Analytical Functions

Example: 1-D

$$
\begin{gathered}
f_{1}(x)=a\left(x-x_{0}\right)^{2}+b \\
\text { where } x, x_{0}, b \in \mathbb{R}, a \in \mathbb{R}
\end{gathered}
$$

Generalization:

convex quadratic function

$$
\begin{gathered}
f_{2}(x)=\frac{1}{2}\left(x-x_{0}\right)^{T} A\left(x-x_{0}\right)+b \\
\text { where } x, x_{0} \in \mathbb{R}^{n}, b \in \mathbb{R}, A \in \mathbb{R}^{\{\mathrm{n} \times n\}} \\
\text { and } A \text { symmetric positive definite (SPD) }
\end{gathered}
$$

Exercise:

What is the minimum of $f_{2}(x) ?$

Levels Sets of Convex Quadratic Functions

Continuation of exercise: What are the level sets of f_{2} ?

Reminder: level sets of a function

$$
L_{c}=\left\{x \in \mathbb{R}^{n} \mid f(x)=c\right\}
$$

(similar to topography lines / level sets on a map)

Level Sets: Visualization of a Function

One-dimensional (1-D) representations are often misleading (as 1-D optimization is "trivial", see slides related to curse of dimensionality), we therefore often represent level-sets of functions

$$
\mathscr{L}_{c}=\left\{x \in \mathbb{R}^{n} \mid f(x)=c,\right\}, c \in \mathbb{R}
$$

Examples of level sets in 2D

Level Sets: Visualization of a Function

Source: Nykamp DQ, "Directional derivative on a mountain." From Math Insight. http://mathinsight.org/applet/ directional_derivative_mountain

Level Sets: Topographic Map

The function is the altitude

Levels Sets of Convex Quadratic Functions

Continuation of exercise: What are the level sets of f_{2} ?

$$
\begin{gathered}
f_{2}(x)=\frac{1}{2}\left(x-x_{0}\right)^{\top} A\left(x-x_{0}\right)+b \\
A S P D
\end{gathered}
$$

- Probably too complicated in general, thus an example here
- Consider $A=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right), b=0, n=2$
a) Compute $f_{2}(x)$.
b) Plot the level sets of $f_{2}(x)$. Not necesarily digonal
c) More generally, for $n=2$, if A is SPD with eigenvalues $\lambda_{1}=$ 9 and $\lambda_{2}=1$, what are the level sets of $f_{2}(x) ?$

A is symmetric, positive, definite:
$A=P D P^{\top}$ from the spectral theorem.
P is orthogonal
P contains the eigenvectors of A

$$
\begin{array}{rlrl}
f_{2}(x)=\frac{1}{2} x^{\top} A x & =\frac{1}{2} x^{\top} P D P^{\top} x & y=P^{\top} x \\
& =\frac{1}{2} \underbrace{\left(P^{x} x\right)^{\top}}_{y^{\top}} D \underbrace{P^{\top} x}_{y} & D=\left(\begin{array}{ll}
9 & 0 \\
0 & 1
\end{array}\right) \\
& =\frac{1}{2} y^{\top} D y & \\
& =\frac{1}{2} y^{\top}\left(\begin{array}{ll}
9 & 0 \\
0 & 1
\end{array}\right) y=\frac{1}{2}\left(9 y_{1}{ }^{2}+y_{2}{ }^{2}\right)
\end{array}
$$

p_{1}, p_{2} eigenvector of A associated to $\lambda_{1}=9,-\lambda_{2}=1$
"Same" ellipsoid than before but rotated the main axis of ellipsoid are the eigenvectors of A.

We have assumed before $x^{*}=0$, if $x^{*}=\binom{1}{2}$ and we consider

$$
f(x)=\frac{1}{2}\left(x-x^{2}\right)^{\top}\left(\begin{array}{ll}
9 & 0 \\
0 & 1
\end{array}\right)\left(x-x^{2}\right)
$$

them the optimum of f is in x^{*} and the ellipsoid are centered around x^{2}, i.e.

