TC2 - Optimization for ML

1) About the EXAM : written exam week from 14-18 December at the university. 13:30 \rightarrow 15:30 2Hours without documents.

For the $3 / 4$ of you who cannot be present, we will organize an oral exam.

- Gradient direction : $\nabla f(x)$
- Newton direction: $\left[\nabla^{2} f(x)\right]^{-1} \nabla f(x)$
- $f(x)=\frac{1}{2} x^{\top} A x \quad x \in \mathbb{R}^{2}, \quad A=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right)$

Plot $\nabla f(x), \quad\left[\nabla^{2} f(x)\right]^{-1} \nabla f(x)$ and level set of f.

$$
\begin{aligned}
& \nabla f(x)=\binom{9 x_{1}}{x_{2}} \\
& \nabla^{2} f(x)=A=\left(\begin{array}{cc}
9 & 0 \\
0 & 1
\end{array}\right) \\
& {\left[\nabla^{2} f(x)\right]^{-1}=\left(\begin{array}{cc}
\frac{1}{9} & 0 \\
0 & 1
\end{array}\right) ;\left[\nabla^{2} f(x)\right]^{-1} \nabla f(x)=\left(\begin{array}{cc}
\frac{1}{9} & 0 \\
0 & 1
\end{array}\right)\binom{g_{1}}{x_{2}}=\binom{x_{1}}{x_{2}}} \\
& \\
& =x
\end{aligned}
$$

Newton direction: -x

What if $f(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) \quad \nabla f^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

Af $x=\binom{-4}{-5} \quad \nabla f(x)=\binom{-9.4}{-5}$

What about the Newton and - If in this case?

Newton direction

$$
=
$$

We observe that the Newton direction points towards the optimum indepeudeutly of the condition number of the Hessian matrix.
whereas - $\nabla f(x)$ points towards the optimum $\left.\begin{array}{l}\text { at } x=(1) \\ 1\end{array}\right)$ and only if
$\nabla^{2} f(x)=$ Id and the condition number equal to 1 .

If the Herrian matrix is not diagonal anymore: $f(x)=\frac{1}{2} x^{\top} A x$

symmetric
A positive, definite A not diagonal

$$
-D f(x)(h)=-D f(x) \cdot h
$$

Optimality conditions:
Assume $f: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable ($f^{\prime}(x)$ exists for all x) Which one of the following statements are correct:
(1) $f^{\prime}\left(x^{*}\right)=0 \Rightarrow x^{t h}$ is a local optimum WRoNG
(2) x^{*} is a local optimum $\Rightarrow f^{\prime}\left(x^{k}\right)=0$ CORRECT

(3) $f^{\prime}\left(x^{x}\right)=0 \Rightarrow x^{2}$ is a global optimum wrong
(4) x^{*} is a global optimum $\Rightarrow f^{\prime}\left(x^{k}\right)=0 \quad$ CORRECT
(2) gives a first order necessary condition.
$\frac{\text { THEOREm: }}{\text { (first order necessary condition) }}$
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function. If x^{k} is a local optimum of f then $D_{f}\left(x^{*}\right)=0$. minimum or maximum

Interpretation when $n=1$:

PRoof for $n=1$:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

assume that x^{k} is a local minimum: $f\left(x^{2}\right) \leq f\left(x^{k}+h\right) \quad \forall h$ small en rough

$$
\begin{aligned}
& \text { Ah) is } \\
& \text { the slope of } \\
& \text { for } h=0 \\
& \text { slope } \leq 0,
\end{aligned} \sum_{\text {for } h \geqslant 0}^{\text {slope }} \text { All) is the slope }
$$

$$
\begin{aligned}
& \geqslant 0 \\
& A(h)=\frac{f\left(x^{\alpha}+h\right)-f\left(x^{\alpha}\right)}{h} \\
& \rightarrow \text { if } h \geqslant 0 \quad A(h) \geqslant 0 \\
& \text { if } h \leq 0 \quad A(h) \leq 0 \\
& \begin{array}{ll}
& \lim _{h \rightarrow 0} \underbrace{h \geqslant 0}_{\substack{A(h)} f^{\prime}\left(x^{2}\right) \geqslant 0} \text { if } \\
\lim _{h \rightarrow 0} \\
h \leq 0 \\
h_{s 0}^{A(h)}
\end{array}=f^{\prime}(x) \leq 0 \quad f^{\prime}(x)=0
\end{aligned}
$$

