	4	5	6	7	8	9	10	11
0	$\begin{aligned} & 0 \\ & x_{1}=0 \\ & 0 \\ & 0 \end{aligned}$		0	0	0	0	0	0	0	0	0	0
1			0	0	$x_{2}=4$		4	4	4	4	4	4
2	0	0	0	0	0	4		10	010	10	10	10
3	0	0	3	3	3	4	4	40	10	13	13	13
4	0	0	3	3	5	5	8	10	10	13		15
5	0	0	3	3	5	6	8	10	10	13	13	15

for $i=1$ to n :

$$
\text { for } j=1 \text { to } W \text { : }
$$

$$
P(i, j)=\left\{\begin{array}{cc}
P(i-1, j) & \text { if } w_{i}>j \\
\max \left\{P(i-1, j), p_{i}+P\left(i-1, j-w_{i}\right)\right\} & \text { if } w_{i} \leq j
\end{array}\right.
$$

Conclusions

I hope it became clear...
...what the algorithm design ideas of dynamic programming are ...and for which problem types it is supposed to be suitable

(Randomized) Search Heuristics

Motivation General Search Heuristics

- often, problem complicated and not much time available to develop a problem-specific algorithm
- search heuristics are a good choice:
- relatively easy to implement
- easy to adapt/change/improve
- e.g. when the problem formulation changes in an early product design phase
- or when slightly different problems need to be solved over time
- randomized/stochastic algorithms are a good choice because they are robust to noise

Lecture Outline Randomized Search Heuristics

Which algorithms will we touch?
© Randomized Local Search (RLS)
(2) Variable Neighborhood Search (VNS)
© Tabu Search (TS)
(4) Evolutionary Algorithms (EAs)

Neighborhoods

For most (stochastic) search heuristics, we need to define a neighborhood structure

- which search points are close to each other?

Example: k-bit flip / Hamming distance k neighborhood

- search space: bitstrings of length $n\left(\Omega=\{0,1\}^{n}\right)$
- two search points are neighbors if their Hamming distance is k
- in other words: x and y are neighbors if we can flip exactly k bits in x to obtain y
- 0001001101 is neighbor of 0001000101 for $\mathrm{k}=1$ 0101000101 for k=2 1101000101 for $k=3$

Neighborhoods II

Example: possible neighborhoods for the knapsack problem

- search space again bitstrings of length $n\left(\Omega=\{0,1\}^{n}\right)$
- Hamming distance 1 neighborhood:
- add an item or remove it from the packing
- replacing 2 items neighborhood:
- replace one chosen item with an unchosen one
- makes only sense in combination with other neighborhoods because the number of items stays constant
- Hamming distance 2 neighborhood on the contrary:
- allows to change 2 arbitrary items, e.g.
- add 2 new items
- remove 2 chosen items
- or replace one chosen item with an unchosen one

Randomized Local Search (RLS)

Idea behind (Randomized) Local Search:

- explore the local neighborhood of the current solution (randomly)

Pure Random Search:

- go to randomly chosen neighbor

First Improvement Local Search:

- go to first (randomly) chosen neighbor which is better

Best Improvement strategy:

- always go to the best neighbor
- not random anymore
- computationally expensive if neighborhood large

Variable Neighborhood Search

Main Idea: [Mladenovic and P. Hansen, 1997]

- change the neighborhood from time to time
- local optima are not the same for different neighborhood operators
- but often close to each other
- global optimum is local optimum for all neighborhoods
- rather a framework than a concrete algorithm
- e.g. deterministic and stochastic neighborhood changes
- typically combined with (i) first improvement, (ii) a random order in which the neighbors are visited and (iii) restarts
N. Mladenovic and P. Hansen (1997). "Variable neighborhood search". Computers and Operations Research 24 (11): 1097-1100.

Tabu Search

Disadvantages of local searches (with or without varying neighborhoods)

- they get stuck in local optima
- have problems to traverse large plateaus of equal objective function value ("random walk")

Tabu search addresses these by

- allowing worsening moves if all neighbors are explored
- introducing a tabu list of temporarily not allowed moves
- those restricted moves are
- problem-specific and
- can be specific solutions or not permitted "search directions" such as "don't include this edge anymore" or "do not flip this specific bit"
- the tabu list is typically restricted in size and after a while, restricted moves are permitted again

Stochastic Optimization Algorithms

One class of (bio-inspired) stochastic optimization algorithms: Evolutionary Algorithms (EAs)

- Class of optimization algorithms originally inspired by the idea of biological evolution
- selection, mutation, recombination

