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Date Topic

Thu, 4.11.2021 DB Introduction

Thu, 11.11.2021 no lecture

Thu, 18.11.2021 AA Continuous Optimization I: differentiability, gradients, 

convexity, optimality conditions

Thu, 25.11.2021 AA Continuous Optimization II: constrained optimization, 

gradient-based algorithms, stochastic gradient

[written test / « contrôle continue »]

Thu, 2.12.2021 AA Continuous Optimization III: stochastic algorithms, 

derivative-free optimization

Thu, 9.12.2021 DB Discrete Optimization: greedy algorithms, 

branch&bound, dynamic programming

Thu 16.12.2021 DB Written exam

! always 13h30 till 16h00

Course Overview
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Written exam

 multiple choice, typically 4 answers each (1-4 answers correct)

 closed book (nothing allowed but pen)  easier questions 

 next Thursday (Dec. 16) @ 1:30pm

 1.5 hours

Concrete Information About Exam
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▪ Back to some examples of optimization problems in Machine 
Learning …
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▪ Classification 

▪ Is there a cat on the picture?

Supervised Learning

Yes / No
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▪ Classification 

▪ Is there a cat on the picture?

Supervised Learning

Yes
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▪ Classification 

▪ Is there a cat on the picture?

Supervised Learning

Yes
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▪ Classification 

▪ Is there a cat on the picture?

Supervised Learning

No
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▪ Labelled data / training sets 

Supervised Learning

x1 x2 x3

y1 = 1 y2 = 1 y3 = − 1

Given a set of examples                              with     the      
features and     labels/targets                                 

{(x1, y1), . . . , (xn, yn)} xi

yi

Input or 
features

Output
labels
Target



TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

7

Supervised Learning

Given a set of examples                              with     the      
features and     labels/targets                                 

{(x1, y1), . . . , (xn, yn)} xi

yi

Find a mapping                          that will assign the 
“correct” target to each input

h : x 2 X ! y 2 R

Learning algorithm

h

New image (not in the training set)

= − 1
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Example 1: Linear Regression

Hypothesis: linear model 

hw(x) = w0 + w1x1 + . . .+ wd�1xd�1 = hw, xi
x0 = 1

Find         via solving the minimization problemhw(x)

min
w2Rd

1

n

nX

i=1

(hw(x
i)� yi)2

x

hw(x)

xi

yi
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Example 1: Linear Regression

Hypothesis: linear model 

hw(x) = w0 + w1x1 + . . .+ wd�1xd�1 = hw, xi
x0 = 1

Find         via solving the minimization problemhw(x)

x

hw(x)

min
w2Rd

1

n

nX

i=1

(hw(x
i)� yi)2
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Generalization: Parametrization of the Hypothesis

Linear: hw(x) = hw, xi =
d�1X

i=0

wixi

Polynomial: hw(x) =
d�1X

i,j=0

wi,jxixj

Neural network: hw(x)

x1

x2
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Generalization: Different Loss Functions

Start from the linear regression problem:

Loss function:

min
w2Rd

1

n

nX

i=1

(hw(x
i)� yi)2

Let yh := hw(x)

l : R⇥ R ! R+

(yh, y) ! l(yh, y)

Training (optimization) problem:

min
w2Rd

1

n

nX

i=1

l(hw(x
i), yi)

l(yh, y) = (yh � y)2
For linear regression
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Generalization: Different loss functions

Quadratic loss: l(yh, y) = (yh � y)2

Hinge loss: l(yh, y) = max{0, 1� yhy}

l(yh, y) =

(
0 if yh = y

1 if yh 6= y
Binary loss:
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Numerical Optimization

Very often it is not possible to solve analytically the equation  
and we have to resort to an iterative algorithm (or numerical 
optimization algorithm) that will generate a sequence of points            
ds               that should converge to   

rf(x) = 0

{xk : k � 0} argminxf(x)

Optimization algorithm:

initialize
while not happy do

end-do

[other state variables]k = 0, x0

return

update xk
k = k + 1

input

xk, k

f , rf , (r2f)

f(xk+1)  f(xk) (typically)

Goal:
limk!1 f(xk) = minx f(x)

limk!1 kxk � x⇤k = 0
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Algorithm Classes

Zero-order’s algorithms: only use f (no gradients, …). Those methods 
are also called derivative-free optimization algorithms. Used when 
gradient or Hessian are difficult to compute, or when the functions 
are not differentiable.

Depending on the information the algorithm is using to create a new 
point (or iterate) we distinguish

First-order algorithms: use   and    . Standard algorithms when    is 
differentiable, convex.

f

rf r2f

f

Second-order algorithms: use  ,    and     . When we can have an 
“easy” access to the Hessian matrix.

f

rf
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Descent Algorithm

descent direction
step-size

Illustration idea from “Alexander & Michael Bronstein” Numerical Optimization slides
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Descent Algorithm

Line search: 1-d minimization along  
the descent direction

Generic algorithm:

choose an initial point       ,              
while not happy

choose a descent direction
line-search: choose a step-size

x0

xk+1 = xk + �kdk

k = 0

�k

dk

k = k + 1

� ! f(xk + �dk)

Descent direction: direction such that for    small enough 
f(xk + �dk) < f(xk)

�
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Stopping criteria

When are we “happy”, i.e. when do we stop the algorithm?

