
Introduction to Optimization

Lectures 5&6: Benchmarking + Discrete Optimization

October 30 and November 15, 2019

TC2 - Optimisation

Université Paris-Saclay

Anne Auger and Dimo Brockhoff

Inria Saclay – Ile-de-France

2TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 2

Date Topic

Fri, 27.9.2019 DB Introduction

Fri, 4.10.2019

(4hrs)

AA Continuous Optimization I: differentiability, gradients,

convexity, optimality conditions

Fri, 11.10.2019

(4hrs)

AA Continuous Optimization II: constrained optimization,

gradient-based algorithms, stochastic gradient

Fri, 18.10.2019

(4hrs)

DB Continuous Optimization III: stochastic algorithms,

derivative-free optimization, critical performance

assessment [1st written test]

Wed, 30.10.2019 DB Benchmarking + Discrete Optimization I: graph theory,

greedy algorithms

Fri, 15.11.2019 DB Discrete Optimization II: dynamic programming,

heuristics [2nd written test]

Fri, 22.11.2018 final exam

Course Overview

3TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 3

CMA-ES as a stochastic search algorithm:

1) What’s the underlying probability distribution?

2) How to update the mean?

3) When the progress is slower than expected, then …

4) When the progress is faster than expected, then …

5) With respect to which transformations is CMA-ES invariant?

6) How does the

constant stepsize

(1+1)-ES looks

like on this graph?

Little Quiz (not graded)

4TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 4

Little Quiz II (also not graded)

from [Hansen, p. 93]

7) Is the function, optimized by CMA-ES here, separable?

5TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 5

Benchmarking Optimization Algorithms

or: critical performance assessment

6TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 6

challenging optimization problems

appear in many

scientific, technological and industrial domains

7TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 7

Given:

Not clear:

which of the many algorithms should I use on my
problem?

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Practical (Numerical) Blackbox Optimization

derivatives not available or not useful

8TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 8

• understanding of algorithms

• algorithm selection

• putting algorithms to a standardized test
• simplify judgement

• simplify comparison

• regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

• choosing (and implementing) problems, performance
measures, visualization, stat. tests, ...

• running a set of algorithms

Need: Benchmarking

9TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 9

Do you remember the last Exercise?

How would you compare algorithms?

assumptions:

• continuous search space ℝ𝑛

• blackbox scenario w/o constraints

• two algorithms

a) Define a concrete experimental setup

• What to do if I want to compare algorithms A and B?

• Which experiment parameters you have to decide on?

b) What would you display to compare the performance?

c) Generalize

• arbitrary search space

• constraints

• any number of algorithms

• deterministic vs. stochastic algorithms

10TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 10

wouldn’t

automatized benchmarking
be cool?

11TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 11

for this, we developed COCO

Comparing Continuous Optimizers Platform

https://github.com/numbbo/coco

12TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 12

benchmarking is non-trivial

13TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 13

hence, COCO implements a

reasonable, well-founded, and

well-documented

pre-chosen methodology

14TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 14

How to benchmark algorithms

with COCO?

15TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 15

https://github.com/numbbo/coco

16TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 16

https://github.com/numbbo/coco

17TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 17

https://github.com/numbbo/coco

18TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 18

https://github.com/numbbo/coco

19TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 19

https://github.com/numbbo/coco

20TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 20

https://github.com/numbbo/coco

21TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 21

https://github.com/numbbo/coco

22TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 22

requirements

& download

https://github.com/numbbo/coco

23TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 23

installation I: experiments

https://github.com/numbbo/coco

24TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 24

installation II: postprocessing

https://github.com/numbbo/coco

25TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 25

coupling algo + COCO

https://github.com/numbbo/coco

26TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 26

Simplified Example Experiment in Python
import cocoex

import scipy.optimize

input

suite_name = "bbob"

output_folder = "scipy-optimize-fmin"

fmin = scipy.optimize.fmin

prepare

suite = cocoex.Suite(suite_name, "", "")

observer = cocoex.Observer(suite_name,

"result_folder: " + output_folder)

go

for problem in suite: # this loop will take several minutes

problem.observe_with(observer) # generates the data for

cocopp post-processing

fmin(problem, problem.initial_solution)

Note: the actual example_experiment.py contains more

advanced things like restarts, batch experiments, other

algorithms (e.g. CMA-ES), etc.

27TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 27

running the experiment

https://github.com/numbbo/coco

tip:

start with small #funevals (until bugs fixed)

then increase budget to get a feeling

how long a "long run" will take

28TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 28

postprocessing

https://github.com/numbbo/coco

data from 200+ algorithms can be accessed directly

through its name (see
http://coco.gforge.inria.fr/doku.php?id=algorithms)

29TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 29

Result Folder

30TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 30

Automatically Generated Results

31TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 31

Automatically Generated Results

32TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 32

Automatically Generated Results

33TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 33

Automatically Generated Results

34TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 34

so far:

data for 300+ algorithm variants

(some of which on noisy or multiobjective test functions)

143 workshop papers

by 109 authors from 28 countries

35TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 35

On

• real world problems
• expensive

• comparison typically limited to certain domains

• experts have limited interest to publish

• "artificial" benchmark functions
• cheap

• controlled

• data acquisition is comparatively easy

• problem of representativeness

Measuring Performance

36TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 36

• define the "scientific question"

the relevance can hardly be overestimated

• should represent "reality"

• are often too simple?

remind separability

• a number of testbeds are around

• account for invariance properties

prediction of performance is based on “similarity”,
ideally equivalence classes of functions

Test Functions

37TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 37

Available Test Suites in COCO

 bbob 24 noiseless fcts 220+ algo data sets

 bbob-noisy 30 noisy fcts 40+ algo data sets

 bbob-biobj 55 bi-objective fcts 30+ algo data sets

 bbob-largescale 24 noiseless fcts 11 algo data sets

 bbob-mixint 24 mixed integer fcts

 bbob-biobj-mixint 92 mixed integer fcts

38TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 38

Meaningful quantitative measure
• quantitative on the ratio scale (highest possible)

"algo A is two times better than algo B" is a meaningful
statement

• assume a wide range of values

• meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world

How Do We Measure Performance?

39TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 39

runtime or first hitting time is the prime candidate
(we don't have many choices anyway)

40TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 40

Two objectives:

• Find solution with small(est possible)
function/indicator value

• With the least possible search costs (number of
function evaluations)

For measuring performance: fix one and measure the
other

How Do We Measure Performance?

41TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 41

convergence graphs is all we have to start with...

Measuring Performance Empirically
fu

n
c
ti
o
n
 v

a
lu

e
 o

r

which view is better?

42TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 42

ECDF:

Empirical Cumulative Distribution Function of the
Runtime

[aka data profile]

43TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 43

A Convergence Graph
A Convergence Graph

44TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 44

First Hitting Time is Monotonous

45TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 45

15 Runs

46TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 46

target

15 Runs ≤ 15 Runtime Data Points

47TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 47

Empirical CDF

1

0.8

0.6

0.4

0.2

0

the ECDF of run

lengths to

reach the target

● has for each

data point a

vertical step of

constant size

● displays for

each x-value

(budget) the

count of

observations to

the left (first

hitting times)

Empirical Cumulative Distribution

48TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 48

Empirical CDF

1

0.8

0.6

0.4

0.2

0

interpretations

possible:

● 80% of the

runs reached

the target

● e.g. 60% of the

runs need

between 2000

and 4000

evaluations

Empirical Cumulative Distribution

49TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 49

Reconstructing A Single Run

50TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 50

50 equally
spaced targets

Reconstructing A Single Run

51TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 51

Reconstructing A Single Run

52TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 52

Reconstructing A Single Run

53TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 53

the empirical

CDF makes a

step for each

star, is

monotonous

and displays

for each

budget the

fraction of

targets

achieved within

the budget

1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run

54TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 54

the ECDF

recovers the

monotonous

graph,

discretized and

flipped

1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run

55TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 55

1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run

the ECDF recovers
the monotonous
graph,
discretized and
flipped

56TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 56

Aggregation

15 runs

57TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 57

Aggregation

15 runs

50 targets

58TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 58

Aggregation

15 runs

50 targets

59TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 59

15 runs

50 targets

ECDF with 750

steps

Aggregation

60TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 60

50 targets from

15 runs

...integrated in

a single

graph

Aggregation

61TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 61

area over the

ECDF curve

=

average log

runtime
(or geometric avg.

runtime) over all

targets (difficult and

easy) and all runs

50 targets from

15 runs

integrated in a

single graph

Interpretation

62TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 62

Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

• never aggregate over dimension

• but often over targets and functions

• can show data of more than 1 algorithm at a time

150 algorithms

from BBOB-2009

till BBOB-2015

63TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 63

...compares average runtimes over several algorithms

Another Interesting Plot...

64TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 64

...compares average runtimes over several algorithms

Another Interesting Plot...

y axis shows

runtime

in log-scale:

5 "=" 1e5*DIM

dimension

65TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 65

...compares average runtimes over several algorithms

Another Interesting Plot...

aRT value

[if < ∞]
to reach

given target

precision

a star indicates statistically

significant results compared

to all other displayed algos

median runlength

of unsuccessful runs

66TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 66

...compares average runtimes over several algorithms

Another Interesting Plot...

artificial best

algorithm

from

BBOB-2016

scaling with

dimension
linear

67TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 67

...are scatter plots

Interesting for 2 Algorithms...

avg. runtime for algorithm A

a
v
g
.

ru
n

ti
m

e
 f

o
r

a
lg

o
ri

th
m

 B

dimensions:

one marker

per target

68TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 68

I hope it became clear...

...that benchmarking is a non-trivial task

...details matter when comparing algorithms

...and that the COCO platform allows for an automated benchmarking

and provides data from hundreds of benchmarking experiments

Take Home Messages Benchmarking

69TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 69

Discrete Optimization

70TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 70

Context discrete optimization:

 discrete variables

 or optimization over discrete structures (e.g. graphs)

 search space often finite, but typically too large for enumeration

 need for smart algorithms

Algorithms for discrete problems:

 typically problem-specific

 but some general concepts are repeatedly used:

 greedy algorithms

 [branch and bound]

 dynamic programming

 randomized search heuristics

Motivation for this Part:

 get an idea of the most common algorithm design principles

Discrete Optimization

before 2 excursions:

the O-notation

& graph theory

71TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 71

Excursion: The O-Notation

72TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 72

Motivation:

 we often want to characterize how quickly a function f(x) grows

asymptotically

 e.g. when we say an algorithm takes quadratically many steps

(in the input size) to find the optimum of a problem with n

(binary) variables, it is most likely not exactly n2, but maybe n2+1

or (n+1)2

Big-O Notation

should be known, here mainly restating the definition:

Definition 1 We write 𝑓(𝑥) = 𝑂(𝑔(𝑥)) iff there exists a constant
𝑐 > 0 and an 𝑥0 > 0 such that 𝑓 𝑥 ≤ 𝑐 ⋅ 𝑔(𝑥) holds for all 𝑥 > 𝑥0

we also view O(g(x)) as a set of functions growing at most as

quick as g(x) and write f(x)O(g(x))

Excursion: The O-Notation

73TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 73

 f(x) + c = O(f(x)) [if f(x) does not go to zero for x to infinity]

 c·f(x) = O(f(x))

 f(x) · g(x) = O(f(x) · g(x))

 3n4 + n2 – 7 = O(n4)

Intuition of the Big-O:

 if f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically)

for f excluding constants and lower order terms

 With Big-O, you should have ‘≤’ in mind

 An algorithm that solves a problem in polynomial time is "efficient"

 An algorithm that solves a problem in exponential time is not

 But be aware:

In practice, often the line between efficient and non-efficient lies

around 𝑛 log 𝑛 or even 𝑛 (or even log 𝑛 in the big data context) and

the constants do matter!!!

Big-O: Examples

74TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 74

Further definitions to generalize from ‘≤’ to ‘≥‘ and ‘=‘:

 f(x) = Ω(g(x)) if g(x) = O(f(x))

 f(x) = Θ(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x))

Note: extensions to ‘<‘ and ‘>’ exist as well, but are not needed here.

Example:

 Algo A solves problem P in time O(n)

 Algo B solves problem P in time O(n2)

 which one is faster?

Excursion: The O-Notation

only proving upper

bounds to compare

algorithms is not sufficient!

75TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 75

Further definitions to generalize from ‘≤’ to ‘≥‘ and ‘=‘:

 f(x) = Ω(g(x)) if g(x) = O(f(x))

 f(x) = Θ(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x))

Note: extensions to ‘<‘ and ‘>’ exist as well, but are not needed here.

Example:

 Algo A solves problem P in time O(n)

 Algo B solves problem P in time O(n2) Ω(n2)

 which one is faster?

Excursion: The O-Notation

only proving upper

bounds to compare

algorithms is not sufficient!

76TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 76

 Please order the following functions in terms of their asymptotic

behavior (from smallest to largest):

 exp(n2)

 log n

 ln n / ln ln n

 n

 n log n

 exp(n)

 ln n!

 Pick one pair of runtimes and give a formal proof for the relation.

