
Introduction to Optimization

Lecture 6: Discrete Optimization II

November 15, 2019

TC2 - Optimisation

Université Paris-Saclay

Anne Auger and Dimo Brockhoff

Inria Saclay – Ile-de-France

2TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 2

Date Topic

Fri, 27.9.2019 DB Introduction

Fri, 4.10.2019

(4hrs)

AA Continuous Optimization I: differentiability, gradients,

convexity, optimality conditions

Fri, 11.10.2019

(4hrs)

AA Continuous Optimization II: constrained optimization,

gradient-based algorithms, stochastic gradient

Fri, 18.10.2019

(4hrs)

DB Continuous Optimization III: stochastic algorithms,

derivative-free optimization, critical performance

assessment [1st written test]

Wed, 30.10.2019 DB Benchmarking + Discrete Optimization I: graph theory,

greedy algorithms

Fri, 15.11.2019 DB Discrete Optimization II: greedy algorithms II, dynamic

programming, (heuristics) [2nd written test]

Fri, 22.11.2018 final exam

Course Overview

3TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 3

Back to Greedy Algorithms

4TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 4

From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem

solving heuristic of making the locally optimal choice at each

stage with the hope of finding a global optimum.”

 Note: typically greedy algorithms do not find the global optimum

Reminder: Greedy Algorithms

5TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 5

What we saw:

 Example 1: Money Change problem

What we will do today:

 Example 2: Minimal Spanning Trees (MST) and the algorithm of

Kruskal

Lecture Outline Greedy Algorithms

6TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 6

Minimum Spanning Tree problem:

Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the spanning tree with the smallest weight among all

spanning trees.

weight of a spanning tree:

w(T) = Σ wi

ei in T

w(T) = 33

Applications

Setting up a new wired telecommunication/water

supply/electricity network

Constructing minimal delay trees for broadcasting in networks

Example 2: Minimum Spanning Trees (MST)

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

7TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 7

Algorithm, see [1]

 Create forest F = (V,{}) with n components and no edge

 Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

 While S non-empty and F not spanning:

 delete cheapest edge from S

 add it to F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the

traveling salesman problem". Proceedings of the American Mathematical

Society 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal’s Algorithm: Idea

8TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 8

First question: how to implement the algorithm?

 sorting of edges needs O(|E| log |E|)

Kruskal’s Algorithm: Runtime Considerations

Algorithm

Create forest F = (V,{}) with n components and no edge

Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

While S non-empty and F not spanning:

delete cheapest edge from S

add it to F if no cycle is introduced

simple ?
forest implementation:

Disjoint-set

data structure

9TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 9

Data structure: ground set 1...N grouped to disjoint sets

Operations:

 FIND(i): to which set does i belong?

 UNION(i,j): union the sets of i and j!

Implemented as trees:

 UNION(T1, T2): hang root node of smaller tree under root

node of larger tree (constant time), thus

 FIND(u): traverse tree from u to root (to return a representative

of u’s set) takes logarithmic time in total number of nodes

Disjoint-set Data Structure (“Union&Find”)

1 2 3 4

1 2 3 4

1

2

3

4

5

6

10TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 10

Algorithm, rewritten with UNION-FIND:

 Create initial disjoint-set data structure, i.e. for each vertex vi,

store vi as representative of its set

 Create empty forest F = {}

 Sort edges such that w.l.o.g. w1 < w2 < ... < w|E|

 for each edge ei={u,v} starting from i=1:

 if FIND(u) ≠ FIND(v): # no cycle introduced?

 F = F ∪ {{u,v}}

 UNION(u,v)

 return F

Implementation of Kruskal’s Algorithm

11TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 11

 Sorting of edges needs O(|E| log |E|)

 forest: Disjoint-set data structure

 initialization: O(|V|)

 log |V| to find out whether the minimum-cost edge {u,v}

connects two sets (no cycle induced) or is within a set (cycle

would be induced)

 2x FIND + potential UNION needs to be done O(|E|) times

 total O(|E| log |V|)

 Overall: O(|E| log |E|)

Back to Runtime Considerations

12TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 12

Two parts needed:

 Algo always produces a spanning tree

final F contains no cycle and is connected by definition

 Algo always produces a minimum spanning tree

 argument by induction

 P: If F is forest at a given stage of the algorithm, then there

is some minimum spanning tree that contains F.

 clearly true for F = (V, {})

 assume that P holds when new edge e is added to F and

be T a MST that contains F

 if e in T, fine

 if e not in T: T + e has cycle C with edge f in C but not

in F (otherwise e would have introduced a cycle in F)

 now T – f + e is a tree with same weight as T (since

T is a MST and f was not chosen to F)

 hence T – f + e is MST including F + e (i.e. P holds)

Kruskal’s Algorithm: Proof of Correctness

13TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 13

What we have seen so far:

 two problems where a greedy algorithm was optimal

 money change

 minimum spanning tree (Kruskal’s algorithm)

 but also: greedy not always optimal

 for some sets of coins for example

Obvious Question: when is greedy good?

