
Optimization for Machine Learning

Lecture 6: Discrete Optimization

December 10, 2020

TC2 - Optimisation

Université Paris-Saclay

Anne Auger and Dimo Brockhoff

Inria Saclay – Ile-de-France

2TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 2

Date Topic

Thu, 5.11.2020 DB Introduction to (Continuous) Optimization

Thu, 12.11.2020 AA Continuous Optimization I: differentiability, gradients,

convexity, optimality conditions

Thu, 19.11.2020 AA Continuous Optimization II: constrained optimization,

Lagrangian relaxation, gradient-based algorithms,

stochastic gradient

Thu, 26.11.2020 AA Continuous Optimization III: stochastic algorithms,

derivative-free optimization

Thu, 3.12.2020 AA Discrete Optimization I: graph theory, greedy

algorithms Continuous Optimization IV

Thu, 10.12.2020 DB Discrete Optimization

Thu, 17.12.2020 Final exam

Course Overview

3TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 3

Written for those who can be there

 multiple choice, typically 4 answers each (1-4 answers correct)

 closed book (nothing allowed but pen)  easier questions 

 next Thursday (Dec. 17) @ 1:30pm 1:45pm

 2 hours

Oral exam for those who can’t be there for the written exam

 also closed book 

 20 min slots via Zoom or MS Teams

 please let me know today if you are one of those students

 best by e-mail during the break (include your name and

your availability)

 we will schedule the exams by tomorrow

 possible slots Thursday or Friday morning next week

(optimally all consecutive)

Concrete Information About Exam

4TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 4

Combinatorial Optimization

 Search space not necessarily

anymore a subset of ℝ𝑛

 for example, optimization on

graphs

ML example:

structure optimization of neural

networks

Discrete Optimization

Integer Programming

 variables are integers

 simplest example:

optimization in 0, 1 𝑛

ML example:

hyperparameter tuning with

algorithm parts being present

(𝑥𝑖 = 1) or not (𝑥𝑖 = 0)

5TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 5

Exercise: Differences Continuous/Discrete Opt.

What are the differences between

continuous and discrete optimization?

local/global optima

6TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 6

Important Differences/Observations

 finite search space  still: enumeration impracticable

 discrete neighborhood, sometimes not even clear how to define

 gradient inexistent  follow locally best neighbor?

 different neighborhoods, different definition of local optimum!

example later

 partial evaluations common for discrete problems

 blackbox vs. greybox vs. whitebox

…meaning that solvers for discrete problems are typically more specialized

Discrete vs. Continuous Optimization

7TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 7

Algorithms for discrete problems:

 often highly problem-specific

 but some general concepts are repeatedly used:

 greedy algorithms

 branch and bound

 dynamic programming

 randomized search heuristics

Motivation for this Last Part of the Lecture:

 get an idea of the most common algorithm design principles

 we cannot

 go into details and present many examples of algorithms

…but for a few

 analyze algorithms theoretically with respect to their

runtime

Overview Discrete Optimization

8TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 8

Greedy Algorithms

9TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 9

From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem

solving heuristic of making the locally optimal choice at each

stage with the hope of finding a global optimum.”

 Note: typically greedy algorithms do not find the global optimum

Greedy Algorithms

10TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 10

What we will see:

 Example 1: Money Change problem

 Example 2: 𝜖-Greedy Algorithm for Multi-Armed Bandits

Lecture Outline Greedy Algorithms

11TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 11

Change-making problem

 Given n coins of distinct values w1=1, w2, ..., wn and a total

change W (where w1, ..., wn, and W are integers).

 Minimize the total amount of coins Σxi such that Σwixi = W and

where xi is the number of times, coin i is given back as change.

