Introduction to Optimization

November 4, 2021
TC2 - Optimisation
Université Paris-Saclay, Orsay, France

Anne Auger and Dimo Brockhoff Inria Saclay - Ile-de-France

What is Optimization?

What is Optimization?

Typically, we aim at

- finding solutions x which minimize $f(x)$ in the shortest time possible (maximization is reformulated as minimization)
- or finding solutions x with as small $f(x)$ in the shortest time possible (if finding the exact optimum is not possible)

Course Overview

$\left.\left.\begin{array}{|l|l|l|}\hline \text { Date } & & \text { Topic } \\ \hline \text { Thu, 4.11.2021 } & \text { DB } & \text { Introduction } \\ \hline \text { Thu, 11.11.2021 } & & \text { no lecture }\end{array} \right\rvert\, \begin{array}{l|l|}\hline \text { Thu, 18.11.2021 } & \text { AA }\end{array} \begin{array}{l}\text { Continuous Optimization I: differentiability, gradients, } \\ \text { convexity, optimality conditions }\end{array}\right]$

Course Overview

Date		Topic
Thu, 4.11.2021	DB	Introduction
Thu, 11.11.2021		no lecture
Thu, 18.11.2021	AA	Continuous Optimization I: differentiability, gradients, convexity, optimality conditions
Thu, 25.11.2021	AA	Continuous Optimization II: constrained optimization, gradient-based algorithms, stochastic gradient [written test / « contrôle continue »]
Thu, 2.12.2021	AA	Continuous Optimization III: stochastic algorithms, derivative-free optimization
Thu, 9.12.2021	DB	Discrete Optimization: greedy algorithms, branch\&bound, dynamic programming
Thu 16.12.2021	DB	Written exam
		! Starting from the 18th: 13h15 till 16h15

- possibly not clear yet what the lecture is about in detail
- but there will be always examples and small exercises to learn "on-the-fly" the concepts and fundamentals

Overall goals:
(1) give a broad overview of where and how optimization is used
(2) understand the fundamental concepts of optimization algorithms

The Final Exam

- will be a written multiple choice exam
- open book
- 2 hours, starting from 13h15
- counts 60% of overall grade
- please prepare pen\&paper

Intermediate Written Exam ("contrôle continu")

- instead of a group project
- one smaller written exam/test of about 20 min
- November 25 (3rd lecture)
- goal: spread learning of lecture content over the course
- accounts 40% to overall grade
- might be in part multiple choice

All information also available at
http://www.cmap.polytechnique.fr/
~dimo.brockhoff/optimizationSaclay/2021/
(in particular the lecture slides)

Overview of Today's Lecture

- More examples of optimization problems
- introduce some basic concepts of optimization problems such as domain, constraint, ...
- Beginning of continuous optimization part
- typical difficulties in continuous optimization
- differentiability
- ... [we'll see how far we get]

General Context Optimization

Given:
set of possible solutions

Search space

quality criterion

Objective function

Objective:

Find the best possible solution for the given criterion

Formally:

Maximize or minimize

$$
\begin{aligned}
\mathcal{F}: \Omega & \mapsto \mathbb{R}, \\
x & \mapsto \mathcal{F}(x)
\end{aligned}
$$

Constraints

Maximize or minimize
$\mathcal{F}: \Omega \mapsto \mathbb{R}$,
$x \mapsto \mathcal{F}(x)$

Maximize or minimize

$$
\begin{aligned}
\mathcal{F}: & \Omega \\
x & \mapsto \mathbb{R}, \\
& \mathfrak{F}(x)
\end{aligned}
$$

$$
\text { where } g_{i}(x) \leq 0
$$

$$
h_{i}(x)=0
$$

unconstrained
Ω
example of a constrained Ω

Constraints explicitly or implicitly define the feasible solution set [e.g. $\|x\|-7 \leq 0$ vs. every solution should have at least 5 zero entries]

Hard constraints must be satisfied while soft constraints are preferred to hold but are not required to be satisfied
[e.g. constraints related to manufacturing precisions vs. cost constraints]

