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Derivability or differentiability
Let assume n -- t

,
let f : IR → IR

.

we say that f is derivable / differentiable in x if

dim flxth)-f exists
,
the limit is denoted

h -so h
f
'

(x) and is
n call derivative of

fin x

↳ 'i'ingesting in × .
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f
'
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→this's eIf f is differentiable in x then

flxth) = flx) + fix) h + ocnhll)
linear

.

-
Taylor expansion of f in x at the first order .

For h small enough htsflxeh) is approximated by
his flx) tf

'

Ix) h
-

first order approximation of f

Inkpot geometrically IT!-77%1,
-



How do we generalize the notion of derivative of a•

function for n = t to n> t ?

Differential of f : IR
"

→ IRM
-

Let f : IR
"
→ Pim

,
we say that f is differentiable in x

if there exists a linear transformation Dfx : IR
"

→ Rm such| that th E IR" f Ix th) = flxl + Dfx ( h) to ( Hh ll)
-

If n= a Dfxlh) = fix) h

Exercise flxl - Ax A is a uxn matrix / f 1=11×112Dfx = ? Dfx = ?



flxl -- A x A nxn matrix
.

To show that f is differentiable and to find Dfx we

need to look at faith) = A (x th)
= Ax +Ah
= fix) + Ah

his Axh is linear
, so f is differentiable in x

and Dfx = A Dfxlh) = Ah .

If flxt- 11×112 = xtx
f Ix th) = (*tht (xth) = xtxtxththtxthh

= xtx t Ext h t hth

htx = xtch
in

( hjH¥ ht =ExIxt# = 0111hm)
Lts 2xth is linear in h

Dfx = 2x't



CCHAINRULE.f.IR-s th , g :
IR-s IR

( fog) 'lx)=fYgc×Dgq Ig't gf '= Cfg)

Imposition

fig
, :L
" foglxtflglxl) -- sink)
taiga. " " ×.

] "IIt
"

product .
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e go back to f : IR
"
→ IR Em = a]

When f : IR
"
→ IR is differentiable rn x

,
there is a specific

representation of the differential of f in x . Dfx : Pi→ R
F a EIR" such that Df, ( h ) = ca , h> = ath

Slater or dot product .

[Thisdriest representation ] The vector a has a specific name
comes from

a pf, [ Gradient of fin x)



The gradient can also be defined with partial derivatives
.

f : IR
"
→ IR

fi: : yeah→ f (xd. . . .x:
-
'

sq,
xoi"
.
. .

,
x.
")

ith coordinate

of
=p:o)

.

Dfx=/ ?¥
"
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Exercise compute the gradient of
flxt xn x E IR"

legit, at
.
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• fix) -- atx a -- f!! )
= an Xat- . - faux n

Dfx -- f!!)
• f (x )= 11×112= xTx=÷Zxi2 = xihtxzt . . .txu

This is compliant with what
we had

Df, =L??!! ) -- 2x Dfxlh) z¥¥e, before

= Dfxth
↳ ⇒ Dfx -- 2x .



GEOMETRICAL INTERPRETATION of THE GRADIENT

fix ) = Xi fz (x) = 11×112

I lot on two figures for n -- 2 , the level set of fi , fz
and also plot Dfa , Dfz on

the figures .

!§= / x ER
"

, fix) -- c) level set

felt , xz ) = xp



ffxr, xz) = x , Lc =L X -- fan , xD EIR
? I Xi = c}

*

←
level sets ( points with constant

→
→

first coordinate )
-3

Xp! =.

*is
on this plot the gradient is orthogonal to the level set .



flu ,
xz) = Hxh ? Xi -1×22

Dfx = 2x
^

'

*
*
TB.

The gradient is orthogonal to the level sets .



More generally , the gradient of a differentiable function
is orthogonal to its level sets

.

⇒
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Second order deniability / differentiability .

n = 1 ( t D case) .

Let f : IR → IR be differentiable on IR and let

f ! x → f'Cx) be its derivative function .

If f
'

is derivable / differentiable , then we denote f
"

Cx )
its derivative .

f-
" ( x) is called the second order derivative of f .

If f is two times differentiable then

flxth) = flxl tf
'

G) h t#
"K) h't ocllhll)

2

SECOND ORDER TAYLOR FORMULA



for h small enough ht flxltflxlhtzf
"Cx) h
'(which

is a quadratic function) approximates f .
This is called a

second order approximation off .
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We want to generalize the second order derivative to

functions f : IR
"
→ IR

.

The Hessian matrix generalizes f
" K)

aye
2xn2xn

÷::":÷÷¥f÷¥¥: f :¥.÷÷...

"

Schwarz theorem
"I

:÷
.

matrix
. at

srxidxn

Example flx) = ExTAX A symmetric . nxn matrix

compute DF .

Start with A- = ( : i)



A- = ( { i) flxe.ae/=zxtAxx--.I)=I(9xihtXa2t2xrxz)
2

!¥==If2*9xet2xa) → 9

¥
-

- E ( 2×2+2*1 27
2×2 2×72×2=1

sit
⇒I-_ II. (Ikxz-izx.DZ/xztxd=1t7f=f? ⇒

=
A

jf a

g× (9*-1×2)=1



If flx) -- Ext A x with A symmetric uxn .

Hessian ( ft DH = A

If A is not symmetric then DF =L ( At AJ

seundordutaylorfo.mu/a:Iff:iRh-slRis twice differentiable , then

flxth) -- f (x) t Dflx)Th + I ht Phx) h t ohh 114



Last time we have seen that a ill -conditioned convex - quadratic
problem flxt. I ( x - xdjt A (x- xa) is a problem where
the matrix A is ill- conditioned . [ where A is symmetric positive

definite .

Now we know that A is the Hessian matrix of f .

f : IR
' -3119

More generallyna function Vwhere He Hessian matrix exists is

anditiouned@tifutfor95EgYIghitictmdiiHis.iltanditioned .

-

j
level set of
fkktlx-xgtak.in)



GRADIENT DIRECTION VERSUS NEWTON DIRECTION
-

Gradient direction : Dflx )
Newton direction : [1741×1]-1 Dyk)

4onEExERcicE# we
go back to the convex quadratic case

where fld = I xttlx , x EIR
'

, H = ( f !)
y Pelot level set off
4 Ibt the gradient detection

21 Compute the Newton direction
, plot Newton detection .


