TC 2 - Optimization
Derivability or differentiability
Let assume $n=1$, let $f: \mathbb{R} \rightarrow \mathbb{R}$.
We say that f is derivable / differentiable in x if $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exists, the limit is denoted
 call derivative of f in x
is the stope of the tangent in x.

If f is differentiable in x them

$$
\begin{aligned}
& f \text { is differentiable in } x \text { them } \\
& f(x+h)=f(x)+f^{\prime}(x) h+o(\|h\|)
\end{aligned}
$$ linear.

Taylor expansion of f in x at the first order.
For h small enough $h \longmapsto f(x+h)$ is approximated by

$$
h \longmapsto \underbrace{f f(x)+f^{\prime}(x) h}
$$

fist order approximation of f
Interpret geometrically

- How do we generalize the notion of derivative of a function for $n=1$ to $n>1$?

Differential of $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we say that f is differentiable in x if there exists a linear transformation $D f_{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $\forall h \in \mathbb{R}^{n} \quad f(x+h)=f(x)+D f_{x}(h)+o(\|h\|)$

$$
\text { If } n=1 \quad D f_{x}(h)=f^{\prime}(x) h
$$

Exucice: $\begin{array}{lll}f(x)=A x \quad A \text { is a un matin } & f(x)=\|x\|^{2} \\ D f_{x}=?\end{array}$
$f(x)=A x \quad A \quad n \times n$ matin.
To show that f is differentiable and to find $D f_{x}$ we meed to look at $f(x+h)=A(x+h)$

$$
\begin{aligned}
& =A x+A h \\
& =f(x)+A h
\end{aligned}
$$

$h \mapsto A$ isth is linear, so f is differentiable in x and $D f_{x}=A \quad D f_{x}(h)=A h$.

If $f(x)=\|x\|^{2}=x^{\top} x$

$$
\begin{aligned}
& f(x+h)=(x+h)^{\top}(x+h)=x^{\top} x+x^{\top} h+h^{\top} x+h^{\top} h \\
&=x^{\top} x+2 x^{\top} h+\underbrace{h^{\top} h} \\
&=0(\|h\|)
\end{aligned}
$$

$$
h^{\top} x=x^{\top} h
$$

$$
D f x=2 x^{\top}
$$

Chain rule :

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \longrightarrow \mathbb{R} \\
& (f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& f g^{\prime}+g f^{\prime}=(f g) \\
& \left.\begin{array}{ll}
\stackrel{\text { g }}{x} \sin (x) \\
x \stackrel{g}{\longleftrightarrow} x^{2}
\end{array} \quad \begin{array}{l}
f \circ g(x)=f(g(x))=\sin \left(x^{2}\right) \\
\\
f(x) g(x)=\sin (x) x^{2}
\end{array}\right] \begin{array}{c}
\text { composition } \\
\neq \\
\text { product }
\end{array} \\
& D(f \circ g)_{x}(h)=D f_{g(x)}\left(D g_{x}(h)\right)
\end{aligned}
$$

We go back to $f: \mathbb{R}^{n} \longrightarrow \mathbb{R} \quad[m=1]$
When $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable in x, there is a -specific representation of the differential of f in $x . D f_{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ $\exists a \in \mathbb{R}^{n}$ such that $D f_{x}(h)=\langle a, h\rangle=a^{\top} h$ scalar or dot proved.
$\left.\begin{array}{c}{[\text { This priest representation }} \\ \text { comes from theorem }\end{array}\right]$ The vector a has a specific name

$$
a=\nabla f_{x} \quad[G r a d i e n t ~ o f ~ f i n x]
$$

The gradient can also be defined with partial derivatives.

$$
\begin{aligned}
& f: \mathbb{R}^{n} \longrightarrow \mathbb{R} \\
& f_{x_{0}}^{i}: y \in \mathbb{R} \longrightarrow f\left(x_{0}^{1}, \ldots, x_{0}^{i-1}, y_{\uparrow}, x_{0}^{i+1}, \ldots, x_{0}^{n}\right) \\
& \frac{\partial f}{\partial x_{i}}=\left(f_{x_{0}}^{i}\right)^{\prime} \\
& D f_{x}=\left(\begin{array}{l}
\frac{\partial f}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(x)
\end{array}\right)
\end{aligned}
$$

Exercice: Compute the gradient of

$$
\begin{aligned}
& \left\{\begin{array}{l}
f(x)=x_{1} \quad x \in \mathbb{R}^{n} \\
f(x)=a^{\top} x \quad a=\left(\begin{array}{c}
a_{1} \\
1 \\
a_{n}
\end{array}\right) \\
f(x)=x^{\top} x
\end{array}\right. \\
& \text { - } f(x)=x_{1} \quad \nabla f_{x}=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{1}}
\end{array}\right) \\
& x_{1} \stackrel{f^{2}}{\stackrel{1}{\rightarrow} f(x)=x_{1}\left[f^{1}\left(x_{1}\right)\right]^{\prime}=1} \\
& x_{2} \xrightarrow{f^{2}} f(x)=x_{1} \quad f^{2} \text { is constant } \\
& {\left[\begin{array}{l}
\text { w.r.t } x_{2} \\
{\left[f^{2}\left(x_{2}\right)\right]^{\prime}=0}
\end{array}\right.} \\
& D f_{x}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \begin{aligned}
f(x) & =a^{\top} x \quad a=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) \\
& =a_{1} x_{1}+\cdots \tan a_{n}
\end{aligned} \\
& D f_{x}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right) \\
& \text { - } f(x)=\|x\|^{2}=x^{\top} x=\sum_{i=1}^{n} x_{i}^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \\
& \nabla f_{x}=\left(\begin{array}{c}
2 x_{1} \\
2 x_{2} \\
\vdots \\
2 x_{n}
\end{array}\right)=2 x \\
& \text { This is compliant with what } \\
& D f_{x}(h)=2 x^{\top} h \text { we had before } \\
& =\langle\nabla f x, h\rangle \\
& =\nabla f_{x}^{\top} h \\
& \Leftrightarrow \nabla f_{x}=2 x \text {. }
\end{aligned}
$$