•when gradient norm becomes small

krf(xk)k  ✏

•when step-size becomes small

•when progress in f becomes small

kxk+1 � xkk  ✏

|f(xk+1)�f(xk)|
|f(xk)|  ✏



TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

20

Newton’s Algorithm

Take as descent direction the Newton step:
dk = �[r2f(xk)]�1rf(xk)

The Newton’s direction minimizes the best locally quadratic 
approximation of f. Indeed, by Taylor’s expansion we can 
approximate f locally in x by

⇡ f(x+ h)

Minimizing g with respect to h yields:

h = �[r2f(x)]�1rf(x)

g(h) = f(x) +rf(x)>h+ 1
2h

>r2f(x)h
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Quasi-Newton’s Methods

In quasi-Newton’s methods, the Newton direction is approximated by 
using solely first order information (gradient)

Key idea: successive iterates xk, xk+1 and gradients   
yield second order information

pk = xk+1 � xk, qk = rf(xk+1)�rf(xk)

qk ⇡ r2f(xk+1)pk

rf(xk)
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Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm

BFGS algorithm:

Bk approximation of Hessian matrix

dk = �B�1
k rf(xk)

xk+1 = xk + �kdk (find �k via line-search)

yk = rf(xk+1)�rf(xk)

Bk+1 = Bk +
yky>k

y>k �kdk
� Bkdkd>k Bk

d>k Bkdk

Considered as the state-of-the-art quasi-Newton’s algorithm. 
Implemented in all (good) optimization toolboxes

efficient update to compute the inverse of Bk
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Gradient Descent - Simple Theoretical Analysis

algorithm slower and slower with increasing condition 
number

kxk+1 � x⇤k  c kxk � x⇤k2 with c < 1

In comparison, convergence of Newton’s method is quadratic:

kxk+1 � x⇤k2  c2
�
kxk � x⇤k2

�2
with c < 1

Theorem[Linear convergence of gradient descent] Assume f : Rd ! R is twice contin-
uously di↵erentiable, convex and for all x, µId 4 r2f(x) 4 LId with µ > 0. Let x⇤ be
the unique global minimum of f . The gradient descent algorithm with fixed step-size
�t =

1
L satisfies

kxk+1 � x⇤k2 
⇣
1� µ

L

⌘
kxk � x⇤k2 .

That is the algorithm converges geometrically (also called linearly):

kxk � x⇤k2 
⇣
1� µ

L

⌘k
kx0 � x⇤k2
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Stochastic Gradient - Motivation

We now come back to our training optimization problem

Gradient descent update:

wk+1 = wk � �k
1

n

nX

i=1

rfi(wk)

min
w2Rd

1

n

nX

i=1

l(hw(x
i), yi)| {z }

fi(w) the fi can include a 
regularization term 

Problem: each iteration requires to compute a gradient         for each 
data point. We don’t want to do that when n is large (quite typical).        

rfi(w)
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Stochastic Gradient

The gradient of f(w) = 1
n

Pn
i=1 fi(w) is approximated by the gradient of a single data

function fi(w) at each iteration

rf(w) ⇡ rfi(w) for j chosen at random

wk+1 = wk � �krfi(wk)

Stochastic gradient descent update:

sample j 2 {1, . . . , n}
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Date Topic

Thu, 4.11.2021 DB Introduction

Thu, 11.11.2021 no lecture

Thu, 18.11.2021 AA Continuous Optimization I: differentiability, gradients, 

convexity, optimality conditions

Thu, 25.11.2021 AA Continuous Optimization II: constrained optimization, 

gradient-based algorithms, stochastic gradient

[written test / « contrôle continue »]

Thu, 2.12.2021 AA Continuous Optimization III: stochastic algorithms, 

derivative-free optimization

Thu, 9.12.2021 DB Discrete Optimization: greedy algorithms, 

branch&bound, dynamic programming

Thu 16.12.2021 DB Written exam

! always 13h30 till 16h00

Course Overview
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Combinatorial Optimization

 Search space not necessarily 

anymore a subset of ℝ𝑛

 for example, optimization on 

graphs

ML example:

structure optimization of neural 

networks

Discrete Optimization

Integer Programming

 variables are integers

 simplest example: 

optimization in 0, 1 𝑛

ML example:

hyperparameter tuning with 

algorithm parts being present 

(𝑥𝑖 = 1) or not (𝑥𝑖 = 0)
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Important Differences/Observations

 finite search space  still: enumeration impracticable

 discrete neighborhood, sometimes not even clear how to define

 gradient inexistent  follow locally best neighbor?

