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Example: 1-D
𝑓1 𝑥 = 𝑎 𝑥 − 𝑥0 2 + 𝑏

where 𝑥, 𝑥0, 𝑏 ∈ ℝ, 𝑎 ∈ ℝ

Generalization:
convex quadratic function

𝑓2 𝑥 = 𝑥 − 𝑥0 𝑇𝐴 𝑥 − 𝑥0 + 𝑏
where 𝑥, 𝑥0 ∈ ℝ𝑛, 𝑏 ∈ ℝ , 𝐴 ∈ ℝ n×𝑛

and 𝐴 symmetric positive definite (SPD)

Analytical Functions

Exercise:
What is the minimum of 𝑓2(𝑥)?

:
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Reminder: level sets of a function

𝐿𝑐 = 𝑥 ∈ ℝ𝑛 𝑓 𝑥 = 𝑐}

(similar to topography lines /
level sets on a map)

Levels Sets of Convex Quadratic Functions

Continuation of exercise:
What are the level sets of 𝑓2?



Level Sets: Visualization of a Function

One-dimensional (1-D) representations are often misleading 
(as 1-D optimization is “trivial”, see slides related to curse of 
dimensionality), we therefore often represent level-sets of 
functions 

Examples of level sets in 2D
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Level Sets: Visualization of a Function

Source: Nykamp DQ, “Directional derivative on a mountain.” From Math Insight. http://mathinsight.org/applet/
directional_derivative_mountain 



Level Sets: Topographic Map

The function is the altitude

3-D picture

Topographic map
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� Probably too complicated in general, thus an example here

� Consider 𝐴 = 9 0
0 1 , 𝑏 = 0, 𝑛 = 2

a) Compute 𝑓2 𝑥 .
b) Plot the level sets of 𝑓2 𝑥 .
c) More generally, for 𝑛 = 2, if 𝐴 is SPD with eigenvalues 𝜆1 =

9 and 𝜆2 = 1, what are the level sets of 𝑓2 𝑥 ? 

Levels Sets of Convex Quadratic Functions

Continuation of exercise:
What are the level sets of 𝑓2? fz (x) = I (x-*TA Cx- xo) t b

A SPD

→
Not necessarily digonal

←



A- ( so i ) fzlxl ⇐ I (9*4×5) * lxnxz)

> f-
'z( 9×0+34=1191 -- E

i:X
.

""' ""reel:c:÷.to?:::;:i-a.

µ

-

l 'd → fu 's (g) - E

F

If A- f ! ;) , fzcxttzlxietsxzz) →



A is symmetric , positive , definite :

A = P DPT from The spectral theorem .

I is orthogonal
I contains the eigenvectors of A
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What Makes a Function Difficult to Solve?
Why stochastic search?-



Ruggedness

A cut of a 4-D function that can easily be solved with the 
CMA-ES algorithm
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Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f : [0, 1] ! R ?
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set a regular grid on [0,1] 
evaluate on f all the points of the grid 
return the lowest function value
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Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f : [0, 1] ! R ?

set a regular grid on [0,1] 
evaluate on f all the points of the grid 
return the lowest function value

easy! But how does it scale when n increases?

1-D optimization is trivial



Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to 
problems caused by the rapid increase in volume associated 
with adding extra dimensions to a (mathematical) space. 

Example: Consider placing 100 points onto a real interval, say 
[0,1]. 

How many points would you need to get a similar coverage (in 
terms of distance between adjacent points) in dimension 10? 



Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to 
problems caused by the rapid increase in volume associated 
with adding extra dimensions to a (mathematical) space. 

Example: Consider placing 100 points onto a real interval, say 
[0,1]. To get similar coverage, in terms of distance between 
adjacent points, of the 10-dimensional space [0,1]10 would 
require 10010 = 1020 points. A 100 points appear now as 
isolated points in a vast empty space. 

Consequence: a search policy (e.g. exhaustive search) that is 
valuable in small dimensions might be useless in moderate or 
large dimensional search spaces. 