Metaphors

Classical Optimization

Evolutionary Computation

variables or parameters
candidate solution
vector of decision variables /
design variables / object
variables
set of candidate solutions population
objective function
loss function
cost function
error function
iteration generation

Generic Framework of an EA

stochastic operators
"Darwinism"
stopping criteria

Important:

representation (search space)

The Historic Roots of EAs

Genetic Algorithms (GA)
J. Holland 1975 and D. Goldberg (USA)

$$
\Omega=\{0,1\}^{n}
$$

Evolution Strategies (ES)
I. Rechenberg and H.P. Schwefel, 1965 (Berlin)

$$
\Omega=\mathbb{R}^{n}
$$

Evolutionary Programming (EP)

$$
\text { L.J. Fogel } 1966 \text { (USA) }
$$

Genetic Programming (GP)
J. Koza 1990 (USA)
$\Omega=$ space of all programs
nowadays one umbrella term: evolutionary algorithms

Genotype - Phenotype mapping

The genotype - phenotype mapping

- related to the question: how to come up with a fitness ("quality") of each individual from the representation?
- related to DNA vs. actual animal (which then has a fitness)
fitness of an individual not always $=f(x)$
- include constraints
- include diversity
- others
- but needed: always a total order on the solutions

Handling Constraints

Several possible ways to handle constraints, e.g.:

- resampling until a new feasible point is found ("often bad idea")
- penalty function approach: add constraint violation term (potentially scaled)
- repair approach: after generation of a new point, repair it (e.g. with a heuristic) to become feasible again if infeasible
- continue to use repaired solution in the population or
- use repaired solution only for the evaluation?
- multiobjective approach: keep objective function and constraint functions separate and try to optimize all of them in parallel

Examples for some EA parts

Selection

Selection is the major determinant for specifying the trade-off between exploitation and exploration

Selection is either
stochastic
or

Disadvantage:
depends on scaling of f
e.g. via a tournament

Mating selection (selection for variation): usually stochastic
Environmental selection (selection for survival): often deterministic

Variation Operators

Variation aims at generating new individuals on the basis of those individuals selected for mating

Variation $=$ Mutation and Recombination/Crossover
mutation: \quad mut: $\Omega \rightarrow \Omega$
recombination: recomb: $\Omega^{r} \rightarrow \Omega^{s}$ where $r \geq 2$ and $s \geq 1$

- choice always depends on the problem and the chosen representation
- however, there are some operators that are applicable to a wide range of problems and tailored to standard representations such as vectors, permutations, trees, etc.

Variation Operators: Guidelines

Two desirable properties for mutation operators:

- every solution can be generation from every other with a probability greater than 0 ("exhaustiveness")
- $d\left(x, x^{\prime}\right)<d\left(x, x^{\prime \prime}\right)=>\operatorname{Prob}\left(\operatorname{mut}(x)=x^{\prime}\right)>\operatorname{Prob}\left(\operatorname{mut}(x)=x^{\prime \prime}\right)$ ("locality")

Desirable property of recombination operators ("in-between-ness"):

$$
x^{\prime \prime}=\operatorname{recomb}\left(x, x^{\prime}\right) \Rightarrow d\left(x^{\prime \prime}, x\right) \leq d\left(x, x^{\prime}\right) \wedge d\left(x^{\prime \prime}, x^{\prime}\right) \leq d\left(x, x^{\prime}\right)
$$

Examples of Mutation Operators on Permutations

Swap:

Scramble:

Invert:

Insert:

Examples of Recombination Operators: $\{0,1\}^{n}$

1-point crossover

n-point crossover

uniform crossover

choose each bit independently from one parent or another

A Canonical Genetic Algorithm

- binary search space, maximization
- uniform initialization
- generational cycle: of the population
- evaluation of solutions
- mating selection (e.g. roulette wheel)
- crossover (e.g. 1-point)
- environmental selection (e.g. plus-selection)

Conclusions

- EAs are generic algorithms (randomized search heuristics, meta-heuristics, ...) for black box optimization no or almost no assumptions on the objective function
- They are typically less efficient than problem-specific (exact) algorithms (in terms of \#funevals) less differences in the continuous case (as we have seen)
- Allow for an easy and rapid implementation and therefore to find good solutions fast
easy to incorporate (and recommended!) to incorporate problem-specific knowledge to improve the algorithm

Conclusions

I hope it became clear...
...that heuristics is what we typically can afford in practice (no guarantees and no proofs)
...what are the main ideas behind evolutionary algorithms
...and that evolutionary algorithms and genetic algorithms are no synonyms