Exercise O-Notation

79TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 79

Excursion:

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

80TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 80

 vertices = nodes

 edges = lines

 Note: edges cover two unordered vertices (undirected graph)

 if they are ordered, we call G a directed graph

Graphs

81TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 81

 G is called empty if E empty

 u and v are end vertices of an edge {u,v}

 Edges are adjacent if they share an end vertex

 Vertices u and v are adjacent if {u,v} is in E

Graphs: Basic Definitions

a loop

82TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 82

A walk is

 closed if first and last node coincide

 a trail if each edge traversed at most once

 a path if each vertex is visited at most once

a closed path is called a circuit or cycle

Walks, Paths, and Circuits

83TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 83

 Two vertices are called connected if there is a walk between

them in G

 If all vertex pairs in G are connected, G is called connected

 The connected components of G are the (maximal) subgraphs

which are connected.

Graphs: Connectedness

84TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 84

 A forest is a cycle-free graph

 A tree is a connected forest

A spanning tree of a connected graph G is a tree in G which

contains all vertices of G

Trees and Forests

85TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 85

Greedy Algorithms

86TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 86

From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem

solving heuristic of making the locally optimal choice at each

stage with the hope of finding a global optimum.”

 Note: typically greedy algorithms do not find the global optimum

Greedy Algorithms

87TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 87

What we will see:

 Example 1: Money Change problem

 Example 2: Minimal Spanning Trees (MST) and the algorithm of

Kruskal

Lecture Outline Greedy Algorithms

88TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 88

Change-making problem

 Given n coins of distinct values w1=1, w2, ..., wn and a total

change W (where w1, ..., wn, and W are integers).

 Minimize the total amount of coins Σxi such that Σwixi = W and

where xi is the number of times, coin i is given back as change.

Greedy Algorithm

Unless total change not reached:

add the largest coin which is not larger than the remaining

amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:

finishing darts (from 501 to 0 with 9 darts)

Example 1: Money Change

89TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 89

Minimum Spanning Tree problem:

Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the spanning tree with the smallest weight among all

spanning trees.

weight of a spanning tree:

w(T) = Σ wi

ei in T

w(T) = 33

Applications

Setting up a new wired telecommunication/water

supply/electricity network

Constructing minimal delay trees for broadcasting in networks

Example 2: Minimum Spanning Trees (MST)

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

90TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 90

Algorithm, see [1]

 Create forest F = (V,{}) with n components and no edge

 Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

 While S non-empty and F not spanning:

 delete cheapest edge from S

 add it to F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the

traveling salesman problem". Proceedings of the American Mathematical

Society 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal’s Algorithm: Idea

91TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 91

Kruskal’s Algorithm: Example

E

B

G

L

F H

C

K

D

I MJ

A
4 12

7
22

2
21 17

16

3 6

11

20 8

10 19

9

1

18

13

15 14 5

92TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 92

Kruskal’s Algorithm: Example

E

B

G

L

F H

C

K

D

I MJ

A
4 12

7
22

2
21 17

16

3 6

11

20 8

10 19

9

1

18

13

15 14 5

93TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 93

First question: how to implement the algorithm?

 sorting of edges needs O(|E| log |E|)

Kruskal’s Algorithm: Runtime Considerations

Algorithm

Create forest F = (V,{}) with n components and no edge

Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

While S non-empty and F not spanning:

delete cheapest edge from S

add it to F if no cycle is introduced

simple ?
forest implementation:

Disjoint-set

data structure

94TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 94

Data structure: ground set 1...N grouped to disjoint sets

Operations:

 FIND(i): to which set does i belong?

 UNION(i,j): union the sets of i and j!

Implemented as trees:

 UNION(T1, T2): hang root node of smaller tree under root

node of larger tree (constant time), thus

 FIND(u): traverse tree from u to root (to return a representative

of u’s set) takes logarithmic time in total number of nodes

Disjoint-set Data Structure (“Union&Find”)

1 2 3 4

1 2 3 4

1

2

3

4

5

6

95TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 95

Algorithm, rewritten with UNION-FIND:

 Create initial disjoint-set data structure, i.e. for each vertex vi,

store vi as representative of its set

 Create empty forest F = {}

 Sort edges such that w.l.o.g. w1 < w2 < ... < w|E|

 for each edge ei={u,v} starting from i=1:

 if FIND(u) ≠ FIND(v): # no cycle introduced?