Greedy Algorithm

Unless total change not reached:

add the largest coin which is not larger than the remaining

amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:

finishing darts (from 501 to 0 with 9 darts)

Example 1: Money Change

12TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 12

 generic problem of

resource allocation

 classic reinforcement learning

problem showing the

exploration–exploitation tradeoff

dilemma

Example 2: Multi-Armed Bandits

Yamaguch

i先生

13TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 13

 𝐾 single-arm bandits with a lever

 Each bandit has a fixed but unknown probability distribution ℛ_𝑖
attached to it with a mean 𝜇𝑖

 At each time step 𝑡, we decide to pull a lever (𝑖) and get a

reward 𝑟𝑡 according to ℛ_𝑖

 Overall, we want to maximize the sum of the rewards

 The regret after T steps is defined as 𝜌 = 𝑇𝜇𝑚𝑎𝑥 − σ𝑡=1
𝑇 𝑟𝑡

Example 2: Multi-Armed Bandits

…

ℛ1 ℛ2 ℛ𝐾

Yamaguch

i先生

14TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 14

Exploration: pull new levers (or underexplored ones) to get better

estimates on the expected rewards

Exploitation: pull the arm, we think is the best arm

…the latter being the greedy approach here

The 𝝐-Greedy Algorithm

 With probability 1-𝜖: pull the lever, we think is best

 With probability 𝜖: pull a random lever (uniformly)

To be decided (not discussed further here):

How to estimate the probabilities (e.g. pulling each lever once at first)

How to choose 𝜖 (constant vs. decreasing over time)

constant 𝜖 gives linear regret

Exploration vs. Exploitation: The 𝝐-Greedy Algorithm

15TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 15

Branch and Bound

16TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 16

 Basically enumerates the entire search space

 But uses clever strategies to avoid enumerations in bad areas

Idea Behind Branch and Bound

Whole problem

branch

subproblem 1 subproblem 2

branch

subproblem 1.1 subproblem 1.2

branch

subproblem 2.1 and so forth…

17TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 17

Idea Behind Branch and Bound

Whole problem

branch

subproblem 1 subproblem 2

branch

subproblem 1.1 subproblem 1.2

branch

subproblem 2.1 and so forth…

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1
𝐿𝐵1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.1
𝐿𝐵1.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.2
𝐿𝐵1.2 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2.1
𝐿𝐵2.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2
𝐿𝐵2 ≤ 𝑓𝑜𝑝𝑡

18TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 18

when can we actually avoid evaluating all solutions?

Idea Behind Branch and Bound

Whole problem

branch

subproblem 1 subproblem 2

branch

subproblem 1.1 subproblem 1.2

branch

subproblem 2.1 and so forth…

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1
𝐿𝐵1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.1
𝐿𝐵1.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.2
𝐿𝐵1.2 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2.1
𝐿𝐵2.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2
𝐿𝐵2 ≤ 𝑓𝑜𝑝𝑡

19TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 19

We can stop exploring/branching if

 UB=LB

 UB for new subproblem lower than LB for another

[when maximizing]

Idea Behind Branch and Bound

Whole problem

branch

subproblem 1 subproblem 2

branch

subproblem 1.1 subproblem 1.2

branch

subproblem 2.1 and so forth…

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1
𝐿𝐵1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.1
𝐿𝐵1.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.2
𝐿𝐵1.2 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2.1
𝐿𝐵2.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2
𝐿𝐵2 ≤ 𝑓𝑜𝑝𝑡

max.

20TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 20

We assume again maximization here…

 A feasible solution gives us a lower bound

the optimum will be at least as good as a solution, we know

 Hence, fast (non-exact) algorithms such as greedy can give us

lower bounds

 For upper bounds, we can relax the problem

for example, by removing constraints

How do we get Upper and Lower Bounds?

21TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 21

An Example: Branch&Bound for the KP

Dake

22TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 22

! order of variables plays an important role

optimally, the subproblems don’t overlap

KP: How to Branch?

Whole problem

branch

branch branch

and so forth…

𝑥1 = 0 𝑥1 = 1

𝑥1 = 0 & 𝑥2 = 0 𝑥1 = 0 & 𝑥2 = 1 𝑥1 = 1 & 𝑥2 = 0

23TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 23

Maximization, so LB by greedy approach for example:

Choose items in decreasing profit/weight ratio until knapsack full

UB by relaxation of constraints (on the variables here):

Use greedy algorithm and pack add. item partially if there is space

…this variable can be used to branch next

KP: How to Bound?

