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Date Topic

Fri, 27.9.2019 DB Introduction

Fri, 4.10.2019 

(4hrs)

AA Continuous Optimization I: differentiability, gradients, 

convexity, optimality conditions

Fri, 11.10.2019 

(4hrs)

AA Continuous Optimization II: constrained optimization, 

gradient-based algorithms, stochastic gradient

Fri, 18.10.2019 

(4hrs)

DB Continuous Optimization III: stochastic algorithms, 

derivative-free optimization, critical performance 

assessment [1st written test]

Wed, 30.10.2019 DB Benchmarking + Discrete Optimization I: graph theory, 

greedy algorithms

Fri, 15.11.2019 DB Discrete Optimization II: greedy algorithms II, dynamic

programming, (heuristics) [2nd written test]

Fri, 22.11.2018 final exam

Course Overview
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Back to Greedy Algorithms
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From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem 

solving heuristic of making the locally optimal choice at each 

stage with the hope of finding a global optimum.”

 Note: typically greedy algorithms do not find the global optimum

Reminder: Greedy Algorithms
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What we saw:

 Example 1: Money Change problem

What we will do today:

 Example 2: Minimal Spanning Trees (MST) and the algorithm of 

Kruskal

Lecture Outline Greedy Algorithms
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Minimum Spanning Tree problem: 

Given a graph G=(V,E) with edge weights wi for each edge ei. 

Find the spanning tree with the smallest weight among all 

spanning trees.

weight of a spanning tree:

w(T) = Σ wi

ei in T

w(T) = 33

Applications

Setting up a new wired telecommunication/water 

supply/electricity network

Constructing minimal delay trees for broadcasting in networks

Example 2: Minimum Spanning Trees (MST)
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Algorithm, see [1]

 Create forest F = (V,{}) with n components and no edge

 Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

 While S non-empty and F not spanning:

 delete cheapest edge from S

 add it to F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the 

traveling salesman problem". Proceedings of the American Mathematical 

Society 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal’s Algorithm: Idea
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First question: how to implement the algorithm?

 sorting of edges needs O(|E| log |E|)

Kruskal’s Algorithm: Runtime Considerations

Algorithm

Create forest F = (V,{}) with n components and no edge

Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

While S non-empty and F not spanning:

delete cheapest edge from S

add it to F if no cycle is introduced

simple ?
forest implementation:

Disjoint-set

data structure
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Data structure: ground set 1...N grouped to disjoint sets

Operations:

 FIND(i): to which set does i belong?

 UNION(i,j): union the sets of i and j!

Implemented as trees:

 UNION(T1, T2): hang root node of smaller tree under root 

node of larger tree (constant time), thus

 FIND(u): traverse tree from u to root (to return a representative 

of u’s set) takes logarithmic time in total number of nodes

Disjoint-set Data Structure (“Union&Find”)
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Algorithm, rewritten with UNION-FIND:

 Create initial disjoint-set data structure, i.e. for each vertex vi, 

store vi as representative of its set

 Create empty forest F = {}

 Sort edges such that w.l.o.g. w1 < w2 < ... < w|E|

 for each edge ei={u,v} starting from i=1:

 if FIND(u) ≠ FIND(v): # no cycle introduced?

 F = F ∪ {{u,v}}

 UNION(u,v)

 return F

Implementation of Kruskal’s Algorithm
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 Sorting of edges needs O(|E| log |E|)

 forest: Disjoint-set data structure

 initialization: O(|V|)

 log |V| to find out whether the minimum-cost edge {u,v} 

connects two sets (no cycle induced) or is within a set (cycle 

would be induced)

 2x FIND + potential UNION needs to be done O(|E|) times

 total O(|E| log |V|)

 Overall: O(|E| log |E|)

Back to Runtime Considerations
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Two parts needed:

 Algo always produces a spanning tree

final F contains no cycle and is connected by definition 

 Algo always produces a minimum spanning tree

 argument by induction

 P: If F is forest at a given stage of the algorithm, then there 

is some minimum spanning tree that contains F.

 clearly true for F = (V, {})

 assume that P holds when new edge e is added to F and 

be T a MST that contains F

 if e in T, fine

 if e not in T: T + e has cycle C with edge f in C but not 

in F (otherwise e would have introduced a cycle in F)

 now T – f + e is a tree with same weight as T (since 

T is a MST and f was not chosen to F)

 hence T – f + e is MST including F + e (i.e. P holds)

Kruskal’s Algorithm: Proof of Correctness
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What we have seen so far:

 two problems where a greedy algorithm was optimal

 money change

 minimum spanning tree (Kruskal’s algorithm)

 but also: greedy not always optimal

 for some sets of coins for example

Obvious Question: when is greedy good?