SECOND ORDER NECESSARY AND SUFFICIENT CONDITIONS:
Let assume that f is twice continuously differentiable
NECESSARY CONDITION: If x^{+}is a local minimum, then $\nabla f\left(x^{\alpha}\right)=0$ and $D^{2} f(x)$ is positive semi-definite.

$$
\left(\text { if } n=1, x^{2} \text { is a local minimum } \Rightarrow f^{\prime}\left(x^{k}\right)=0, f^{\prime \prime}(x) \geqslant 0\right)
$$

SUfficient condition: If x^{*} which satisfies $\nabla f\left(x^{2}\right)=0$ and $\nabla^{2} f(x)$ is positive definite, then x^{*} is a strict bal minimum.

$$
\text { (if } \left.n=1, x^{k} \text { such that } f^{\prime}\left(x^{a}\right)=0 \quad f^{\prime \prime}(x)>0 \Rightarrow x^{2} \text { is a strict local } \quad \text { minimum }\right)
$$

Example: $\quad f(x)=x^{2}, f^{\prime}(x)=2 x \quad f^{\prime \prime}(x)=2$

0 Satisfies that $f^{\prime}(0)=2 \times 0=0$ and $f^{\prime \prime}(0)=2>0$
$\Rightarrow 0$ is a strict local minimum

CONVEX FUNCTIONS
Let $f: U \subset \mathbb{R}^{n} \longrightarrow \mathbb{R}$. We say that f is convex, if for all $x, y \in U$ open comer ant $\quad \forall t \in[0,1]$

$$
f((1-t) x+t y) \leq(1-t) f(x)+t f(y)
$$

ThEOREM: If f is differentiable, then f is convex if and only if for all $x, y \quad f(y)-f(x) \geqslant \nabla f(x)^{\top}(y-x)=\nabla f(x) \cdot(y-x)$

$$
\text { If } n=1 \quad f(y)-f(x) \geq f^{\prime}(x)(y-x)
$$

Theorem: If f is thrice continuously differentiable, then f is convex of and only if $D^{2} f(x)$ is positive semi- definite for all x.
If $n=1$ is trice deviate, then f is convex if and only if $f^{\prime \prime}(x) \geqslant 0$

Examples: $f(x)=x^{2}$ is convex (because $f^{\prime \prime}(x)=2 \geqslant 0$)

$$
\begin{array}{ll}
f(x)=-x^{2} & \left(f^{\prime \prime}(x)=-2 \rightarrow f\right. \text { is not convex)} \\
f(x)=\log (x) & \left(f^{\prime}(x)=\frac{1}{x}, f^{\prime \prime}(x)=-\frac{1}{x^{2}} \leq 0 \rightarrow f \text { is not convex }\right)
\end{array}
$$

$f(x)=x \quad f$ is convex $f^{\prime \prime}(x)=0$
Examples of convex functions:

- $f(x)=\frac{1}{2} x^{+} A x \quad$ A sym. pos. definite
- $f(x)=a^{\top} x+b \quad a \in \mathbb{R}^{n}, \quad b \in \mathbb{R}^{n}$
- the negative of the entropy: $f(x)=-\sum_{i=1}^{n} x_{i} \log \left(x_{i}\right)$

EXERCICE: Let $f: \cup \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex and differentiable Junction.

Prove that if $\operatorname{Df}\left(x^{\alpha}\right)=0$, then x^{2} is a global minimum.
If f is convex and differentiable we have: $\forall x, y$

$$
f(y)-f(x) \geqslant \nabla f(x)^{\top}(y-x)
$$

If x^{*} is such that $D f\left(x^{k}\right)=0$, then $f(y)-f\left(x^{2}\right) \geqslant \underbrace{D f\left(x^{2}\right)^{\top}\left(y-x^{2}\right)}_{=0}$

$$
f(y)-f\left(x^{2}\right) \geqslant 0 \quad \forall y
$$

then $\forall y \quad f(y) \geqslant f\left(x^{*}\right)$
which means that x^{k} is the global minimum of f.
differentiable
The important consequence is that for convex functions critical points, points where $D f(x)=0$, are global minima of the functions.

Picture with level sets

from Taylor formula:

$$
f(x+h)=f(x)+D f(x)^{\top} h+0(\|h\|)
$$

h small $f(x+h) \simeq f(x)+D f(x)^{\top} h$

$$
L_{s} f(x t-\underbrace{\sigma \nabla f(x t)}_{h}) \approx f(x t)+\nabla f(x t)^{\top}(-\sigma \nabla f(x t))=f(x t)-\sigma \nabla f(x t)^{\top} \nabla f(x t)=f(x t)-\sigma\|\nabla f(x t)\|^{2}
$$

Choice of the step-size?
optimal step-size: $o t=\arg \min _{\substack{\sigma \geqslant 0}} f(x t-\sigma D f(x t))$
Typically too expensive to do those 1D optimization perfectly there exists different techniques. One widely used one is Armijo rule.