What Makes a Function Difficult to Solve?

Why stochastic search?

- non-linear, non-quadratic, non-convex
on linear and quadratic functions much better search policies are available
- ruggedness

> non-smooth, discontinuous, multimodal, and/or noisy function

- dimensionality (size of search space)
(considerably) larger than three
- non-separability
dependencies between the objective variables
- ill-conditioning

gradient direction Newton directio

Ruggedness

A cut of a 4-D function that can easily be solved with the CMA-ES algorithm

Why is Optimization a non-trivial Problem?

Curse of dimensionality

if $n=1$, which simple approach could you use to minimize:

$$
f:[0,1] \rightarrow \mathbb{R} \quad ?
$$

Why is Optimization a non-trivial Problem?

Curse of dimensionality

if $\mathrm{n}=1$, which simple approach could you use to minimize:

$$
f:[0,1] \rightarrow \mathbb{R} \quad ?
$$

set a regular grid on [0,1]
evaluate on f all the points of the grid return the lowest function value

Why is Optimization a non-trivial Problem?

Curse of dimensionality

if $\mathrm{n}=1$, which simple approach could you use to minimize:

$$
f:[0,1] \rightarrow \mathbb{R} \quad ?
$$

set a regular grid on $[0,1]$
evaluate on f all the points of the grid return the lowest function value

Why is Optimization a non-trivial Problem?

Curse of dimensionality

if $\mathrm{n}=1$, which simple approach could you use to minimize:

$$
f:[0,1] \rightarrow \mathbb{R} \quad ?
$$

set a regular grid on [0,1]
evaluate on f all the points of the grid return the lowest function value
easy! But how does it scale when n increases?
1-D optimization is trivial

Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say [0,1].

How many points would you need to get a similar coverage (in terms of distance between adjacent points) in dimension 10?

Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say $[0,1]$. To get similar coverage, in terms of distance between adjacent points, of the 10 -dimensional space $[0,1]^{10}$ would require $100^{10}=10^{20}$ points. A 100 points appear now as isolated points in a vast empty space.

Consequence: a search policy (e.g. exhaustive search) that is valuable in small dimensions might be useless in moderate or large dimensional search spaces.

Curse of Dimensionality

How long would it take to evaluate 10^{20} points?

Curse of Dimensionality

How long would it take to evaluate 10^{20} points?
import timeit
timeit.timeit('import numpy as np ;
np.sum(np.ones(10)*np.ones(10))', number=1000000)
> 7.0521080493927
7 seconds for 10^{6} evaluations of $f(x)=\sum_{i=1}^{10} x_{i}^{2}$
We would need more than 10^{8} days for evaluating 10^{20} points
[As a reference: origin of human species: roughly 6×10^{8} days]

Separability

Given $f: x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mapsto f(x) \in \mathbb{R}$, let us define the 1-D functions that are cuts of f along the different coordinates:

$$
f_{\left(x_{1}^{i}, \ldots, x_{n}^{i}\right)}^{i}(y)=f\left(x_{1}^{i}, \ldots, x_{i-1}^{i}, y, x_{i+1}^{i}, \ldots, x_{n}^{i}\right)
$$

for $\left(x_{1}^{i}, \ldots, x_{n}^{i}\right) \in \mathbb{R}^{n-1}$, with $\left(x_{1}^{i}, \ldots, x_{n}^{i}\right)=\left(x_{1}^{i}, \ldots, x_{i-1}^{i}, x_{i+1}^{i}, \ldots, x_{n}^{i}\right)$

Definition: A function f is separable if for all i , for all $\left(x_{1}^{i}, \ldots, x_{n}^{i}\right) \in \mathbb{R}^{n-1}$, for all $\left(\hat{x}_{1}^{i}, \ldots, \hat{x}_{n}^{i}\right) \in \mathbb{R}^{n-1}$

$$
\operatorname{argmin}_{y} f_{\left(x_{1}^{i}, \ldots, x_{n}^{i}\right)}^{i}(y)=\operatorname{argmin}_{y} f_{\left(\hat{x}_{1}^{i}, \ldots, \hat{x}_{n}^{i}\right)}^{i}(y)
$$

a weak definition of separability

Separability (cont)