Example 1: Combinatorial Optimization

Knapsack Problem

- Given a set of objects with a given weight and value (profit)
- Find a subset of objects whose overall mass is below a certain limit and maximizing the total value of the objects

[Problem of ressource allocation with financial constraints]

$\Omega=\{0,1\}^{n}$

Example 2: Combinatorial Optimization

Traveling Salesperson Problem (TSP)

- Given a set of cities and their distances
- Find the shortest path going through all cities

$\Omega=S_{n}$ (set of all permutations)

Example 3: A "Manual" Engineering Problem

Optimizing a Two-Phase Nozzle [Schwefel 1968+]

- maximize thrust under constant starting conditions
- one of the first examples of Evolution Strategies
initial design:

final design:

$\Omega=$ all possible nozzles of given number of slices
copyright Hans-Paul Schwefel
[http:///s11-www.cs.uni-dortmund.de/people/schwefel/EADemos/]

Example 4: Continuous Optimization Problem

Computer simulation teaches itself to walk upright (virtual robots (of different shapes) learning to walk, through stochastic optimization (CMA-ES)), bv Utrecht Universitv:

We present a control system based on 3D muscle actuation

https://www.youtube.com/watch?v=pgaEE27nsQw
T. Geitjtenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based Locomotion for Bipedal Creatures", SIGGRAPH Asia, 2013.

Example 5: Constrained Continuous Optimization

Design of a Launcher

- Scenario: multi-stage launcher brings a satellite into orbit
- Minimize the overall cost of a launch
- Parameters: propellant mass of each stage / diameter of each stage / flux of each engine / parameters of the command law

23 continuous parameters to optimize

+ constraints

Example 6: An Expensive Real-World Problem

Well Placement Problem

for a given structure, per well:

- angle \& distance to previous well
- well depth
structure $+\mathbb{R}_{+}^{3 .}$ \#wells
$\sigma \in \Omega$: variable length!

Example 7: Data Fitting - Data Calibration

Objective

- Given a sequence of data points $\left(\boldsymbol{x}_{i}, y_{i}\right) \in \mathbb{R}^{p} \times \mathbb{R}, i=1, \ldots, N$, find a model " $y=f(\boldsymbol{x})$ " that "explains" the data experimental measurements in biology, chemistry, ...
- In general, choice of a parametric model or family of functions $\left(f_{\theta}\right)_{\theta \in \mathbb{R}^{n}}$
use of expertise for choosing model or only a simple model is affordable (e.g. linear, quadratic)
- Try to find the parameter $\theta \in \mathbb{R}^{n}$ fitting best to the data

Fitting best to the data
Minimize the quadratic error:

$$
\min _{\theta \in \mathbb{R}^{n}} \sum_{i=1}^{N}\left|f_{\theta}\left(\boldsymbol{x}_{i}\right)-y_{i}\right|^{2}
$$

Example 8: Deep Learning

Actually the same idea:

 match model best to given dataModel here: artificial neural nets with many hidden layers (aka deep neural networks)

Parameters to tune:

- weights of the connections (continuous parameter)
- topology of the network (discrete)
- firing function (less common)

Specificity:

- large amount of training data, hence often batch learning

Example 9: Hyperparameter Tuning

Scenario:

- many existing algorithms (in ML and elsewhere) have internal parameters
- "In machine learning, a hyperparameter is a parameter whose value is set before the learning process begins." --- Wikipedia
- can be model parameters
- \#trees in random forest
- \#nodes in neural net
- or other generic parameters such as learning rates, ...
- choice has typically a big impact and is not always obvious
- search space often mixed discrete-continuous or even categorical

Example 10: Interactive Optimization

Coffee Tasting Problem

- Find a mixture of coffee in order to keep the coffee taste from one year to another
- Objective function = opinion of one expert

M. Herdy: "Evolution Strategies with subjective selection", 1996

Many Problems, Many Algorithms?

Observation:

- Many problems with different properties
- For each, it seems a different algorithm?