Geometrical interpretation of the gradient

$$
f_{1}(x)=x_{1} \quad f_{2}(x)=\|x\|^{2}
$$

Plot on two figures for $n=2$, the level sets of f_{1}, f_{2} and also plot $D f_{n}, \nabla f_{2}$ or the figures.

$$
\begin{aligned}
\operatorname{Lu}_{\substack{R}} & \left\{x \in \mathbb{R}^{n}, f(x)=c\right\} \text { level set } \\
& f_{1}\left(x_{1}, x_{2}\right)=x_{1}
\end{aligned}
$$

$$
f\left(x_{1}, x_{2}\right)=x_{1} \quad L_{c}=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}=c\right\}
$$

On this plot the gradient is orthogonal to the level set.

$$
f\left(x_{1}, x_{2}\right)=\|x\|^{2}=x_{1}^{2}+x_{2}^{2}
$$

$$
D f_{x}=2 x
$$

The gradient is orthogonal to the level sets.

Tore generally, the gradient of a differentiable function is orthogonal to its level sets.

Second order derivability / differentiability.

$$
n=1 \quad(1 D \text { case }) .
$$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable on \mathbb{R} and let $f^{\prime}: x \rightarrow f^{\prime}(x)$ be its derivative function.
If f^{\prime} is derivable / differentiable, then we denote $f^{\prime \prime}(x)$ its deivative.
$f^{\prime \prime}(x)$ is called the second order derivative of f.
If f is two times differentiable then

$$
f(x+h)=f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}+o\left(\|h\|^{2}\right)
$$

seed order taylor formula
for h small ensergh $h \mapsto f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}$ (which is a quadratic function) approximates f. This is called a second order approximation of f.

$f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x)$ quadratic approcimat of h

We want to generalize the second order derivative to functions $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$.

The Hessian matrix generalizes $f^{\prime \prime}(x)$

Example: $f(x)=\frac{1}{2} x^{\top} A x \quad$ A symmetric. $n \times n$ matuik Compute $\nabla^{2} f$.
Start with $A=\left(\begin{array}{ll}9 & 1 \\ 1 & 1\end{array}\right)$

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
9 & 1 \\
1 & 1
\end{array}\right) \quad f\left(x_{1}, x_{2}\right)=\frac{1}{2} x^{\top} A x \quad x=\binom{x_{1}}{x_{2}} \\
& =\frac{1}{2}\left(9 x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}\right) \\
& \frac{\partial f}{\partial x_{1}}=\frac{1}{2}\left(2 \times 9 x_{1}+2 x_{2}\right) \rightarrow \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}=9 \\
& \frac{\partial f}{\partial x_{2}}=\frac{1}{2}\left(2 x_{2}+2 x_{1}\right) \quad \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}=1 \\
& \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}=\frac{\partial}{\partial x_{1}}\left(\frac{1}{2}\left(2 x_{2}+2 x_{1}\right)\right)=\frac{\partial}{\partial x_{1}}\left(x_{2}+x_{1}\right)=1 \\
& \nabla^{2} f=\left(\begin{array}{ll}
9 & 1 \\
1 & 1
\end{array}\right) \\
& \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}=\frac{\partial}{\partial x_{2}}\left(9 x_{1}+x_{2}\right)=1
\end{aligned}
$$

If $f(x)=\frac{1}{2} x^{\top} A x$ with A symmetric $u x n$.

$$
\operatorname{Hasiam}(f)=D^{2} f=A
$$

If A is not symmetric then $D^{2} f=\frac{1}{2}\left(A+A^{\top}\right)$
Sewed order Taylor formula:
If $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is twice differentiable, then

$$
f(x+h)=f(x)+\nabla f(x)^{\top} h+\frac{1}{2} h^{\top} \nabla^{2} f(x) h+o\left(\|h\|^{2}\right)
$$

Lart time we have seen that a ill-conditionned convex-quaduate problem $f(x)=\frac{1}{2}\left(x-x^{2}\right)^{\top} A\left(x-x^{2}\right)$ is a problerm where the matix A is ill conditionned. where A is sumnethic pastive definte. Now we know that A is the Hestion mativix of f.

Tore generally a a fur funt function wherere the Hersian matix exich is is ill-conditionned if $D^{2} f(x)$ is. ilt-conditionned.
) Level sets of

Gradient drection versus newton direction
Gradient direction: $\operatorname{If}(x)$
Newton direction: $\left[D^{2} f(x)\right]^{-1} D f(x)$
Hone Exercicé: We go back to the convex quadratic case where $f(x)=\frac{1}{2} x^{\top} H x, \quad x \in \mathbb{R}^{2}, \quad H=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right)$

1) Plot level set of f
2) Plot the gradient direction
3) Compute the Newton direction, plot Newton direction.
