TC2 - Optimization

CLASS 3. 19.11.2020

. How do we generalize the notion of derivative of a function for n = 1 to n > 1?

Diferential of f: Rn ~> Rm

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$, we say that f is differentiable in xif there exists a linear transformation $Df_x: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ such that $f h \in \mathbb{R}^n$ $f(x+h) = f(x) + Df_x(h) + \circ(\|h\|)$

If n = 1 $Df_x(h) = f(x)h$

A is a uxn matrix $\int f(x) = ||x||^2$ Exercice: f(x) = Ax $Df_x = ?$ $Df_x = ?$

CHAIN RULE :

fg' + gf' = (fg)

We go back to $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ [m=1]

When f: Rⁿ -> R is differentiable in x, Here is a specific

representation of the differential of f in x. $Df_x: \mathbb{R}^n \to \mathbb{R}$ $\exists a \in \mathbb{R}^n$ such that $Df_x(h) = \langle a, h \rangle = a^T h$ scaler or dot product.

[This Riesz representation] The vector a has a specific name comes from theorem] The vector a has a specific name a = Pfx [Gradient of finx]

GEOMETRICAL INTERPRETATION OF THE GRADIENT

 $f_1(x) = x_1$ $f_2(x) = ||x||^2$

Second order de rivability / differentiability.

 $n = \Delta (\Lambda D core).$

Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable on \mathbb{R} and let $f: x \to f(x)$ be its derivative function.

If f' is derivable / differentiable, then we denote f''(x)its derivative.

f"(x) is called the second order derivative of f

If f is two times differentiable klen $f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(x)h^{2} + o(\|h\|^{2})$

SECOND ORDER TAYLOR FORMULA

If $f(x) = \frac{1}{2} \times A \times with A symmetrix ux h.$ $Herrian(f) = \mathcal{P}_{f}^{2} = A$

If A is not symmetric then $D^2 f = \frac{1}{2} (A + A^T)$

Second order Taylor formula: If $f:\mathbb{R}^n \longrightarrow \mathbb{R}$ is twice differentiable, then $f(x+h) = f(x) + Pf(x)^T h + \frac{1}{2}h^T P_f(x)h + o(11h11^2)$

GRADIENT DIRECTION VERSUS NEWTON DIRECTION

Gradient direction: Df(x)Newton direction: $[D^2f(x)] = 1$ Df(x)

Hone Exercice: We go back to the convex quadratic case

where $f(x) = \frac{1}{2} \times THx$, $x \in \mathbb{R}^2$, $H = \begin{pmatrix} g & o \\ o & 1 \end{pmatrix}$

1) Plot level set of f

2/ Plot the gradient direction

2) Compute the Newton direction, plot Newton direction.