Whole problem

branch

branch branch

and so forth…

𝑥1 = 0 𝑥1 = 1

𝑥1 = 0 & 𝑥2 = 0 𝑥1 = 0 & 𝑥2 = 1 𝑥1 = 1 & 𝑥2 = 0

24TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 24

Dynamic Programming

25TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 25

Wikipedia:

“[...] dynamic programming is a method for solving a complex

problem by breaking it down into a collection of simpler

subproblems.”

But that’s not all:

 dynamic programming also makes sure that the subproblems are

not solved too often but only once by keeping the solutions of

simpler subproblems in memory (“trading space vs. time”)

 it is an exact method, i.e. in comparison to the greedy approach, it

always solves a problem to optimality

Dynamic Programming

26TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 26

Optimal Substructure

A solution can be constructed efficiently from optimal solutions of

sub-problems

Overlapping Subproblems

Wikipedia: “[...] a problem is said to have overlapping

subproblems if the problem can be broken down into

subproblems which are reused several times or a recursive

algorithm for the problem solves the same subproblem over and

over rather than always generating new subproblems.”

Two Properties Needed

27TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 27

Main idea: solve larger subproblems by breaking them down to

smaller, easier subproblems in a recursive manner

Typical Algorithm Design:

 decompose the problem into subproblems and think about how

to solve a larger problem with the solutions of its subproblems

 specify how you compute the value of a larger problem

recursively with the help of the optimal values of its subproblems

(“Bellman equation”)

 bottom-up solving of the subproblems (i.e. computing their

optimal value), starting from the smallest by using the Bellman

equality and a table structure to store the optimal values

 eventually construct the final solution (can be omitted if only the

value of an optimal solution is sought)

Main Idea Behind Dynamic Programming

28TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 28

Knapsack Problem

Example: The Knapsack Problem (KP)

Dake

29TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 29

Consider the following subproblems:

1) 𝑃(𝑖): optimal profit when packing exactly 𝑖 items

2) 𝑃(𝑖): optimal profit when packing at most 𝑖 items

3) 𝑃(𝑖, 𝑗): optimal profit when allowing to pack the first 𝑖 items into a

knapsack of size 𝑗

Which one allows us to solve larger subproblems from the solutions

of smaller ones?

Which value are we actually interest in, when trying to solve the

problem?

What are Good Subproblem Definitions for the KP?

30TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 30

Consider the following subproblem:

𝑃(𝑖, 𝑗): optimal profit when allowing to pack the first 𝑖 items into a

knapsack of size 𝑗

Optimal Substructure

The optimal choice of whether taking item 𝑖 or not can be made

easily for a knapsack of weight 𝑗 if we know the optimal choice

for items 1… 𝑖 − 1:

𝑃 𝑖, 𝑗 = ቐ

0
𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑖 = 0 or 𝑗 = 0
if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

Overlapping Subproblems

a recursive implementation of the Bellman equation is simple,

but the 𝑃(𝑖, 𝑗) might need to be computed more than once!

Opt. Substructure and Overlapping Subproblems

31TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 31

To circumvent solving the subproblems more than once, we can

store their results (in a matrix for example)...

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 ... W-1 W

0

1 P(i,j)

2

...

n-1

n

it
e

m
s

knapsack weight

best achievable

profit with items 1...i

and a knapsack of

size j

32TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 32

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

it
e

m
s

knapsack weight

initialization:

𝑃 𝑖, 𝑗 = 0 if 𝑖 = 0 or 𝑗 = 0

33TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 33

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

initialization:

𝑃 𝑖, 𝑗 = 0 if 𝑖 = 0 or 𝑗 = 0

34TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 34

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

35TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 35

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

36TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 36

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

37TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 37

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

38TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 38

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝1(= 4)
4

39TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 39

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝1(= 4)
4

40TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 40

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

41TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 41

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

42TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 42

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝2(= 10)
10

43TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 43

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

44TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 44

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

45TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 45

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
4

46TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 46

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
4

47TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 47

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
10 etc.

48TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 48

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

49TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 49

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

50TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 50

Question: How to obtain the actual packing?

Answer: we just need to remember where the max came from!

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

𝒙𝟓 = 𝟎

𝒙𝟒 = 𝟏

𝒙𝟑 = 𝟎

𝒙𝟐 = 𝟏

𝒙𝟏 = 𝟎

51TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 51

(Randomized) Search Heuristics

52TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 52

Slides with this light blue background have not been discussed in

the lecture and are thus not part of the exam.