 F = F ∪ {{u,v}}

 UNION(u,v)

 return F

Implementation of Kruskal’s Algorithm

96TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 96

 Sorting of edges needs O(|E| log |E|)

 forest: Disjoint-set data structure

 initialization: O(|V|)

 log |V| to find out whether the minimum-cost edge {u,v}

connects two sets (no cycle induced) or is within a set (cycle

would be induced)

 2x FIND + potential UNION needs to be done O(|E|) times

 total O(|E| log |V|)

 Overall: O(|E| log |E|)

Back to Runtime Considerations

97TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 97

Two parts needed:

 Algo always produces a spanning tree

final F contains no cycle and is connected by definition

 Algo always produces a minimum spanning tree

 argument by induction

 P: If F is forest at a given stage of the algorithm, then there

is some minimum spanning tree that contains F.

 clearly true for F = (V, {})

 assume that P holds when new edge e is added to F and

be T a MST that contains F

 if e in T, fine

 if e not in T: T + e has cycle C with edge f in C but not

in F (otherwise e would have introduced a cycle in F)

 now T – f + e is a tree with same weight as T (since

T is a MST and f was not chosen to F)

 hence T – f + e is MST including F + e (i.e. P holds)

Kruskal’s Algorithm: Proof of Correctness

98TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 98

What we have seen so far:

 two problems where a greedy algorithm was optimal

 money change

 minimum spanning tree (Kruskal’s algorithm)

 but also: greedy not always optimal

 for some sets of coins for example

Obvious Question: when is greedy good?

Answer: if the problem is a matroid (no further details here)

From Wikipedia: [...] a matroid is a structure that captures and

generalizes the notion of linear independence in vector

spaces. There are many equivalent ways to define a matroid,

the most significant being in terms of independent sets,

bases, circuits, closed sets or flats, closure operators, and

rank functions.

Conclusion Greedy Algorithms I

99TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 99

I hope it became clear...

...what a greedy algorithm is

...that it not always results in the optimal solution

...but that it does if and only if the problem is a matroid

Conclusions Greedy Algorithms II

100TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 100

Dynamic Programming

101TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 101

Wikipedia:

“[...] dynamic programming is a method for solving a complex

problem by breaking it down into a collection of simpler

subproblems.”

But that’s not all:

 dynamic programming also makes sure that the subproblems are

not solved too often but only once by keeping the solutions of

simpler subproblems in memory (“trading space vs. time”)

 it is an exact method, i.e. in comparison to the greedy approach, it

always solves a problem to optimality

Note:

the reason why the approach is called "dynamic programming" is

historical: at the time of invention by Richard Bellman, no

computer "program" existed

Dynamic Programming

102TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 102

Optimal Substructure

A solution can be constructed efficiently from optimal solutions of

sub-problems

Overlapping Subproblems

Wikipedia: “[...] a problem is said to have overlapping

subproblems if the problem can be broken down into

subproblems which are reused several times or a recursive

algorithm for the problem solves the same subproblem over and

over rather than always generating new subproblems.”

Note: in case of optimal substructure but independent subproblems,

often greedy algorithms are a good choice; in this case, dynamic

programming is often called “divide and conquer” instead

Two Properties Needed

103TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 103

Main idea: solve larger subproblems by breaking them down to

smaller, easier subproblems in a recursive manner

Typical Algorithm Design:

 decompose the problem into subproblems and think about how

to solve a larger problem with the solutions of its subproblems

 specify how you compute the value of a larger problem

recursively with the help of the optimal values of its subproblems

(“Bellman equation”)

 bottom-up solving of the subproblems (i.e. computing their

optimal value), starting from the smallest by using the Bellman

equality and a table structure to store the optimal values

(top-down approach also possible, but less common)

 eventually construct the final solution (can be omitted if only the

value of an optimal solution is sought)

Main Idea Behind Dynamic Programming

104TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 104

What we will see:

 Example 1: The All-Pairs Shortest Path Problem

 Example 2: The knapsack problem

Lecture Outline Dynamic Programming (DP)

105TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 105

Shortest Path problem:

Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the shortest path from a vertex v to a vertex u, i.e., the path

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is

minimized.

Obvious Applications

Google maps

Autonomous cars

Finding routes for packages in a computer network

...

Example 1: The Shortest Path Problem

u v

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

106TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 106

Shortest Path problem:

Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the shortest path from a vertex v to a vertex u, i.e., the path

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is

minimized.

Note:

We can often assume that

the edge weights are stored

in a distance matrix D of

dimension |E|x|E| where

an entry Di,j gives the weight between nodes i and j and “non-

edges” are assigned a value of ∞

Why important? determines input size

Example 1: The Shortest Path Problem

u v

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

107TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 107

Optimal Substructure

The optimal path from u to v, if it contains another vertex p can

be constructed by simply joining the optimal path from u to p with

the optimal path from p to v.