When do we stop the overall algunthm
\rightarrow We can track $f(x t+1)-f(x t)$ (stop when it's small)
\rightarrow We can stop $\wedge\|D f(x t)\|$ is small. when

Remark:
If instead of minimizing f, I want to maximize f. we talk about gradient ascent (instead of gradient descent) and the update reads:

$$
x_{t+1}=x t+o t \nabla f(x t)
$$

You can always turn $\max _{x} f(x)$ into $\min (-f(x))$

Gradient descent is slow on ill-conditionned problems:

On a ill-conditionned function -of typically posits in the "wong" direction and the convagence will be slow.
\rightarrow This is also something that can be proven: the convergence rate is slower the lager the condition number is.

The Newton direction prints towards the optimum on convex quadratic functions.

On functions that are not convex-quadratic, the Newton direction will typically Nor points towards the optimum. Yet it will be a good direction to follow when you can approximate the function by sits second order Taylor expansion (i.e for twice contimessly differentiable function).
We can use the Newton direction - $\left.\mathrm{F}^{2} f(x t)\right]^{-1}$ of $(x t)$ as a descent direction.

Ls It minimizes the locally quadratic approximation of f.

$$
f(x+\Delta x)=f(x)+\Delta f(x)^{\top} \Delta x+\frac{1}{2}(\Delta x)^{\top} \nabla^{2} f(x) \Delta x
$$

In some settings we can compute the Newton direction analytically, in which care we should do.
Yet we seed to approximate numerically $\left[D^{2} f(x)\right]$ and invert it, this can be too expensive.

QUASi-NENTON NETHOD: BFGS ["old" still state- of the ort]

$$
x t+1=x t-\text { ot Ht } \nabla f(x t)
$$

approximation of the inverse of $\nabla^{2} f(x t)$
Ht is updated iteratively using Df(xt) and approximates of of Wikipedia page for updates of algorithm
\rightarrow Implemented in toolboxes [also large-scale version, L-BFGS limit memory $B F G S$]

STOCHASTIC GRADIENT DESCENT
Minimize loss function of the following form:

$$
\begin{aligned}
Q(\omega)=\frac{1}{N} \sum_{i=1}^{N^{T}} Q_{i}(\omega) \quad N & \begin{array}{l}
\text { \# Data } \\
\\
\end{array} \quad \text { \# Examples }
\end{aligned}
$$

wean be the weights of Neural Network.
Assume we are in a supervied learning setting, we have a classification task.

Qi lw): prediction error made if we use weight w to predict CAT
image i

How do we minimize \&?
Gradient descent: $\nabla Q(\omega)=\frac{1}{N} \sum_{i=1}^{N} \nabla Q_{i}(\omega)$

$$
w t+1=w t-\sigma t D Q(w t) \quad \text { [Update of weights] }
$$

BACKPROPAGATICN algorithm is an algorithm to compute $D Q_{i}(\omega)$
Typically N is very large, computation of all DPi(ω) $i=1, \ldots, N$ is too expensive.
Instead we use an approximation of $D Q(\omega)$:

$$
\begin{gathered}
D Q(\omega) \underset{\substack{T \\
\text { approximated }}}{\approx} D Q_{i}(\omega) \quad\left[\begin{array}{c}
\text { Gradient of a single } \\
\text { example }]
\end{array}\right.
\end{gathered}
$$

Also do mini -batches:

$$
\nabla Q(\omega) \approx \frac{1}{\text { nbatches }} \sum_{i=1}^{\text {notches }} D_{i}(\omega) \quad \text { nbatches } \angle C N \text {. }
$$

Stochastic Gradient Descent :
CHOOSE AN INITIAL VECTORS OF PARAMETERS AND A STEP-SIZE η WHILE NOT HAPPY

- Randomly shuffle examples in thairing set
- For $i=1, \ldots, N$

We bop over the

$$
\omega \longleftarrow \omega-\eta \nabla Q_{i}(\omega)
$$ examples

possibly mini-batches

Not creed:- chaise of step-size. (Step-size adapted using "momentum techniques" in particular ADAn step-size update which is WIDELY used)

- increase / choice of mini-batches