Curse of Dimensionality

How long would it take to evaluate 1020 points? 



Curse of Dimensionality

How long would it take to evaluate 1020 points? 

import timeit 
timeit.timeit('import numpy as np ;  
np.sum(np.ones(10)*np.ones(10))', number=1000000) 
> 7.0521080493927

7 seconds for 106 evaluations of  

We would need more than 108 days for evaluating 1020 points 

[As a reference: origin of human species: roughly 6 x 108 days]

f(x) =
P10

i=1 x
2
i



Separability

a weak definition of separability

Given , let us define the 1-D 
functions that are cuts of  along the different coordinates:

f : x = (x1, …, xn ) ∈ℝn ↦ f(x) ∈ℝ
f

f i
(xi

1,…,xin )(y) = f(xi
1, …, xi

i−1, y, xi
i+ 1, …, xi

n )

for , with (xi
1, …, xi

n ) ∈ℝn −1 (xi
1, …, xi

n ) = (xi
1, …, xi

i−1, xi
i+ 1, …, xi

n )

Definition: A function  is separable if for all i, for all 
, for all 

f
(xi

1, …, xi
n ) ∈ℝn −1 ( ̂xi

1, …, ̂xi
n ) ∈ℝn −1

argminy f i
(xi

1,…,xin )(y) = argminy f i
( ̂xi

1,…, ̂xin )(y)



Separability (cont)

Proposition: Let  be a separable then for all f x j
i

argmin f(x1, …, xn ) = (argmin f1
(x1

2,…,x1n )(x1), …, argmin f n
(xn

1,…,xn
n −1)(xn ))

and  can be optimized using  minimization along the 
coordinates.

f n

Exercice: prove the previous proposition| HOME EXERCICE



Example: Additively Decomposable Functions

Exercice: Let  for  having a unique 

argmin. Prove that  is separable. We say in this case that  is 
additively decomposable.

f(x1, …, xn ) =
n

∑
i= 1

h i(xi) h i

f f

Example: Rastrigin function

f(x) = 10n +
n

∑
i= 1

(x2
i −10 cos(2πxi))
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Non-separable Problems

Separable problems are typically easy to optimize. Yet difficult 
real-word problems are non-separable. 

One needs to be careful when evaluating optimization algorithms 
that not too many test functions are separable and if so that the 
algorithms do not exploit separability. 

Otherwise: good performance on test problems will not reflect 
good performance of the algorithm to solve difficult problems

Algorithms known to exploit separability:  
Many Genetic Algorithms (GA), Most Particle Swarm Optimization 
(PSO)
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Non-separable Problems
Building a non-separable problem from a separable one



Lett f (x) -

- I xt Ax where A is symmetric positive definite .

Is f separable ?

If A -

- ( ? ;) , is f separable ?
f- (x) = 92*2-12×22 = he( xn) + hzlxz)

EE, Texas
f is them additivity . decomposable , so it is separable .

#-



If A is diagonal , then f is separable .

If A si not diagonal, then f not separable .

f (x) = Iz XT A x where A is not diagonal

I can write f as the rotation of a separable function :

From the spectral theorem A-=PDpt

F = I XTPDPT ×
Is Diagonal

= Lz ( PHI )TD pix g G) = texts x
-

= g (
pix) Is separable because D is

diagonalJepara:\
orthogonal
Rotation



Let f be convex quadratic , ie f -- I Ix - xDTAK- xo ) t b

where A is SPD .

(f is separable) ⇐ ( A is diagonal)

In addition
, any

convex quadratic function can be written as

fat g(Px) where g is separable
I is orthogonal



Ill-conditioned Problems - Case of Convex-quadratic functions

Exercice: Consider a convex-quadratic function 
 with  a symmetric, positive, definite 

(SPD) matrix. 
1. why is it called a convex-quadratic function? What is the Hessian 

matrix of  ? 
The condition number of the matrix  (with respect to the 
Euclidean norm) is defined as

f(x) = 1
2 (x −x⋆)H(x −x⋆) H

f
H

cond(H) = λmax(H)
λmin(H)

with  and  being respectively the largest and smallest 
eigenvalues.