In Practice:

- often most important to categorize your problem first in order to find / develop the right method
- \rightarrow problem types

Problem Types

- discrete vs. continuous
- discrete: integer (linear) programming vs. combinatorial problems
- continuous: linear, quadratic, smooth/nonsmooth, blackbox/DFO, ...
- both discrete\&continuous variables: mixed integer problem
- categorical variables ("no order")
- unconstrained vs. constrained (and then which type of constraint)

Not covered in this introductory lecture:

- deterministic vs. stochastic outcome of objective function(s)
- one or multiple objective functions

Example: Numerical Blackbox Optimization

Typical scenario in the continuous, unconstrained case:

Optimize $f: \Omega \subset \mathbb{R}^{n} \mapsto \mathbb{R}^{k}$

derivatives not available or not useful

General Concepts in Optimization

- search domain
- discrete or continuous or mixed integer or even categorical
- finite vs. infinite dimension
- constraints
- bound constraints (on the variables only)
- linear/quadratic/non-linear constraints
- blackbox constraints
- many more
(see e.g. Le Digabel and Wild (2015), https://arxiv.org/abs/1505.07881)

Further important aspects (in practice):

- deterministic vs. stochastic algorithms
- exact vs. approximation algorithms vs. heuristics
- anytime algorithms
- simulation-based optimization problem / expensive problem

continuous optimization

Continuous Optimization

- Optimize $f:\left\{\begin{array}{c}\Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R} \\ x=\left(x_{1}, \ldots, x_{n}\right) \rightarrow f\left(x_{1}, \ldots, x_{n}\right)\end{array}\right.$

unconstrained optimization

- Search space is continuous, i.e. composed of real vectors $x \in \mathbb{R}^{n}$
- $n=\left\{\begin{array}{l}\text { dimension of the problem } \\ \text { dimension of the search space } \mathbb{R}^{n} \text { (as vector space) }\end{array}\right.$

2-D level sets

Unconstrained vs. Constrained Optimization

Unconstrained optimization

$$
\inf \left\{f(x) \mid x \in \mathbb{R}^{n}\right\}
$$

Constrained optimization

- Equality constraints: $\inf \left\{f(x) \mid x \in \mathbb{R}^{n}, g_{k}(x)=0,1 \leq k \leq p\right\}$
- Inequality constraints: $\inf \left\{f(x) \mid x \in \mathbb{R}^{n}, g_{k}(x) \leq 0,1 \leq k \leq p\right\}$
where always $g_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

Example of a Constraint

$\min _{x \in \mathbb{R}} f(x)=x^{2}$ such that $x \leq-1$

Analytical Functions

Example: 1-D

$$
\begin{gathered}
f_{1}(x)=a\left(x-x_{0}\right)^{2}+b \\
\text { where } x, x_{0}, b \in \mathbb{R}, a \in \mathbb{R}
\end{gathered}
$$

Generalization:

convex quadratic function

$$
\begin{gathered}
f_{2}(x)=\left(x-x_{0}\right)^{T} A\left(x-x_{0}\right)+b \\
\text { where } x, x_{0} \in \mathbb{R}^{n}, b \in \mathbb{R}, A \in \mathbb{R}^{\{\mathrm{n} \times n\}} \\
\text { and } A \text { symmetric positive definite (SPD) }
\end{gathered}
$$

Exercise:

What is the minimum of $f_{2}(x)$?

Levels Sets of Convex Quadratic Functions

Continuation of exercise:

 What are the level sets of f_{2} ?Reminder: level sets of a function

$$
L_{c}=\left\{x \in \mathbb{R}^{n} \mid f(x)=c\right\}
$$

(similar to topography lines / level sets on a map)

Levels Sets of Convex Quadratic Functions

Continuation of exercise:

What are the level sets of f_{2} ?

- Probably too complicated in general, thus an example here
- Consider $A=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right), b=0, n=2$
a) Compute $f_{2}(x)$.
b) Plot the level sets of $f_{2}(x)$.
c) More generally, for $n=2$, if A is SPD with eigenvalues $\lambda_{1}=$ 9 and $\lambda_{2}=1$, what are the level sets of $f_{2}(x)$?

What Makes a Function Difficult to Solve?