Answer: if the problem is a matroid (no further details here)

From Wikipedia: [...] a matroid is a structure that captures and

generalizes the notion of linear independence in vector

spaces. There are many equivalent ways to define a matroid,

the most significant being in terms of independent sets,

bases, circuits, closed sets or flats, closure operators, and

rank functions.

Conclusion Greedy Algorithms I

14TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 14

I hope it became clear...

...what a greedy algorithm is

...that it not always results in the optimal solution

...but that it does if and only if the problem is a matroid

Conclusions Greedy Algorithms II

15TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 15

2nd Intermediate Exam

16TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 16

Dynamic Programming

17TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 17

Wikipedia:

“[...] dynamic programming is a method for solving a complex

problem by breaking it down into a collection of simpler

subproblems.”

But that’s not all:

 dynamic programming also makes sure that the subproblems are

not solved too often but only once by keeping the solutions of

simpler subproblems in memory (“trading space vs. time”)

 it is an exact method, i.e. in comparison to the greedy approach, it

always solves a problem to optimality

Note:

the reason why the approach is called "dynamic programming" is

historical: at the time of invention by Richard Bellman, no

computer "program" existed

Dynamic Programming

18TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 18

Optimal Substructure

A solution can be constructed efficiently from optimal solutions of

sub-problems

Overlapping Subproblems

Wikipedia: “[...] a problem is said to have overlapping

subproblems if the problem can be broken down into

subproblems which are reused several times or a recursive

algorithm for the problem solves the same subproblem over and

over rather than always generating new subproblems.”

Note: in case of optimal substructure but independent subproblems,

often greedy algorithms are a good choice; in this case, dynamic

programming is often called “divide and conquer” instead

Two Properties Needed

19TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 19

Main idea: solve larger subproblems by breaking them down to

smaller, easier subproblems in a recursive manner

Typical Algorithm Design:

 decompose the problem into subproblems and think about how

to solve a larger problem with the solutions of its subproblems

 specify how you compute the value of a larger problem

recursively with the help of the optimal values of its subproblems

(“Bellman equation”)

 bottom-up solving of the subproblems (i.e. computing their

optimal value), starting from the smallest by using the Bellman

equality and a table structure to store the optimal values

(top-down approach also possible, but less common)

 eventually construct the final solution (can be omitted if only the

value of an optimal solution is sought)

Main Idea Behind Dynamic Programming

20TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 20

What we will see:

 Example 1: The All-Pairs Shortest Path Problem

 Example 2: The knapsack problem

Lecture Outline Dynamic Programming (DP)

21TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 21

Shortest Path problem:

Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the shortest path from a vertex v to a vertex u, i.e., the path

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is

minimized.

Obvious Applications

Google maps

Autonomous cars

Finding routes for packages in a computer network

...

Example 1: The Shortest Path Problem

u v

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

22TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 22

Shortest Path problem:

Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the shortest path from a vertex v to a vertex u, i.e., the path

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is

minimized.

Note:

We can often assume that

the edge weights are stored

in a distance matrix D of

dimension |V|x|V| where

an entry Di,j gives the weight between nodes i and j and “non-

edges” are assigned a value of ∞

Why important? determines input size

Example 1: The Shortest Path Problem

u v

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

23TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 23

Optimal Substructure

The optimal path from u to v, if it contains another vertex p can

be constructed by simply joining the optimal path from u to p with

the optimal path from p to v.

Overlapping Subproblems

Optimal shortest

sub-paths can be reused

when computing longer paths:

e.g. the optimal path from u to p

is contained in the optimal path from

u to q and in the optimal path from u to v.

Opt. Substructure and Overlapping Subproblems

u vq

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1
p

24TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 24

All Pairs Shortest Path problem:

Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the shortest path from each source vertex v to each other

target vertex u, i.e., the paths (v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u)

such that w1 + ... + wk is minimized for all pairs (u,v) in V2.