Proposition: Let f be a separable then for all x_{i}^{j}

$$
\operatorname{argmin} f\left(x_{1}, \ldots, x_{n}\right)=\left(\operatorname{argmin} f_{\left(x_{2}^{2}, \ldots, x_{n}^{1}\right)}^{1}\left(x_{1}\right), \ldots, \operatorname{argmin} f_{\left(x_{1}^{n}, \ldots, x_{n-1}^{n}\right)}^{n}\left(x_{n}\right)\right)
$$

and f can be optimized using n minimization along the coordinates.

Exercice: prove the previous proposition
Hone exercice

Example: Additively Decomposable Functions

Exercice: Let $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} h_{i}\left(x_{i}\right)$ for h_{i} having a unique argmin. Prove that f is separable. We say in this case that f is additively decomposable.

Example: Rastrigin function

Non-separable Problems

Separable problems are typically easy to optimize. Yet difficult real-word problems are non-separable.

One needs to be careful when evaluating optimization algorithms that not too many test functions are separable and if so that the algorithms do not exploit separability.

Otherwise: good performance on test problems will not reflect good performance of the algorithm to solve difficult problems

Algorithms known to exploit separability:
Many Genetic Algorithms (GA), Most Particle Swarm Optimization (PSO)

If I give you $f:\{x \longmapsto f(x)$ which is separable How can you build a min-separable function?

Rosentrock function

7? A linear $x \mapsto f(A x)$ is separable. No.

Non－separable Problems

Building a non－separable problem from a separable one

Rotating the coordinate system

－$f: x \mapsto f(x)$ separable
－$f: x \mapsto f(R \boldsymbol{x})$ non－separable
\mathbf{R} rotation matrix

[^0]Let $f(x)=\frac{1}{2} x^{\top} A x$ where A is symmentic positive definite.
Is f separable?
If $A=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right)$, is f separable?
f is them additively, decomposable, so it is separable.

If A is diagonal, them f is reparable.
If A si not diagonal, then f not reparable.
$f(x)=\frac{1}{2} x^{\top} A x \quad$ where A is not diagonal
I can write f as the rotation of a separable function:
From the spectral theorem

$$
\begin{aligned}
& f(x)=\frac{1}{2} x^{\top} P D P^{\top} x \\
&=\frac{1}{2}\left(P^{\top} x\right)^{\top} D P^{\top} x \\
&=g\left(P^{\top} x\right) \\
& \underbrace{}_{\substack{\text { Sepuablegonal } \\
\text { Rotation }}}
\end{aligned}
$$

$$
\begin{aligned}
A= & \underbrace{P D P^{\top}} \text { Diagonal } \\
& g(x)=\frac{1}{2} x^{\top} D x
\end{aligned}
$$

Is separable because D is diagonal

Let f be convex quadratic, ie $f=\frac{1}{2}\left(x-x_{0}\right)^{\top} A\left(x-x_{0}\right)+b$ where A is SPD.
$(f$ is separable $) \Leftrightarrow(A$ is diagonal $)$
In addition, any convex quadratic function can be written as $f(x)=g\left(P_{x}\right)$ where g is separable P is orthogonal

III-conditioned Problems - Case of Convex-quadratic functions

Exercice: Consider a convex-quadratic function
$f(x)=\frac{1}{2}\left(x-x^{\star}\right)^{\top} H\left(x-x^{\star}\right)$ with H a symmetric, positive, definite
(SPD) matrix.

1. Why is it called a convex-quadratic function? What is the $-H$ matrix of f ?
The condition number of the matrix H (with respect to the
Euclidean norm) is defined as

$$
\operatorname{cond}(H)=\frac{\lambda_{\max }(H)}{\lambda_{\min }(H)}
$$

with $\lambda_{\text {max }}()$ and $\lambda_{\text {min }}()$ being respectively the largest and smallest eigenvalues.