Overlapping Subproblems

Optimal shortest

sub-paths can be reused

when computing longer paths:

e.g. the optimal path from u to p

is contained in the optimal path from

u to q and in the optimal path from u to v.

Opt. Substructure and Overlapping Subproblems

u vq

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1
p

108TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 108

All Pairs Shortest Path problem:

Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the shortest path from each source vertex v to each other

target vertex u, i.e., the paths (v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u)

such that w1 + ... + wk is minimized for all pairs (u,v) in V2.

The All Pairs Shortest Paths Problem

u v

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

109TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 109

Idea:

 if we knew that the shortest path between source and target

goes through node v, we would be able to construct the

optimal path from the shorter paths “sourcev” and “vtarget”

 subproblem P(k): compute all shortest paths where the

intermediate nodes can be chosen from v1, ..., vk

AllPairsShortestPathFloyd(G, D)

 Init: for all 1 ≤ i,j ≤ |V|: dist(i,j) = Di,j

 For k = 1 to |V| # solve subproblems P(k)

 for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

 dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

Note: Bernard Roy in 1959 and Stephen Warshall in 1962 essentially proposed the

same algorithm independently.

The Algorithm of Robert Floyd (1962)

110TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 110

Example

k=0 1 2 3 4 5

1

2

3

4

5

1

3

5

4

2

7

2

-1

-1
3

5
9

111TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 111

Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

112TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 112

Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3

4

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

113TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 113

Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3

4

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

114TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 114

Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3

4

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

115TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 115

Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3 9

4 1

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

116TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 116

Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

117TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 117

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

118TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 118

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

119TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 119

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

120TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 120

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

121TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 121

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 11 ∞

2 9 ∞

3 7 9 18 8 ∞

4 10 3

5 5 ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

122TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 122

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

123TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 123

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

124TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 124

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 1

2 -1

3 8

4 -1 1 10 0 3

5 13

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

125TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 125

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

126TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 126

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow all nodes as intermediate nodes

k=5 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

127TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 127

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow all nodes as intermediate nodes

k=5 1 2 3 4 5

1 0 2 9 1 4

2 -2 0 7 -1 2

3 7 9 16 8 11

4 -1 1 8 0 3

5 12 14 5 13 16

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

128TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 128

O(|V|3) easy to show

 O(|V|2) many distances need to be updated O(|V|) times

Correctness

 given by the Bellman equation

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

 only correct if cycles do not have negative total weight (can

be checked in final distance matrix if diagonal elements are

negative)

Runtime Considerations and Correctness

129TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 129

 Construct matrix of predecessors 𝑃 alongside distance matrix

 𝑃𝑖,𝑗(𝑘) = predecessor of node j on path from i to j (at algo. step k)

 no extra costs (asymptotically)

𝑃𝑖,𝑗 0 = ቊ
0
𝑖

if 𝑖 = 𝑗 or 𝑑𝑖,𝑗 = ∞

in all other cases

𝑃𝑖,𝑗 𝑘 = ൝
𝑃𝑖,𝑗(𝑘 − 1)

𝑃𝑘,𝑗 𝑘 − 1

if dist 𝑖, 𝑗 ≤ dist 𝑖, 𝑘 + dist(𝑘, 𝑗)

if dist 𝑖, 𝑗 > dist(𝑖, 𝑘) + dist(𝑘, 𝑗)

But How Can We Actually Construct the Paths?

130TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 130

Knapsack Problem

Example 2: The Knapsack Problem (KP)

Dake

131TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 131

Consider the following subproblem:

𝑃(𝑖, 𝑗): optimal profit when packing the first 𝑖 items into a

knapsack of size 𝑗

Optimal Substructure

The optimal choice of whether taking item 𝑖 or not can be made

easily for a knapsack of weight 𝑗 if we know the optimal choice

for items 1… 𝑖 − 1:

𝑃 𝑖, 𝑗 = ቐ

0
𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑖 = 0 or 𝑗 = 0
if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

Overlapping Subproblems

a recursive implementation of the Bellman equation is simple,

but the 𝑃(𝑖, 𝑗) might need to be computed more than once!

Opt. Substructure and Overlapping Subproblems

132TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 132

To circumvent computing the subproblems more than once, we can

store their results (in a matrix for example)...

