Analytical Functions

Example: 1-D
filx) =alx —xp)* +b
where x,x,,b € R,a € R

Generalization:
convex quadratic function

f2(x) :Zj(x — xo)TA (x—x9)+ b
where x,x, € R, b € R ,A € RI™>™
and A symmetric positive definite (SPD)

Exercise:
What is the minimum of £, (x)?
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Levels Sets of Convex Quadratic Functions

Continuation of exercise:
What are the level sets of f,?

\F-‘«'\werbank”‘/":\. 3 \
Le={xeR"| f(x) = c}

(similar to topography lines /
level sets on a map)
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| evel Sets: Visualization of a Function

One-dimensional (1-D) representations are often misleading
(as 1-D optimization is “trivial”, see slides related to curse of
dimensionality), we therefore often represent level-sets of

functions

Examples of level sets in 2D

L. ={xeR"|fx)=c},ceR

-2

1

0




| evel Sets: Visualization of a Function

)

/

8=0 P 7 fla)=487

o—— a=(6.7,1.1) D.f(a) = 2.00 u=(-091,-042)  Duf(a)=2.00 .

u=(-091,-042) Vf(a)=(-1.81,-0.85) 1Vf(a)i=2.00 Vf(a) = (-1.81, -0.85) 1Vf(a)1 =2.00

Source: Nykamp DQ), “Directional derivative on a mountain.” From Math Insight. http://mathinsight.org/applet/
directional_derivative_mountain



Level Sets: Topographic Map

The function is the altitude




Levels Sets of Convex Quadratic Function

Continuation of exercise: ‘ T

_ L (xox) Alxexs) +5

What are the level sets of f,? 42(")- z (x-) A x
A S?D

= Probably too complicated in general, thus an example here

- (9 0\,
Consider 4 = (0 1),1) —0n=2
a) Compute f,(x).
b) Plot the level sets of £, (x). - o Mfc&ﬂfml}, dujon/

~—¢) More generally, forn = 2, if Ais SPD with eigenvalues 4, =
9 and 1, = 1, what are the level sets of £, (x)?

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for ML, U. Paris-Saclay, Nov. 5, 2020
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What Makes a Function Difficult to Solve?

» non-linear, non-quadratic, non-convex
on linear and quadratic functions
much better search policies are
available

> ruggedness

non-smooth, discontinuous,

multimodal, and/or noisy e

function 2 :i\'i :f“:o:‘;ioift 'f X(

» dimensionality (size of search space)

o —_
B\

(considerably) larger than three

| |
(] N -
"

> non-separability
dependencies between the

objective variables
» ill-conditioning

gradient direction Newton directio



Ruggedness
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A cut of a 4-D function that can easily be solved with the
CMA-ES algorithm



Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f:]0,1] =R 7



Why is Optimization a non-trivial Problem?

Curse of dimensionality
if n=1, which simple approach could you use to minimize:

f:10,1] =R 7

set a regular grid on [0,1]

evaluate on f all the points of the grid

return the lowest function value
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Why is Optimization a non-trivial Problem?

Curse of dimensionality
if n=1, which simple approach could you use to minimize:

f:]0,1] =R 7

set a regular grid on [0,1]

evaluate on f all the points of the grid

return the lowest function value
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Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:

. S ——

f:10,1] =R 7

set a regular grid on [0,1]

evaluate on f all the points of the grid

return the lowest function va

x

UE

easy! But how does it scale when n increases?

1-D optimization is trivial

.|||||||l||lc:

O
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Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to
problems caused by the rapid increase in volume associated
with adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say
0,1].

How many points would you need to get a similar coverage (in

terms of distance between adjacent points) in dimension 107



Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to
problems caused by the rapid increase in volume associated
with adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say
[0,1]. To get similar coverage, in terms of distance between
adjacent points, of the 10-dimensional space [0,1]1° would
require 10010 = 1020 points. A 100 points appear now as
isolated points in a vast empty space.

Consequence: a search policy (e.g. exhaustive search) that is
valuable in small dimensions might be useless in moderate or

large dimensional search spaces.



Curse of Dimensionality

How long would it take to evaluate 1020 points?



Curse of Dimensionality

How long would it take to evaluate 1020 points?

import timeit

timeit.timeit('import numpy as np ;
np.sum(np.ones(10)*np.ones(10))", number=1000000)
> 7.0521080493927

7 seconds for 106 evaluations of f(x) = 2321 513@2

We would need more than 108 days for evaluating 1020 points

[As a reference: origin of human species: roughly 6 x 108 days]



Separability

Given f: x = (x{,...,x,) € R" > f(x) € R, let us define the 1-D

functions that are cuts of f along the different coordinates:

l

Pty @) =S s X Yo X0 0)

. . o . . . . . .
for (x;,...,x,) € R"", with (x{,...,x,) = (x;, ...,xi’_l,xl?ﬂ, s X))
Definition: A function f is if for all i, for all

(Xf, ---,X,f;) c R™!, for all ()Ac"l, ...,)2;) c R"!
argminyﬂx{,...,x,g)(y ) = argminyf(lfcil R )(Y)

a weak definition of separability



Separability (cont)

Proposition: Let f be a then for all x{

argmin f(x;, ..., x,) = <argmin J?izl | .,x%)(xl), ..., argmin f, &1 X 1)(Xn)>

and f can be optimized using n minimization along the

coordinates.