I left them in for those of you who are interested to learn about the

subject anyway.

53TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 53

 often, problem complicated and not much time available to

develop a problem-specific algorithm

 search heuristics are a good choice:

 relatively easy to implement

 easy to adapt/change/improve

 e.g. when the problem formulation changes in an early

product design phase

 or when slightly different problems need to be solved

over time

 randomized/stochastic algorithms are a good choice because

they are robust to noise

Motivation General Search Heuristics

54TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 54

Which algorithms will we touch?

 Randomized Local Search (RLS)

 Variable Neighborhood Search (VNS)

 Tabu Search (TS)

 Evolutionary Algorithms (EAs)

Lecture Outline Randomized Search Heuristics

55TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 55

For most (stochastic) search heuristics, we need to define a

neighborhood structure

 which search points are close to each other?

Example: k-bit flip / Hamming distance k neighborhood

 search space: bitstrings of length n (Ω={0,1}n)

 two search points are neighbors if their Hamming

distance is k

 in other words: x and y are neighbors if we can flip

exactly k bits in x to obtain y

 0001001101 is neighbor of

0001000101 for k=1

0101000101 for k=2

1101000101 for k=3

Neighborhoods

56TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 56

Example: possible neighborhoods for the knapsack problem

 search space again bitstrings of length n (Ω={0,1}n)

 Hamming distance 1 neighborhood:

 add an item or remove it from the packing

 replacing 2 items neighborhood:

 replace one chosen item with an unchosen one

 makes only sense in combination with other

neighborhoods because the number of items stays

constant

 Hamming distance 2 neighborhood on the contrary:

 allows to change 2 arbitrary items, e.g.

 add 2 new items

 remove 2 chosen items

 or replace one chosen item with an unchosen one

Neighborhoods II

57TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 57

Idea behind (Randomized) Local Search:

 explore the local neighborhood of the current solution (randomly)

Pure Random Search:

 go to randomly chosen neighbor

First Improvement Local Search:

 go to first (randomly) chosen neighbor which is better

Best Improvement strategy:

 always go to the best neighbor

 not random anymore

 computationally expensive if neighborhood large

Randomized Local Search (RLS)

58TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 58

Main Idea: [N. Mladenovic and P. Hansen, 1997]

 change the neighborhood from time to time

 local optima not necessarily the same for different

neighborhood operators

 but often close to each other

 global optimum is local optimum for all neighborhoods

 rather a framework than a concrete algorithm

 e.g. deterministic and stochastic neighborhood changes

 typically combined with (i) first improvement, (ii) a random

order in which the neighbors are visited and (iii) restarts

N. Mladenovic and P. Hansen (1997). "Variable neighborhood search". Computers

and Operations Research 24 (11): 1097–1100.

Variable Neighborhood Search

59TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 59

Disadvantages of local searches (with or without varying

neighborhoods)

 they get stuck in local optima

 have problems to traverse large plateaus of equal objective

function value (“random walk”)

Tabu search addresses these by

 allowing worsening moves if all neighbors are explored

 introducing a tabu list of temporarily not allowed moves

 those restricted moves are

 problem-specific and

 can be specific solutions or not permitted “search

directions” such as “don’t include this edge anymore” or

“do not flip this specific bit”

 the tabu list is typically restricted in size and after a while,

restricted moves are permitted again

Tabu Search

60TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 60

One class of (bio-inspired) stochastic optimization algorithms:

Evolutionary Algorithms (EAs)

 Class of optimization algorithms

originally inspired by the idea of

biological evolution

 selection, mutation, recombination

Stochastic Optimization Algorithms

1859

61TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 61

Classical Optimization Evolutionary Computation

variables or parameters variables or chromosomes

candidate solution

vector of decision variables /

design variables / object

variables

individual, offspring, parent

set of candidate solutions population

objective function

loss function

cost function

error function

fitness function

iteration generation

Metaphors

62TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 62

Generic Framework of an EA

Important:

representation (search space)

initialization

evaluation

evaluation

potential

parents

offspring

parents

crossover/

mutation

mating

selection

environmental

selection

stop?