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 ... W-1 W

0

1 P(i,j)

2

...

n-1

n

it
e

m
s

knapsack weight

best achievable

profit with items 1...i

and a knapsack of

size j

133TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 133

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

it
e

m
s

knapsack weight

initialization:

𝑃 𝑖, 𝑗 = 0 if 𝑖 = 0 or 𝑗 = 0

134TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 134

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

initialization:

𝑃 𝑖, 𝑗 = 0 if 𝑖 = 0 or 𝑗 = 0

135TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 135

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

136TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 136

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

137TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 137

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

138TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 138

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

139TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 139

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝1(= 4)
4

140TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 140

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝1(= 4)
4

141TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 141

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

142TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 142

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

143TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 143

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝2(= 10)
10

144TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 144

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

145TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 145

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

146TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 146

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
4

147TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 147

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
4

148TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 148

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
10 etc.

149TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 149

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

150TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 150

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

151TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 151

Question: How to obtain the actual packing?

Answer: we just need to remember where the max came from!

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

𝒙𝟓 = 𝟎

𝒙𝟒 = 𝟏

𝒙𝟑 = 𝟎

𝒙𝟐 = 𝟏

𝒙𝟏 = 𝟎

152TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 152

I hope it became clear...

...what the algorithm design ideas of dynamic programming are

...and for which problem types it is supposed to be suitable

Conclusions

153TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 153

(Randomized) Search Heuristics

154TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 154

 often, problem complicated and not much time available to

develop a problem-specific algorithm

 search heuristics are a good choice:

 relatively easy to implement

 easy to adapt/change/improve

 e.g. when the problem formulation changes in an early

product design phase

 or when slightly different problems need to be solved

over time

 randomized/stochastic algorithms are a good choice because

they are robust to noise

Motivation General Search Heuristics

155TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 155

Which algorithms will we touch?

 Randomized Local Search (RLS)

 Variable Neighborhood Search (VNS)

 Tabu Search (TS)

 Evolutionary Algorithms (EAs)

Lecture Outline Randomized Search Heuristics

156TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 156

For most (stochastic) search heuristics, we need to define a

neighborhood structure

 which search points are close to each other?

Example: k-bit flip / Hamming distance k neighborhood

 search space: bitstrings of length n (Ω={0,1}n)

 two search points are neighbors if their Hamming

distance is k

 in other words: x and y are neighbors if we can flip

exactly k bits in x to obtain y

 0001001101 is neighbor of

0001000101 for k=1

0101000101 for k=2

1101000101 for k=3

Neighborhoods

157TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 157

Example: possible neighborhoods for the knapsack problem

 search space again bitstrings of length n (Ω={0,1}n)

 Hamming distance 1 neighborhood:

 add an item or remove it from the packing

 replacing 2 items neighborhood:

 replace one chosen item with an unchosen one

 makes only sense in combination with other

neighborhoods because the number of items stays

constant

 Hamming distance 2 neighborhood on the contrary:

 allows to change 2 arbitrary items, e.g.

 add 2 new items

 remove 2 chosen items

 or replace one chosen item with an unchosen one

Neighborhoods II

158TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 158

Idea behind (Randomized) Local Search:

 explore the local neighborhood of the current solution (randomly)

Pure Random Search:

 go to randomly chosen neighbor

First Improvement Local Search:

 go to first (randomly) chosen neighbor which is better

Best Improvement strategy:

 always go to the best neighbor

 not random anymore

 computationally expensive if neighborhood large

Randomized Local Search (RLS)

159TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 159

Main Idea: [Mladenovic and P. Hansen, 1997]

 change the neighborhood from time to time

 local optima are not the same for different neighborhood

operators

 but often close to each other

 global optimum is local optimum for all neighborhoods

 rather a framework than a concrete algorithm

 e.g. deterministic and stochastic neighborhood changes

 typically combined with (i) first improvement, (ii) a random

order in which the neighbors are visited and (iii) restarts

N. Mladenovic and P. Hansen (1997). "Variable neighborhood search". Computers

and Operations Research 24 (11): 1097–1100.