Exercice: prove the previous proposition

Ho NE ExeRCICE



Example: Additively Decomposable Functions

n

Exercice: Let f(x;,...,x,) = 2 h(x;) for h; having a unique
i=1

argmin. Prove that f is separable. We say in this case that f is

additively decomposable.

Example: Rastrigin function

" xwﬂxﬂ—
f(x) = 10n+ )’ (x? — 10 cos(27x;))




Non-separable Problems

Separable problems are typically easy to optimize. Yet

One needs to be careful when evaluating optimization algorithms
that not too many test functions are separable and if so that the
algorithms do not exploit separability.

Otherwise: good performance on test problems will not reflect

good performance of the algorithm to solve difficult problems

Algorithms known to exploit separability:
Many Genetic Algorithms (GA), Most Particle Swarm Optimization
(PSO)
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Non-separable Problems

Building a non-separable problem from a separable one

Rotating the coordinate system

» f . x+— f(x) separable
» f : x — f(Rx) non-separable

R rotation matrix

w
q

©
©

@

&
@
©
@
©
@

"® ©® 0 © e Qo 06 ~
2p) (© © ©@ © @G 220@@?©Q© O@
PO ©O© O "@Qe@'
[e) ° o ©)
» © ©©© © ’ 200,59 g 9c

. . 5 . O
-1P @@ € -1‘OO O@ @
0 20){0)10)1LO1© @@ Q ©)
—29/ ©/“\©/\©/\© : _Z@O ©O©G @O/@
‘3@;\\@?@?@?@2@3 ‘33mé@1@(ﬁo 1@9K3

Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation
distributions in evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan
Kaufmann

Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of
Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms."
BioSystems, 39(3):263-278
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lll-conditioned Problems - Case of Convex-quadratic functions

Exercice: Consider a convex-quadratic function

1 T
f(x) = E(X — x™)H(x — x™) with H a symmetric, positive, definite
(SPD) matrix.
matrix of £7—

The condition number of the matrix H (with respect to the

Euclidean norm) is defined as

Amax(H)
cond(H) = )

() being respectively the largest and smallest

with 4. () and A

eigenvalues.

max min



lll-conditioned Problems

lll-conditioned means a high condition number of the Wttt

matrix H.

Consider now the specific case of the function f(x) = 5()612 + 9x22)

1. Compute its Hm matrix, its condition number

2. Plots the level sets of f, relate the condition number to the
axis ratio of the level sets of f

3. Generalize to a general convex-quadratic function
Real-world problems are often ill-conditioned.

4. Why to you think it is the case?

5. why are ill-conditioned problems ditficult?

—(seealso—Exereice2-5—
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llI-Conditioned Problems: Curvature of Leve

Consider the convex-quadratic function
1 1 1
FOO) = (=2 H@E =) =5 ) byt +5 > by
2 2 i 2 i ’

H is Hessian matrix of f and symmetric positive definite

gradient direction —f'(x)*
Newton direction —H~1f"(x)!

\
|
)
-
-
\ - /

lll-conditioning means squeezed level sets (high curvature).

Condition number equals nine here. Condition numbers up to 1070
are not unusual in real-world problems.

If H = I (small condition number of H) first order information (e.g.
the gradient) is sufficient. Otherwise second order information

(estimation of H~1) information necessary.

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 4, 2(
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Reminder: Different Notions of Optimum

Unconstrained case
= Jocal vs. global
* |ocal minimum x*: 3 a neighborhood V of x* such that
vx eV:f(x) = f(x¥)
= global minimum: vx € Q: f(x) = f(x*)
= strict local minimum if the inequality is strict

/

(OCIL/I minumdm

o v gldn \J?ml Q qblal

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 4, 2019



Mathematical Characterization of Optima

Objective: Derive general characterization of optima

Example: if f: R — R differentiable,
f'(x) = 0 at optimal points

= generalizationto f:R" > R ?
» generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

optima of such function can be easily
approached by certain type of methods

© Anne Auger and Dimo Brockhoff, Inria TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 4, 2(



Reminder: Continuity of a Function

£V 0 Hy) — (WL | lw) is continuous in x € V if
Ve > 0,an >0suchthatvy e V: ||x—vy|ly <n; |If(x) — fFW)]||lw < €

not continuous

continuous
function discontinuity
. point

Wt ooty Aee

i

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 4, 2019



Reminder: Differentiability in 1D (n=1)

f:R — R is differentiable in x € R if

lim L&MW ovists h e R
h—0 h
Notation:
/ o f(x+h)—f(x)
f1e0 = Jim P

() 4

\
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