The All Pairs Shortest Paths Problem

u v

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

25TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 25

Idea:

 if we knew that the shortest path between source and target

goes through node v, we would be able to construct the

optimal path from the shorter paths “sourcev” and “vtarget”

 subproblem P(k): compute all shortest paths where the

intermediate nodes can be chosen from v1, ..., vk

AllPairsShortestPathFloyd(G, D)

 Init: for all 1 ≤ i,j ≤ |V|: dist(i,j) = Di,j

 For k = 1 to |V| # solve subproblems P(k)

 for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

 dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

Note: Bernard Roy in 1959 and Stephen Warshall in 1962 essentially proposed the

same algorithm independently.

The Algorithm of Robert Floyd (1962)

26TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 26

Example

k=0 1 2 3 4 5

1

2

3

4

5

1

3

5

4

2

7

2

-1

-1
3

5
9

27TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 27

Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

28TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 28

Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3

4

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

29TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 29

Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3

4

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

30TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 30

Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3

4

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

31TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 31

Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1

2

3 9

4 1

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

32TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 32

Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

1

3

5

4

2

7

2

-1

-1
3

5
9

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

33TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 33

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

34TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 34

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

35TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 35

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

36TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 36

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

37TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 37

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 11 ∞

2 9 ∞

3 7 9 18 8 ∞

4 10 3

5 5 ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

38TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 38

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

39TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 39

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

40TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 40

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 1

2 -1

3 8

4 -1 1 10 0 3

5 13

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

41TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 41

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

42TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 42

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow all nodes as intermediate nodes

k=5 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

43TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 43

Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow all nodes as intermediate nodes

k=5 1 2 3 4 5

1 0 2 9 1 4

2 -2 0 7 -1 2

3 7 9 16 8 11

4 -1 1 8 0 3

5 12 14 5 13 16

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|):

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

44TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 44

O(|V|3) easy to show

 O(|V|2) many distances need to be updated O(|V|) times

Correctness

 given by the Bellman equation

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

 only correct if cycles do not have negative total weight (can

be checked in final distance matrix if diagonal elements are

negative)

Runtime Considerations and Correctness

45TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 45

 Construct matrix of predecessors 𝑃 alongside distance matrix

 𝑃𝑖,𝑗(𝑘) = predecessor of node j on path from i to j (at algo. step k)

 no extra costs (asymptotically)

𝑃𝑖,𝑗 0 = ቊ
0
𝑖

if 𝑖 = 𝑗 or 𝑑𝑖,𝑗 = ∞

in all other cases

𝑃𝑖,𝑗 𝑘 = ൝
𝑃𝑖,𝑗(𝑘 − 1)

𝑃𝑘,𝑗 𝑘 − 1

if dist 𝑖, 𝑗 ≤ dist 𝑖, 𝑘 + dist(𝑘, 𝑗)

if dist 𝑖, 𝑗 > dist(𝑖, 𝑘) + dist(𝑘, 𝑗)

But How Can We Actually Construct the Paths?

46TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 46

Knapsack Problem

Example 2: The Knapsack Problem (KP)

Dake

47TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 47

Consider the following subproblem:

𝑃(𝑖, 𝑗): optimal profit when packing the first 𝑖 items into a

knapsack of size 𝑗

Optimal Substructure

The optimal choice of whether taking item 𝑖 or not can be made

easily for a knapsack of weight 𝑗 if we know the optimal choice

for items 1… 𝑖 − 1:

𝑃 𝑖, 𝑗 = ቐ

0
𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑖 = 0 or 𝑗 = 0
if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

Overlapping Subproblems

a recursive implementation of the Bellman equation is simple,

but the 𝑃(𝑖, 𝑗) might need to be computed more than once!

Opt. Substructure and Overlapping Subproblems

48TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 48

To circumvent computing the subproblems more than once, we can

store their results (in a matrix for example)...