Variable Neighborhood Search

160TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 160

Disadvantages of local searches (with or without varying

neighborhoods)

 they get stuck in local optima

 have problems to traverse large plateaus of equal objective

function value (“random walk”)

Tabu search addresses these by

 allowing worsening moves if all neighbors are explored

 introducing a tabu list of temporarily not allowed moves

 those restricted moves are

 problem-specific and

 can be specific solutions or not permitted “search

directions” such as “don’t include this edge anymore” or

“do not flip this specific bit”

 the tabu list is typically restricted in size and after a while,

restricted moves are permitted again

Tabu Search

161TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 161

One class of (bio-inspired) stochastic optimization algorithms:

Evolutionary Algorithms (EAs)

 Class of optimization algorithms

originally inspired by the idea of

biological evolution

 selection, mutation, recombination

Stochastic Optimization Algorithms

1859

162TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 162

Classical Optimization Evolutionary Computation

variables or parameters variables or chromosomes

candidate solution

vector of decision variables /

design variables / object

variables

individual, offspring, parent

set of candidate solutions population

objective function

loss function

cost function

error function

fitness function

iteration generation

Metaphors

163TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 163

Generic Framework of an EA

Important:

representation (search space)

initialization

evaluation

evaluation

potential

parents

offspring

parents

crossover/

mutation

mating

selection

environmental

selection

stop?

best individual

stochastic operators

“Darwinism”

stopping criteria

164TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 164

Genetic Algorithms (GA)

J. Holland 1975 and D. Goldberg (USA)

Evolution Strategies (ES)

I. Rechenberg and H.P. Schwefel, 1965 (Berlin)

Evolutionary Programming (EP)

L.J. Fogel 1966 (USA)

Genetic Programming (GP)

J. Koza 1990 (USA)

nowadays one umbrella term: evolutionary algorithms

The Historic Roots of EAs

165TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 165

The genotype – phenotype mapping

 related to the question: how to come up with a fitness

("quality") of each individual from the representation?

 related to DNA vs. actual animal (which then has a fitness)

fitness of an individual not always = f(x)

 include constraints

 include diversity

 others

 but needed: always a total order on the solutions

Genotype – Phenotype mapping

166TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 166

Several possible ways to handle constraints, e.g.:

 resampling until a new feasible point is found (“often bad idea”)

 penalty function approach: add constraint violation term

(potentially scaled)

 repair approach: after generation of a new point, repair it (e.g.

with a heuristic) to become feasible again if infeasible

 continue to use repaired solution in the population or

 use repaired solution only for the evaluation?

 multiobjective approach: keep objective function and constraint

functions separate and try to optimize all of them in parallel

 ...

Handling Constraints

167TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 167

Examples for some EA parts

168TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 168

Selection is the major determinant for specifying the trade-off

between exploitation and exploration

Selection is either

stochastic or deterministic

e.g. fitness proportional

e.g. via a tournament

Mating selection (selection for variation): usually stochastic

Environmental selection (selection for survival): often deterministic

Selection

Disadvantage:

depends on

scaling of f

e.g. (µ+λ), (µ,λ)

best µ from

offspring and

parents

best µ from

offspring only

169TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 169

Variation aims at generating new individuals on the basis of those

individuals selected for mating

Variation = Mutation and Recombination/Crossover

mutation: mut:

recombination: recomb: where and

 choice always depends on the problem and the chosen

representation

 however, there are some operators that are applicable to a wide

range of problems and tailored to standard representations such

as vectors, permutations, trees, etc.

Variation Operators

170TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 170

Two desirable properties for mutation operators:

 every solution can be generation from every other with a

probability greater than 0 (“exhaustiveness”)

(“locality”)

Desirable property of recombination operators (“in-between-ness”):

Variation Operators: Guidelines

171TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 171

Swap:

Scramble:

Invert:

Insert:

Examples of Mutation Operators on Permutations

172TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 172

1-point crossover

n-point crossover

uniform crossover

Examples of Recombination Operators: {0,1}n

choose each bit

independently from

one parent or another

173TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 173

 binary search space, maximization

 uniform initialization

 generational cycle: of the population

 evaluation of solutions

 mating selection (e.g. roulette wheel)

 crossover (e.g. 1-point)

 environmental selection (e.g. plus-selection)

A Canonical Genetic Algorithm

174TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 174

 EAs are generic algorithms (randomized search heuristics,

meta-heuristics, ...) for black box optimization

no or almost no assumptions on the objective function

 They are typically less efficient than problem-specific

(exact) algorithms (in terms of #funevals)

less differences in the continuous case (as we have seen)

 Allow for an easy and rapid implementation and therefore

to find good solutions fast

easy to incorporate (and recommended!) to incorporate

problem-specific knowledge to improve the algorithm

Conclusions

175TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30, 2019© Anne Auger and Dimo Brockhoff, Inria 175

I hope it became clear...

...that heuristics is what we typically can afford in practice (no

guarantees and no proofs)

...what are the main ideas behind evolutionary algorithms

...and that evolutionary algorithms and genetic algorithms are no

synonyms

Conclusions