III-conditioned Problems

III-conditioned means a high condition number of the matrix H.
Consider now the specific case of the function $f(x)=\frac{1}{2}\left(x_{1}^{2}+9 x_{2}^{2}\right)$

1. Compute its H manm matrix, its condition number
2. Plots the level sets of f, relate the condition number to the axis ratio of the level sets of f
3. Generalize to a general convex-quadratic function Real-world problems are often ill-conditioned.
4. Why to you think it is the case?
5. why are ill-conditioned problems difficult?
-(see also Exercice 2.5)

$$
\begin{aligned}
f(x)=\frac{1}{2}\left(x_{1}^{2}+9 x_{2}^{2}\right)= & \frac{1}{2}\left(x-x^{*}\right)^{\top} H\left(x-x^{*}\right) \\
& =\frac{1}{2} x^{\top}\left(\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right) \times \quad\binom{\text { ie } x^{*}=0}{H=\left(\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right)} \\
& x=\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Them $H=\left(\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right) \quad\left(\right.$ and $\left.x^{2}=0\right)$

$$
\operatorname{cond}(H)=\frac{\lambda_{\max }(H)}{\lambda_{\min }(H)}=\frac{9}{1}=9
$$

An ill-conditionned convex-quaduatic problem will have a layge ratio between the lagest axis and smallest air of the ellipsoid level oct.

Why do we often encuenter ill-conditionned problems (in the real world)?
\rightarrow Because we optimize often valuables that have different units/scales with different order of magnitude.

III-Conditioned Problems: Curvature of Level Sets

Consider the convex-quadratic function

$$
f(\boldsymbol{x})=\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)^{T} H\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)=\frac{1}{2} \sum_{i} h_{i, i} x_{i}^{2}+\frac{1}{2} \sum_{i, j} h_{i, j} x_{i} x_{j}
$$

H is Hessian matrix of f and symmetric positive definite

III-conditioning means squeezed level sets (high curvature). Condition number equals nine here. Condition numbers up to 10^{10} are not unusual in real-world problems.

If $H \approx I$ (small condition number of H) first order information (e.g. the gradient) is sufficient. Otherwise second order information (estimation of H^{-1}) information necessary.

Reminder: Different Notions of Optimum

Unconstrained case

- local vs. global
- local minimum x^{*} : \exists a neighborhood V of x^{*} such that $\forall \boldsymbol{x} \in \mathrm{V}: f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}^{*}\right)$
- global minimum: $\forall x \in \Omega: f(x) \geq f\left(x^{*}\right)$
- strict local minimum if the inequality is strict

Mathematical Characterization of Optima

Objective: Derive general characterization of optima

Example: if $f: \mathbb{R} \rightarrow \mathbb{R}$ differentiable, $f^{\prime}(x)=0$ at optimal points

- generalization to $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$?
- generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

optima of such function can be easily approached by certain type of methods

Reminder: Continuity of a Function

$f:\left(V,\| \|_{V}\right) \rightarrow\left(W,\| \|_{W}\right)$ is continuous in $x \in V$ if
$\forall \epsilon>0, \exists \eta>0$ such that $\forall y \in V:\|x-y\|_{V} \leq \eta ;\|f(x)-f(y)\|_{W} \leq \epsilon$

not continuous

continuous
function

Reminder: Differentiability in 1D (n=1)

$f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable in $x \in \mathbb{R}$ if

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \text { exists, } h \in \mathbb{R}
$$

Notation:
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

The derivative corresponds to the slope of the tangent in x.

[^0]: ${ }^{1}$ Hansen，Ostermeier，Gawelczyk（1995）．On the adaptation of arbitrary normal mutation distributions in evolution strategies：The generating set adaptation．Sixth ICGA，pp．57－64，Morgan Kaufmann
 ${ }^{2}$ Salomon（1996）．＂Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions；A survey of some theoretical and practical aspects of genetic algorithms．＂