λmax() λmin()

=



Ill-conditioned Problems

Ill-conditioned means a high condition number of the Hessian 
matrix .H

Consider now the specific case of the function  

  1. Compute its Hessian matrix, its condition number 
  2. Plots the level sets of , relate the condition number to the 
axis ratio of the level sets of  
  3. Generalize to a general convex-quadratic function 

f(x) = 1
2 (x2

1 + 9x2
2)

f
f

Real-world problems are often ill-conditioned.  
   4. Why to you think it is the case? 
   5. why are ill-conditioned problems difficult?  
      (see also  Exercice 2.5) 

manicure

room
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An ill - conditioned convex
- quadratic problem will have a large ratio between

the largest axis and smallest axis of the ellipsoid level set
.

Why do we often emanate ill- conditioned problems ( in the real world) ?

→ Because we optimize often variables that have different units /scales
with different order of magnitude .
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Consider the convex-quadratic function

𝑓 𝒙 =
1
2
𝒙 − 𝒙∗ 𝑇𝐻 𝒙 − 𝒙∗ =

1
2𝑖

ℎ𝑖,𝑖𝑥𝑖2 +
1
2𝑖,𝑗

ℎ𝑖,𝑗𝑥𝑖𝑥𝑗

H is Hessian matrix of 𝑓 and symmetric positive definite

Ill-conditioning means squeezed level sets (high curvature). 
Condition number equals nine here. Condition numbers up to 1010

are not unusual in real-world problems. 

If 𝐻 ≈ 𝐼 (small condition number of 𝐻) first order information (e.g. 
the gradient) is sufficient. Otherwise second order information 
(estimation of 𝐻−1) information necessary.

gradient direction −𝑓′ 𝑥 𝑇

Newton direction −𝐻−1𝑓′ 𝑥 𝑇oof
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Unconstrained case
� local vs. global

� local minimum 𝒙∗: ∃ a neighborhood 𝑉 of 𝒙∗ such that
∀𝒙 ∈ V: 𝑓(𝒙) ≥ 𝑓(𝒙∗)

� global minimum: ∀𝒙 ∈ Ω: 𝑓 𝒙 ≥ 𝑓 𝒙∗

� strict local minimum if the inequality is strict

Reminder: Different Notions of Optimum

H
local minimum [ local a-globalbut notglobal

minimum
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Objective: Derive general characterization of optima

Example: if 𝑓:ℝ → ℝ differentiable,
𝑓′ 𝑥 = 0 at optimal points

� generalization to 𝑓:ℝ𝑛 → ℝ ?
� generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

Mathematical Characterization of Optima

optima of such function can be easily 
approached by certain type of methods
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𝑓: (𝑉, | | 𝑉) ⟶ (𝑊, | | 𝑊) is continuous in 𝑥 ∈ 𝑉 if
∀𝜖 > 0, ∃𝜂 > 0 such that ∀𝑦 ∈ 𝑉: |𝑥 − 𝑦| 𝑉 ≤ 𝜂; ||𝑓 𝑥 − 𝑓(𝑦)||𝑊 ≤ 𝜖

Reminder: Continuity of a Function

continuous
function

not continuous

discontinuity
point

#continuous here

-
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𝑓:ℝ → ℝ is differentiable in 𝑥 ∈ ℝ if

lim
ℎ→0

𝑓 𝑥+ℎ −𝑓(𝑥)
ℎ

exists, ℎ ∈ ℝ

Notation:
𝑓′ 𝑥 = lim

ℎ→0
𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ

The derivative corresponds to the slope of the tangent in 𝑥.

Reminder: Differentiability in 1D (n=1)