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 ... W-1 W

0

1 P(i,j)

2

...

n-1

n

it
e

m
s

knapsack weight

best achievable

profit with items 1...i

and a knapsack of

size j

49TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 49

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

it
e

m
s

knapsack weight

initialization:

𝑃 𝑖, 𝑗 = 0 if 𝑖 = 0 or 𝑗 = 0

50TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 50

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

initialization:

𝑃 𝑖, 𝑗 = 0 if 𝑖 = 0 or 𝑗 = 0

51TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 51

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

52TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 52

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

53TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 53

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

54TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 54

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

55TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 55

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝1(= 4)
4

56TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 56

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝1(= 4)
4

57TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 57

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

58TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 58

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

59TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 59

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝2(= 10)
10

60TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 60

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

61TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 61

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

62TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 62

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
4

63TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 63

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
4

64TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 64

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
10 etc.

65TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 65

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

66TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 66

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

67TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 67

Question: How to obtain the actual packing?

Answer: we just need to remember where the max came from!

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

𝒙𝟓 = 𝟎

𝒙𝟒 = 𝟏

𝒙𝟑 = 𝟎

𝒙𝟐 = 𝟏

𝒙𝟏 = 𝟎

68TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 68

I hope it became clear...

...what the algorithm design ideas of dynamic programming are

...and for which problem types it is supposed to be suitable

Conclusions

69TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 69

The following slides have not been discussed during the lecture

and, thus, will not be part of the final exam.

70TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 70

(Randomized) Search Heuristics

71TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 71

 often, problem complicated and not much time available to

develop a problem-specific algorithm

 search heuristics are a good choice:

 relatively easy to implement

 easy to adapt/change/improve

 e.g. when the problem formulation changes in an early

product design phase

 or when slightly different problems need to be solved

over time

 randomized/stochastic algorithms are a good choice because

they are robust to noise

Motivation General Search Heuristics

72TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 72

Which algorithms will we touch?

 Randomized Local Search (RLS)

 Variable Neighborhood Search (VNS)

 Tabu Search (TS)

 Evolutionary Algorithms (EAs)

Lecture Outline Randomized Search Heuristics

73TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 73

For most (stochastic) search heuristics, we need to define a

neighborhood structure

 which search points are close to each other?

Example: k-bit flip / Hamming distance k neighborhood

 search space: bitstrings of length n (Ω={0,1}n)

 two search points are neighbors if their Hamming

distance is k

 in other words: x and y are neighbors if we can flip

exactly k bits in x to obtain y

 0001001101 is neighbor of

0001000101 for k=1

0101000101 for k=2

1101000101 for k=3

Neighborhoods

74TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 74

Example: possible neighborhoods for the knapsack problem

 search space again bitstrings of length n (Ω={0,1}n)

 Hamming distance 1 neighborhood:

 add an item or remove it from the packing

 replacing 2 items neighborhood:

 replace one chosen item with an unchosen one

 makes only sense in combination with other

neighborhoods because the number of items stays

constant

 Hamming distance 2 neighborhood on the contrary:

 allows to change 2 arbitrary items, e.g.

 add 2 new items

 remove 2 chosen items

 or replace one chosen item with an unchosen one

Neighborhoods II

75TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 75

Idea behind (Randomized) Local Search:

 explore the local neighborhood of the current solution (randomly)

Pure Random Search:

 go to randomly chosen neighbor

First Improvement Local Search:

 go to first (randomly) chosen neighbor which is better

Best Improvement strategy:

 always go to the best neighbor

 not random anymore

 computationally expensive if neighborhood large

Randomized Local Search (RLS)

76TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 76

Main Idea: [Mladenovic and P. Hansen, 1997]

 change the neighborhood from time to time

 local optima are not the same for different neighborhood

operators

 but often close to each other

 global optimum is local optimum for all neighborhoods

 rather a framework than a concrete algorithm

 e.g. deterministic and stochastic neighborhood changes

 typically combined with (i) first improvement, (ii) a random

order in which the neighbors are visited and (iii) restarts

N. Mladenovic and P. Hansen (1997). "Variable neighborhood search". Computers

and Operations Research 24 (11): 1097–1100.