- dimensionality
(considerably) larger than three
- non-separability dependencies between the objective variables
- ill-conditioning
- ruggedness

cut from 3D example, solvable with an evolution strategy

Curse of Dimensionality

- The term Curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.
- Example: Consider placing 100 points onto a real interval, say [0,1$]$. To get similar coverage, in terms of distance between adjacent points, of the 10 -dimensional space $[0,1]^{10}$ would require $100^{10}=10^{20}$ points. The original 100 points appear now as isolated points in a vast empty space.
- Consequently, a search policy (e.g. exhaustive search) that is valuable in small dimensions might be useless in moderate or large dimensional search spaces.

Separable Problems

Definition (Separable Problem)

A function f is separable if

$$
\underset{\left(x_{1}, \ldots, x_{n}\right)}{\operatorname{argmin}} f\left(x_{1}, \ldots, x_{n}\right)=\left(\underset{x_{1}}{\operatorname{argmin}} f\left(x_{1}, \ldots\right), \ldots, \underset{x_{n}}{\operatorname{argmin}} f\left(\ldots, x_{n}\right)\right)
$$

\Rightarrow it follows that f can be optimized in a sequence of n independent 1-D optimization processes

Example:

Additively decomposable functions

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{i=1 \\ \text { Rastrigin function }}}^{n} f_{i}\left(x_{i}\right)
$$

Non-Separable Problems

Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system

- $f: x \mapsto f(x)$ separable
- $f: \boldsymbol{x} \mapsto f(R \boldsymbol{x})$ non-separable

R rotation matrix

[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation". Sixth ICGA, pp. 57-64, Morgan Kaufmann
[2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

III-Conditioned Problems: Curvature of Level Sets

Consider the convex-quadratic function

$$
f(\boldsymbol{x})=\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)^{T} H\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)=\frac{1}{2} \sum_{i} h_{i, i} x_{i}^{2}+\frac{1}{2} \sum_{i, j} h_{i, j} x_{i} x_{j}
$$

H is Hessian matrix of f and symmetric positive definite

$$
\begin{aligned}
& \text { gradient direction }-f^{\prime}(x)^{T} \\
& \text { Newton direction }-H^{-1} f^{\prime}(x)^{T}
\end{aligned}
$$

III-conditioning means squeezed level sets (high curvature). Condition number equals nine here. Condition numbers up to 10^{10} are not unusual in real-world problems.

If $H \approx I$ (small condition number of H) first order information (e.g. the gradient) is sufficient. Otherwise second order information (estimation of H^{-1}) information necessary.

Different Notions of Optimum

Unconstrained case

- local vs. global
- local minimum $\boldsymbol{x}^{*}: \exists$ a neighborhood V of \boldsymbol{x}^{*} such that

$$
\forall x \in \mathrm{~V}: f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}^{*}\right)
$$

- global minimum: $\forall x \in \Omega: f(x) \geq f\left(x^{*}\right)$
- strict local minimum if the inequality is strict

Constrained case

- a bit more involved
- hence, later in the lecture :

Mathematical Characterization of Optima

Objective: Derive general characterization of optima
Example: if $f: \mathbb{R} \rightarrow \mathbb{R}$ differentiable, $f^{\prime}(x)=0$ at optimal points

- generalization to $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$?
- generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

optima of such function can be easily approached by certain type of methods

Reminder: Continuity of a Function

$f:\left(V,\| \|_{V}\right) \rightarrow\left(W,\| \|_{W}\right)$ is continuous in $x \in V$ if
$\forall \epsilon>0, \exists \eta>0$ such that $\forall y \in V:\|x-y\|_{V} \leq \eta ;\|f(x)-f(y)\|_{W} \leq \epsilon$

not continuous

continuous function

Reminder: Differentiability in 1D (n=1)

$f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable in $x \in \mathbb{R}$ if

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \text { exists, } h \in \mathbb{R}
$$

Notation:
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

The derivative corresponds to the slope of the tangent in x.