Answer: if the problem is a matroid (no further details here)

From Wikipedia: [...] a matroid is a structure that captures and 

generalizes the notion of linear independence in vector 

spaces. There are many equivalent ways to define a matroid, 

the most significant being in terms of independent sets, 

bases, circuits, closed sets or flats, closure operators, and 

rank functions.

Conclusion Greedy Algorithms I
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I hope it became clear...

...what a greedy algorithm is

...that it not always results in the optimal solution

...but that it does if and only if the problem is a matroid

Conclusions Greedy Algorithms II
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2nd Intermediate Exam
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Dynamic Programming
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Wikipedia:

“[...] dynamic programming is a method for solving a complex 

problem by breaking it down into a collection of simpler 

subproblems.”

But that’s not all:

 dynamic programming also makes sure that the subproblems are 

not solved too often but only once by keeping the solutions of 

simpler subproblems in memory (“trading space vs. time”)

 it is an exact method, i.e. in comparison to the greedy approach, it

always solves a problem to optimality

Note:

the reason why the approach is called "dynamic programming" is 

historical: at the time of invention by Richard Bellman, no 

computer "program" existed

Dynamic Programming
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Optimal Substructure

A solution can be constructed efficiently from optimal solutions of 

sub-problems 

Overlapping Subproblems

Wikipedia: “[...] a problem is said to have overlapping 

subproblems if the problem can be broken down into 

subproblems which are reused several times or a recursive 

algorithm for the problem solves the same subproblem over and 

over rather than always generating new subproblems.”

Note: in case of optimal substructure but independent subproblems, 

often greedy algorithms are a good choice; in this case, dynamic 

programming is often called “divide and conquer” instead

Two Properties Needed
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Main idea: solve larger subproblems by breaking them down to 

smaller, easier subproblems in a recursive manner

Typical Algorithm Design:

 decompose the problem into subproblems and think about how 

to solve a larger problem with the solutions of its subproblems

 specify how you compute the value of a larger problem 

recursively with the help of the optimal values of its subproblems

(“Bellman equation”)

 bottom-up solving of the subproblems (i.e. computing their 

optimal value), starting from the smallest by using the Bellman 

equality and a table structure to store the optimal values

(top-down approach also possible, but less common)

 eventually construct the final solution (can be omitted if only the 

value of an optimal solution is sought)

Main Idea Behind Dynamic Programming
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What we will see:

 Example 1: The All-Pairs Shortest Path Problem

 Example 2: The knapsack problem

Lecture Outline Dynamic Programming (DP)
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Shortest Path problem: 

Given a graph G=(V,E) with edge weights wi for each edge ei. 

Find the shortest path from a vertex v to a vertex u, i.e., the path 

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is 

minimized.

Obvious Applications

Google maps

Autonomous cars

Finding routes for packages in a computer network

...

Example 1: The Shortest Path Problem
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Shortest Path problem: 

Given a graph G=(V,E) with edge weights wi for each edge ei. 

Find the shortest path from a vertex v to a vertex u, i.e., the path 

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is 

minimized.

Note:

We can often assume that

the edge weights are stored

in a distance matrix D of

dimension |V|x|V| where

an entry Di,j gives the weight between nodes i and j and “non-

edges” are assigned a value of ∞

Why important?    determines input size

Example 1: The Shortest Path Problem
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Optimal Substructure

The optimal path from u to v, if it contains another vertex p can 

be constructed by simply joining the optimal path from u to p with 

the optimal path from p to v.

Overlapping Subproblems

Optimal shortest

sub-paths can be reused

when computing longer paths:

e.g. the optimal path from u to p

is contained in the optimal path from

u to q and in the optimal path from u to v.

Opt. Substructure and Overlapping Subproblems

u vq
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All Pairs Shortest Path problem: 

Given a graph G=(V,E) with edge weights wi for each edge ei. 

Find the shortest path from each source vertex v to each other 

target vertex u, i.e., the paths (v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) 

such that w1 + ... + wk is minimized for all pairs (u,v) in V2.