Variable Neighborhood Search

77TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 77

Disadvantages of local searches (with or without varying

neighborhoods)

 they get stuck in local optima

 have problems to traverse large plateaus of equal objective

function value (“random walk”)

Tabu search addresses these by

 allowing worsening moves if all neighbors are explored

 introducing a tabu list of temporarily not allowed moves

 those restricted moves are

 problem-specific and

 can be specific solutions or not permitted “search

directions” such as “don’t include this edge anymore” or

“do not flip this specific bit”

 the tabu list is typically restricted in size and after a while,

restricted moves are permitted again

Tabu Search

78TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 78

One class of (bio-inspired) stochastic optimization algorithms:

Evolutionary Algorithms (EAs)

 Class of optimization algorithms

originally inspired by the idea of

biological evolution

 selection, mutation, recombination

Stochastic Optimization Algorithms

1859

79TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 79

Classical Optimization Evolutionary Computation

variables or parameters variables or chromosomes

candidate solution

vector of decision variables /

design variables / object

variables

individual, offspring, parent

set of candidate solutions population

objective function

loss function

cost function

error function

fitness function

iteration generation

Metaphors

80TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 80

Generic Framework of an EA

Important:

representation (search space)

initialization

evaluation

evaluation

potential

parents

offspring

parents

crossover/

mutation

mating

selection

environmental

selection

stop?

best individual

stochastic operators

“Darwinism”

stopping criteria

81TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 81

Genetic Algorithms (GA)

J. Holland 1975 and D. Goldberg (USA)

Evolution Strategies (ES)

I. Rechenberg and H.P. Schwefel, 1965 (Berlin)

Evolutionary Programming (EP)

L.J. Fogel 1966 (USA)

Genetic Programming (GP)

J. Koza 1990 (USA)

nowadays one umbrella term: evolutionary algorithms

The Historic Roots of EAs

82TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 82

The genotype – phenotype mapping

 related to the question: how to come up with a fitness

("quality") of each individual from the representation?

 related to DNA vs. actual animal (which then has a fitness)

fitness of an individual not always = f(x)

 include constraints

 include diversity

 others

 but needed: always a total order on the solutions

Genotype – Phenotype mapping

83TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 83

Several possible ways to handle constraints, e.g.:

 resampling until a new feasible point is found (“often bad idea”)

 penalty function approach: add constraint violation term

(potentially scaled)

 repair approach: after generation of a new point, repair it (e.g.

with a heuristic) to become feasible again if infeasible

 continue to use repaired solution in the population or

 use repaired solution only for the evaluation?

 multiobjective approach: keep objective function and constraint

functions separate and try to optimize all of them in parallel

 ...

Handling Constraints

84TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 84

Examples for some EA parts

85TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 85

Selection is the major determinant for specifying the trade-off

between exploitation and exploration

Selection is either

stochastic or deterministic

e.g. fitness proportional

e.g. via a tournament

Mating selection (selection for variation): usually stochastic

Environmental selection (selection for survival): often deterministic

Selection

Disadvantage:

depends on

scaling of f

e.g. (µ+λ), (µ,λ)

best µ from

offspring and

parents

best µ from

offspring only

86TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 86

Variation aims at generating new individuals on the basis of those

individuals selected for mating

Variation = Mutation and Recombination/Crossover

mutation: mut:

recombination: recomb: where and

 choice always depends on the problem and the chosen

representation

 however, there are some operators that are applicable to a wide

range of problems and tailored to standard representations such

as vectors, permutations, trees, etc.

Variation Operators

87TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 87

Two desirable properties for mutation operators:

 every solution can be generation from every other with a

probability greater than 0 (“exhaustiveness”)

(“locality”)

Desirable property of recombination operators (“in-between-ness”):

Variation Operators: Guidelines

88TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 88

Swap:

Scramble:

Invert:

Insert:

Examples of Mutation Operators on Permutations

89TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 89

1-point crossover

n-point crossover

uniform crossover

Examples of Recombination Operators: {0,1}n

choose each bit

independently from

one parent or another

90TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 90

 binary search space, maximization

 uniform initialization

 generational cycle: of the population

 evaluation of solutions

 mating selection (e.g. roulette wheel)

 crossover (e.g. 1-point)

 environmental selection (e.g. plus-selection)

A Canonical Genetic Algorithm

91TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 91

 EAs are generic algorithms (randomized search heuristics,

meta-heuristics, ...) for black box optimization

no or almost no assumptions on the objective function

 They are typically less efficient than problem-specific

(exact) algorithms (in terms of #funevals)

less differences in the continuous case (as we have seen)

 Allow for an easy and rapid implementation and therefore

to find good solutions fast

easy to incorporate (and recommended!) to incorporate

problem-specific knowledge to improve the algorithm

Conclusions

92TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 92

I hope it became clear...

...that heuristics is what we typically can afford in practice (no

guarantees and no proofs)

...what are the main ideas behind evolutionary algorithms

...and that evolutionary algorithms and genetic algorithms are no

synonyms

Conclusions