Reminder: Differentiability in 1D (n=1)

Taylor Formula (Order 1)
If f is differentiable in x then

$$
f(x+h)=f(x)+f^{\prime}(x) h+o(\|h\|)
$$

i.e. for h small enough, $h \mapsto f(x+h)$ is approximated by $h \mapsto$ $f(x)+f^{\prime}(x) h$
$h \mapsto f(x)+f^{\prime}(x) h$ is called a first order approximation of $f(x+h)$

Reminder: Differentiability in 1D (n=1)

Geometrically:

The notion of derivative of a function defined on \mathbb{R}^{n} is generalized via this idea of a linear approximation of $f(x+h)$ for h small enough.

How to generalize this to arbitrary dimension?

Gradient Definition Via Partial Derivatives

- In $\left(\mathbb{R}^{n},\| \|_{2}\right)$ where $\|x\|_{2}=\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}$ is the Euclidean norm deriving from the scalar product $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\boldsymbol{x}^{T} \boldsymbol{y}$

$$
\nabla f(x)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right)
$$

- Reminder: partial derivative in x_{0}

$$
\begin{gathered}
\mathrm{f}_{\mathrm{i}}: y \rightarrow f\left(x_{0}^{1}, \ldots, x_{0}^{i-1}, y, x_{0}^{i+1}, \ldots, x_{0}^{n}\right) \\
\frac{\partial f}{\partial x_{i}}\left(x_{0}\right)=f_{i}^{\prime}\left(x_{0}\right)
\end{gathered}
$$

Exercise: Gradients

Exercise:

Compute the gradients of
a) $f(x)=x_{1}$ with $x \in \mathbb{R}^{n}$
b) $f(x)=a^{T} x$ with a, $x \in \mathbb{R}^{n}$
c) $f(x)=x^{T} x\left(=\|\mathrm{x}\|^{2}\right)$ with $x \in \mathbb{R}^{n}$

Exercise: Gradients

Exercise:

Compute the gradients of
a) $f(x)=x_{1}$ with $x \in \mathbb{R}^{n}$
b) $f(x)=a^{T} x$ with a, $x \in \mathbb{R}^{n}$
c) $f(x)=x^{T} x\left(=\|\mathrm{x}\|^{2}\right)$ with $x \in \mathbb{R}^{n}$

Some more examples:

- in \mathbb{R}^{n}, if $f(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}$, then $\nabla f(\boldsymbol{x})=\left(A+A^{T}\right) \boldsymbol{x}$
- in $\mathbb{R}, \nabla f(\boldsymbol{x})=f^{\prime}(\boldsymbol{x})$

Gradient: Geometrical Interpretation

Exercise:

Let $L_{c}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid f(\boldsymbol{x})=c\right\}$ be again a level set of a function $f(\boldsymbol{x})$. Let $x_{0} \in L_{c} \neq \emptyset$.

Compute the level sets for $f_{1}(\boldsymbol{x})=\boldsymbol{a}^{T} \boldsymbol{x}$ and $f_{2}(\boldsymbol{x})=\|x\|^{2}$ and the gradient in a chosen point x_{0} and observe that $\nabla f\left(x_{0}\right)$ is orthogonal to the level set in x_{0}.

Again: if this seems too difficult, do it for two variables (and a concrete $\boldsymbol{a} \in \mathbb{R}^{2}$) and draw the level sets and the gradients.

More generally, the gradient of a differentiable function is orthogonal to its level sets.

Differentiability in \mathbb{R}^{n}

Taylor Formula - Order One

$$
f(\boldsymbol{x}+\boldsymbol{h})=f(\boldsymbol{x})+(\nabla f(\boldsymbol{x}))^{T} \boldsymbol{h}+o(\|\boldsymbol{h}\|)
$$

Reminder: Second Order Differentiability in 1D

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function and let $f^{\prime}: x \rightarrow f^{\prime}(x)$ be its derivative.
- If f^{\prime} is differentiable in x, then we denote its derivative as $f^{\prime \prime}(x)$
- $\quad f^{\prime \prime}(x)$ is called the second order derivative of f.