The All Pairs Shortest Paths Problem
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Idea:

 if we knew that the shortest path between source and target 

goes through node v, we would be able to construct the 

optimal path from the shorter paths “sourcev” and “vtarget”

 subproblem P(k): compute all shortest paths where the 

intermediate nodes can be chosen from v1, ..., vk

AllPairsShortestPathFloyd(G, D)

 Init: for all 1 ≤ i,j ≤ |V|: dist(i,j) = Di,j

 For k = 1 to |V|      # solve subproblems P(k)

 for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

 dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

Note: Bernard Roy in 1959 and Stephen Warshall in 1962 essentially proposed the 

same algorithm independently.

The Algorithm of Robert Floyd (1962)
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Example
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Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞
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Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞
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k=1 1 2 3 4 5
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5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞
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k=1 1 2 3 4 5

1
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allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞
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k=1 1 2 3 4 5

1
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5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞
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k=1 1 2 3 4 5

1
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3 9

4 1

5

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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Example

k=0 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 ∞ ∞ ∞ ∞

4 -1 ∞ ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞
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k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

allow 1 as intermediate node

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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Example
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allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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Example
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allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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Example
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allow 1 & 2 as intermediate nodes

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

k=1 1 2 3 4 5

1 ∞ 2 ∞ ∞ ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 ∞ ∞ ∞

4 -1 1 ∞ ∞ 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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Example

1
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allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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Example
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allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 11 ∞

2 9 ∞

3 7 9 18 8 ∞

4 10 3

5 5 ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow {1,2,3} as intermediate nodes

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

k=2 1 2 3 4 5

1 ∞ 2 11 1 ∞

2 ∞ ∞ 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 ∞ ∞ 5 ∞ ∞

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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Example

1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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Example

1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 1

2 -1

3 8

4 -1 1 10 0 3

5 13

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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Example

1

3

5

4

2

7

2

-1

-1
3

5
9

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

k=3 1 2 3 4 5

1 18 2 11 1 ∞

2 16 18 9 -1 ∞

3 7 9 18 8 ∞

4 -1 1 10 0 3

5 12 14 5 13 ∞

allow {1,2,3,4} as intermediate nodes

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow all nodes as intermediate nodes

k=5 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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Example

1

3

5

4

2

7

2

-1

-1
3

5
9

allow all nodes as intermediate nodes

k=5 1 2 3 4 5

1 0 2 9 1 4

2 -2 0 7 -1 2

3 7 9 16 8 11

4 -1 1 8 0 3

5 12 14 5 13 16

k=4 1 2 3 4 5

1 0 2 11 1 4

2 -2 0 9 -1 2

3 7 9 18 8 11

4 -1 1 10 0 3

5 12 14 5 13 16

for all pairs of nodes (i.e. 1 ≤ i,j ≤ |V|): 

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }
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O(|V|3) easy to show

 O(|V|2) many distances need to be updated O(|V|) times

Correctness

 given by the Bellman equation

dist(i,j) = min { dist(i,j), dist(i,k) + dist(k,j) }

 only correct if cycles do not have negative total weight (can 

be checked in final distance matrix if diagonal elements are 

negative)

Runtime Considerations and Correctness
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 Construct matrix of predecessors 𝑃 alongside distance matrix

 𝑃𝑖,𝑗(𝑘) = predecessor of node j on path from i to j (at algo. step k)

 no extra costs (asymptotically)

𝑃𝑖,𝑗 0 = ቊ
0
𝑖

if 𝑖 = 𝑗 or 𝑑𝑖,𝑗 = ∞

in all other cases

𝑃𝑖,𝑗 𝑘 = ൝
𝑃𝑖,𝑗(𝑘 − 1)

𝑃𝑘,𝑗 𝑘 − 1

if dist 𝑖, 𝑗 ≤ dist 𝑖, 𝑘 + dist(𝑘, 𝑗)

if dist 𝑖, 𝑗 > dist(𝑖, 𝑘) + dist(𝑘, 𝑗)

But How Can We Actually Construct the Paths?
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Knapsack Problem

Example 2: The Knapsack Problem (KP)

Dake
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Consider the following subproblem:

𝑃(𝑖, 𝑗): optimal profit when packing the first 𝑖 items into a 

knapsack of size 𝑗

Optimal Substructure

The optimal choice of whether taking item 𝑖 or not can be made 

easily for a knapsack of weight 𝑗 if we know the optimal choice 

for items 1… 𝑖 − 1:

𝑃 𝑖, 𝑗 = ቐ

0
𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑖 = 0 or 𝑗 = 0
if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

Overlapping Subproblems

a recursive implementation of the Bellman equation is simple, 

but the 𝑃(𝑖, 𝑗) might need to be computed more than once!