best individual

stochastic operators

“Darwinism”

stopping criteria

63TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 63

Genetic Algorithms (GA)

J. Holland 1975 and D. Goldberg (USA)

Evolution Strategies (ES)

I. Rechenberg and H.P. Schwefel, 1965 (Berlin)

Evolutionary Programming (EP)

L.J. Fogel 1966 (USA)

Genetic Programming (GP)

J. Koza 1990 (USA)

nowadays one umbrella term: evolutionary algorithms

The Historic Roots of EAs

64TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 64

Several generic ways to handle constraints, e.g.:

 resampling until a new feasible point is found (“often bad idea”)

 penalty function approach: add constraint violation term

(potentially scaled)

 repair approach: after generation of a new point, repair it (e.g.

with a heuristic) to become feasible again if infeasible

 continue to use repaired solution in the population or

 use repaired solution only for the evaluation?

 multiobjective approach: keep objective function and constraint

functions separate and try to optimize all of them in parallel

 ...

Note: Handling Constraints

65TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 65

Examples for some EA parts

66TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 66

Selection is the major determinant for specifying the trade-off

between exploitation and exploration

Selection is either

stochastic or deterministic

e.g. fitness proportional

e.g. via a tournament

Mating selection (selection for variation): usually stochastic

Environmental selection (selection for survival): often deterministic

Selection

Disadvantage:

depends on

scaling of f

e.g. (µ+λ), (µ,λ)

best µ from

offspring and

parents

best µ from

offspring only

67TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 67

Variation aims at generating new individuals on the basis of those

individuals selected for mating

Variation = Mutation and Recombination/Crossover

mutation: mut:

recombination: recomb: where and

 choice always depends on the problem and the chosen

representation

 however, there are some operators that are applicable to a wide

range of problems and tailored to standard representations such

as vectors, permutations, trees, etc.

Variation Operators

68TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 68

Two desirable properties for mutation operators:

 every solution can be generation from every other with a

probability greater than 0 (“exhaustiveness”)



(“locality”)

Desirable property of recombination operators (“in-between-ness”):

Variation Operators: Guidelines

69TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 69

Swap:

Scramble:

Invert:

Insert:

Examples of Mutation Operators on Permutations

70TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 70

1-point crossover

n-point crossover

uniform crossover

Examples of Recombination Operators: {0,1}n

choose each bit

independently from

one parent or another

71TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 71

 binary search space, maximization

 uniform initialization

 generational cycle: of the population

 evaluation of solutions

 mating selection (e.g. roulette wheel)

 crossover (e.g. 1-point)

 environmental selection (e.g. plus-selection)

A Canonical Genetic Algorithm

72TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 72

A stochastic blackbox search template to minimize 𝒇:ℝ𝒏 → ℝ

Initialize distribution parameters 𝜃, set population size 𝜆 ∈ ℕ

While happy do:

 Sample distribution 𝑃 𝒙 𝜃 → 𝒙1, … , 𝒙𝜆 ∈ ℝ𝑛

 Evaluate 𝒙1, … , 𝒙𝜆 on 𝑓

 Update parameters 𝜃 ← 𝐹𝜃(𝜃, 𝒙1, … , 𝒙𝜆, 𝑓 𝒙1 , … , 𝑓 𝒙𝜆)

For CMA-ES and evolution strategies in general:

sample distributions = multivariate Gaussian distributions

Full Circle: CMA-ES to solve Continuous Problems

73TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 73

Sampling New Candidate Solutions (Offspring)

from [Auger, p. 10]

74TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 74

Influence of Condition Number + Invariance

from [Nikolaus Hansen]

75TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 75

Influence of Condition Number + Invariance

from [Nikolaus Hansen]

76TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 76

Influence of Condition Number + Invariance

from [Nikolaus Hansen]

77TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 77

Influence of Condition Number + Invariance

important: invariances

from [Nikolaus Hansen]

78TC2: Optimization for ML, U. Paris-Saclay, Dec. 10, 2020© Anne Auger and Dimo Brockhoff, Inria 78

Performance on BBOB Testbed: Data Profile

from [Nikolaus Hansen]