Taylor Formula: Second Order Derivative

- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is two times differentiable then

$$
f(x+h)=f(x)+f^{\prime}(x) h+f^{\prime \prime}(x) h^{2}+o\left(\|h\|^{2}\right)
$$

i.e. for h small enough, $h \rightarrow f(x)+h f^{\prime}(x)+h^{2} f^{\prime \prime}(x)$ approximates $h+f(x+h)$

- $\quad h \rightarrow f(x)+h f^{\prime}(x)+h^{2} f^{\prime \prime}(x)$ is a quadratic approximation (or order 2) of f in a neighborhood of x

- The second derivative of $f: \mathbb{R} \rightarrow \mathbb{R}$ generalizes naturally to larger dimension.

Hessian Matrix

In $\left(\mathbb{R}^{n},\langle x, y\rangle=x^{T} y\right), \nabla^{2} f(x)$ is represented by a matrix called the Hessian matrix. It can be computed as

$$
\nabla^{2}(f)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Exercise on Hessian Matrix

Exercise:

Let $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}, \boldsymbol{x} \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$.
Compute the Hessian matrix of f.
If it is too complex, consider $f:\left\{\begin{array}{c}\mathbb{R}^{2} \rightarrow \mathbb{R} \\ x \rightarrow \frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}\end{array}\right.$ with $A=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right)$

Second Order Differentiability in \mathbb{R}^{n}

Taylor Formula - Order Two

$$
f(\boldsymbol{x}+\boldsymbol{h})=f(\boldsymbol{x})+(\nabla f(\boldsymbol{x}))^{T} \boldsymbol{h}+\frac{1}{2} \boldsymbol{h}^{T}\left(\nabla^{2} f(\boldsymbol{x})\right) \boldsymbol{h}+o\left(\|\boldsymbol{h}\|^{2}\right)
$$

Back to III-Conditioned Problems

We have seen that for a convex quadratic function
$f(x)=\frac{1}{2}\left(x-x_{0}\right)^{T} A\left(x-x_{0}\right)+b$ of $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}, A$ SPD, $b \in \mathbb{R}^{n}$:

1) The level sets are ellipsoids. The eigenvalues of A determine the lengths of the principle axes of the ellipsoid.

2) The Hessian matrix of f equals to A.

III-conditioned convex quadratic problems are problems with large ratio between largest and smallest eigenvalue of A which means large ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Gradient Direction Vs. Newton Direction

Gradient direction: $\nabla f(x)$
Newton direction: $-(H(\boldsymbol{x}))^{-1} \cdot \nabla f(\boldsymbol{x})$
with $H(\boldsymbol{x})=\nabla^{2} f(\boldsymbol{x})$ being the Hessian at \boldsymbol{x}

Exercise:

Let again $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}, \boldsymbol{x} \in \mathbb{R}^{2}, A=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right) \in \mathbb{R}^{2 \times 2}$.
Plot the gradient and Newton direction of f in a point $x \in \mathbb{R}^{n}$ of your choice (which should not be on a coordinate axis) into the same plot with the level sets, we created before.

Gradient Direction Vs. Newton Direction

Gradient direction: $\nabla f(x)$
Newton direction: $-(H(\boldsymbol{x}))^{-1} \cdot \nabla f(\boldsymbol{x})$
with $H(\boldsymbol{x})=\nabla^{2} f(\boldsymbol{x})$ being the Hessian at \boldsymbol{x}

Exercise:

Let again $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}, \boldsymbol{x} \in \mathbb{R}^{2}, A=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right) \in \mathbb{R}^{2 \times 2}$.
Plot the gradient and Newton direction of f in a point $x \in \mathbb{R}^{n}$ of your choice (which should not be on a coordinate axis) into the same plot with the level sets, we created before.

- remind level sets: axis-parallel ellipsoids, axis-ratio=3
- remind gradient: $A \boldsymbol{x}$
- remind Hessian: A

Conclusions

I hope it became clear...
...what kind of optimization problems we are interested in
...what are level sets and how to plot them
...what difficulties a problem can have
...what the gradient is
(and that it is generally orthogonal to the level sets)
...what the Hessian is and
...what's the difference between gradient and Newton direction.