Opt. Substructure and Overlapping Subproblems
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To circumvent computing the subproblems more than once, we can 

store their results (in a matrix for example)...

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 ... W-1 W

0

1 P(i,j)

2

...

n-1

n

it
e

m
s

knapsack weight

best achievable

profit with items 1...i

and a knapsack of

size j
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

it
e

m
s

knapsack weight

initialization:

𝑃 𝑖, 𝑗 = 0 if 𝑖 = 0 or 𝑗 = 0
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

initialization:

𝑃 𝑖, 𝑗 = 0 if 𝑖 = 0 or 𝑗 = 0
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝1(= 4)
4
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝1(= 4)
4
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝2(= 10)
10
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗



61TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 61

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
4
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
4
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
10 etc.
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Question: How to obtain the actual packing?

Answer: we just need to remember where the max came from!

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

𝒙𝟓 = 𝟎

𝒙𝟒 = 𝟏

𝒙𝟑 = 𝟎

𝒙𝟐 = 𝟏

𝒙𝟏 = 𝟎
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I hope it became clear...

...what the algorithm design ideas of dynamic programming are

...and for which problem types it is supposed to be suitable

Conclusions
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The following slides have not been discussed during the lecture 

and, thus, will not be part of the final exam.
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(Randomized) Search Heuristics
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 often, problem complicated and not much time available to 

develop a problem-specific algorithm

 search heuristics are a good choice:

 relatively easy to implement

 easy to adapt/change/improve

 e.g. when the problem formulation changes in an early 

product design phase

 or when slightly different problems need to be solved 

over time

 randomized/stochastic algorithms are a good choice because 

they are robust to noise

Motivation General Search Heuristics
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Which algorithms will we touch?

 Randomized Local Search (RLS)

 Variable Neighborhood Search (VNS)

 Tabu Search (TS)

 Evolutionary Algorithms (EAs)

Lecture Outline Randomized Search Heuristics
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For most (stochastic) search heuristics, we need to define a 

neighborhood structure

 which search points are close to each other?

Example: k-bit flip / Hamming distance k neighborhood

 search space: bitstrings of length n (Ω={0,1}n)

 two search points are neighbors if their Hamming 

distance is k

 in other words: x and y are neighbors if we can flip 

exactly k bits in x to obtain y

 0001001101 is neighbor of

0001000101 for k=1

0101000101 for k=2

1101000101 for k=3

Neighborhoods



74TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 74

Example: possible neighborhoods for the knapsack problem

 search space again bitstrings of length n (Ω={0,1}n)

 Hamming distance 1 neighborhood:

 add an item or remove it from the packing

 replacing 2 items neighborhood:

 replace one chosen item with an unchosen one

 makes only sense in combination with other 

neighborhoods because the number of items stays 

constant

 Hamming distance 2 neighborhood on the contrary:

 allows to change 2 arbitrary items, e.g.

 add 2 new items

 remove 2 chosen items

 or replace one chosen item with an unchosen one

Neighborhoods II
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Idea behind (Randomized) Local Search:

 explore the local neighborhood of the current solution (randomly)

Pure Random Search:

 go to randomly chosen neighbor

First Improvement Local Search:

 go to first (randomly) chosen neighbor which is better

Best Improvement strategy:

 always go to the best neighbor

 not random anymore

 computationally expensive if neighborhood large

Randomized Local Search (RLS)
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Main Idea: [Mladenovic and P. Hansen, 1997]

 change the neighborhood from time to time

 local optima are not the same for different neighborhood 

operators

 but often close to each other

 global optimum is local optimum for all neighborhoods

 rather a framework than a concrete algorithm

 e.g. deterministic and stochastic neighborhood changes

 typically combined with (i) first improvement, (ii) a random 

order in which the neighbors are visited and (iii) restarts 

N. Mladenovic and P. Hansen (1997). "Variable neighborhood search". Computers 

and Operations Research 24 (11): 1097–1100.

Variable Neighborhood Search
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Disadvantages of local searches (with or without varying 

neighborhoods)

 they get stuck in local optima

 have problems to traverse large plateaus of equal objective 

function value (“random walk”)

Tabu search addresses these by

 allowing worsening moves if all neighbors are explored

 introducing a tabu list of temporarily not allowed moves

 those restricted moves are

 problem-specific and

 can be specific solutions or not permitted “search 

directions” such as “don’t include this edge anymore” or 

“do not flip this specific bit”

 the tabu list is typically restricted in size and after a while, 

restricted moves are permitted again

Tabu Search
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One class of (bio-inspired) stochastic optimization algorithms: 

Evolutionary Algorithms (EAs)

 Class of optimization algorithms

originally inspired by the idea of

biological evolution

 selection, mutation, recombination

Stochastic Optimization Algorithms

1859
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Classical Optimization Evolutionary Computation

variables or parameters variables or chromosomes

candidate solution

vector of decision variables /      

design variables / object 

variables

individual, offspring, parent

set of candidate solutions population

objective function

loss function

cost function

error function

fitness function

iteration generation

Metaphors
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Generic Framework of an EA

Important:

representation (search space)

initialization

evaluation

evaluation

potential

parents

offspring

parents

crossover/

mutation

mating

selection

environmental

selection

stop?

best individual

stochastic operators

“Darwinism”

stopping criteria
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Genetic Algorithms (GA)

J. Holland 1975 and D. Goldberg (USA)

Evolution Strategies (ES)

I. Rechenberg and H.P. Schwefel, 1965 (Berlin)

Evolutionary Programming (EP)

L.J. Fogel 1966 (USA)

Genetic Programming (GP)

J. Koza 1990 (USA)

nowadays one umbrella term: evolutionary algorithms

The Historic Roots of EAs
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The genotype – phenotype mapping

 related to the question: how to come up with a fitness 

("quality") of each individual from the representation?

 related to DNA vs. actual animal (which then has a fitness)

fitness of an individual not always = f(x)

 include constraints

 include diversity

 others

 but needed: always a total order on the solutions

Genotype – Phenotype mapping
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Several possible ways to handle constraints, e.g.:

 resampling until a new feasible point is found (“often bad idea”)

 penalty function approach: add constraint violation term 

(potentially scaled)

 repair approach: after generation of a new point, repair it (e.g. 

with a heuristic) to become feasible again if infeasible

 continue to use repaired solution in the population or

 use repaired solution only for the evaluation?

 multiobjective approach: keep objective function and constraint 

functions separate and try to optimize all of them in parallel

 ...

Handling Constraints
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Examples for some EA parts
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Selection is the major determinant for specifying the trade-off 

between exploitation and exploration

Selection is either

stochastic                                  or                     deterministic

e.g. fitness proportional

e.g. via a tournament

Mating selection (selection for variation): usually stochastic

Environmental selection (selection for survival): often deterministic

Selection

Disadvantage:

depends on

scaling of f

e.g. (µ+λ), (µ,λ)

best µ from 

offspring and

parents

best µ from 

offspring only
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Variation aims at generating new individuals on the basis of those 

individuals selected for mating

Variation = Mutation and Recombination/Crossover

mutation: mut:

recombination: recomb:        where and 

 choice always depends on the problem and the chosen 

representation

 however, there are some operators that are applicable to a wide 

range of problems and tailored to standard representations such 

as vectors, permutations, trees, etc.

Variation Operators
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Two desirable properties for mutation operators:

 every solution can be generation from every other with a 

probability greater than 0 (“exhaustiveness”)



(“locality”)

Desirable property of recombination operators (“in-between-ness”):

Variation Operators: Guidelines
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Swap:

Scramble:

Invert:

Insert:

Examples of Mutation Operators on Permutations
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1-point crossover

n-point crossover

uniform crossover

Examples of Recombination Operators: {0,1}n

choose each bit

independently from

one parent or another
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 binary search space, maximization

 uniform initialization

 generational cycle: of the population

 evaluation of solutions

 mating selection (e.g. roulette wheel)

 crossover (e.g. 1-point)

 environmental selection (e.g. plus-selection)

A Canonical Genetic Algorithm



91TC2: Introduction to Optimization, U. Paris-Saclay, Nov. 15, 2019© Anne Auger and Dimo Brockhoff, Inria 91

 EAs are generic algorithms (randomized search heuristics, 

meta-heuristics, ...) for black box optimization

no or almost no assumptions on the objective function

 They are typically less efficient than problem-specific 

(exact) algorithms (in terms of #funevals)

less differences in the continuous case (as we have seen)

 Allow for an easy and rapid implementation and therefore 

to find good solutions fast

easy to incorporate (and recommended!) to incorporate 

problem-specific knowledge to improve the algorithm

Conclusions
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I hope it became clear...

...that heuristics is what we typically can afford in practice (no 

guarantees and no proofs)

...what are the main ideas behind evolutionary algorithms

...and that evolutionary algorithms and genetic algorithms are no 

synonyms

Conclusions