 different neighborhoods, different definition of local optimum!

example later

 partial evaluations common for discrete problems

 blackbox vs. greybox vs. whitebox

…meaning that solvers for discrete problems are typically more specialized

Discrete vs. Continuous Optimization
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Algorithms for discrete problems:

 often highly problem-specific

 but some general concepts are repeatedly used:

 greedy algorithms

 branch and bound

 dynamic programming

 randomized search heuristics [not in this lecture]

Motivation for this Last Part of the Lecture:

 get an idea of the most common algorithm design principles

 we cannot

 go into details and present many examples of algorithms

…but for a few

 analyze algorithms theoretically with respect to their 

runtime

Overview Discrete Optimization
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Greedy Algorithms
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From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem 

solving heuristic of making the locally optimal choice at each 

stage with the hope of finding a global optimum.”

 Note: typically greedy algorithms do not find the global optimum

Greedy Algorithms
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What we will see:

 Example 1: Money Change problem

 Example 2: 𝜖-Greedy Algorithm for Multi-Armed Bandits

Lecture Outline Greedy Algorithms
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Change-making problem

 Given n coins of distinct values w1=1, w2, ..., wn and a total 

change W (where w1, ..., wn, and W are integers). 

 Minimize the total amount of coins Σxi such that Σwixi = W and 

where xi is the number of times, coin i is given back as change. 

Greedy Algorithm

Unless total change not reached:

add the largest coin which is not larger than the remaining 

amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:

finishing darts (from 501 to 0 with 9 darts)

Example 1: Money Change
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 generic problem of 

resource allocation

 classic reinforcement learning 

problem showing the 

exploration–exploitation tradeoff 

dilemma

Example 2: Multi-Armed Bandits

Yamaguch

i先生
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 𝐾 single-arm bandits with a lever

 Each bandit has a fixed but unknown probability distribution ℛ_𝑖
attached to it with a mean 𝜇𝑖

 At each time step 𝑡, we decide to pull a lever (𝑖) and get a 

reward 𝑟𝑡 according to ℛ_𝑖

 Overall, we want to maximize the sum of the rewards

 The regret after T steps is defined as 𝜌 = 𝑇𝜇𝑚𝑎𝑥 − σ𝑡=1
𝑇 𝑟𝑡

Example 2: Multi-Armed Bandits

…

ℛ1 ℛ2 ℛ𝐾

Yamaguch

i先生
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Exploration: pull new levers (or underexplored ones) to get better 

estimates on the expected rewards

Exploitation: pull the arm, we think is the best arm

…the latter being the greedy approach here

The 𝝐-Greedy Algorithm

 With probability 1-𝜖: pull the lever, we think is best

 With probability 𝜖: pull a random lever (uniformly)

To be decided (not discussed further here): 

How to estimate the probabilities (e.g. pulling each lever once at first)

How to choose 𝜖 (constant vs. decreasing over time)

constant 𝜖 gives linear regret

Exploration vs. Exploitation: The 𝝐-Greedy Algorithm
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Branch and Bound



39TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 39

 Basically enumerates the entire search space

 But uses clever strategies to avoid enumerations in bad areas

Idea Behind Branch and Bound

Whole problem

branch

subproblem 1 subproblem 2

branch

subproblem 1.1 subproblem 1.2

branch

subproblem 2.1 and so forth…
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Idea Behind Branch and Bound

Whole problem

branch

subproblem 1 subproblem 2

branch

subproblem 1.1 subproblem 1.2

branch

subproblem 2.1 and so forth…

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1
𝐿𝐵1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.1
𝐿𝐵1.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.2
𝐿𝐵1.2 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2.1
𝐿𝐵2.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2
𝐿𝐵2 ≤ 𝑓𝑜𝑝𝑡
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when can we actually avoid evaluating all solutions?

Idea Behind Branch and Bound

Whole problem

branch

subproblem 1 subproblem 2

branch

subproblem 1.1 subproblem 1.2

branch

subproblem 2.1 and so forth…

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1
𝐿𝐵1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.1
𝐿𝐵1.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.2
𝐿𝐵1.2 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2.1
𝐿𝐵2.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2
𝐿𝐵2 ≤ 𝑓𝑜𝑝𝑡
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We can stop exploring/branching if

 UB=LB

 UB for new subproblem lower than LB for another

[when maximizing]

Idea Behind Branch and Bound

Whole problem

branch

subproblem 1 subproblem 2

branch

subproblem 1.1 subproblem 1.2

branch

subproblem 2.1 and so forth…

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1
𝐿𝐵1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.1
𝐿𝐵1.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.2
𝐿𝐵1.2 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2.1
𝐿𝐵2.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2
𝐿𝐵2 ≤ 𝑓𝑜𝑝𝑡

max.
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We assume again maximization here…

 A feasible solution gives us a lower bound 

the optimum will be at least as good as a solution, we know

 Hence, fast (non-exact) algorithms such as greedy can give us 

lower bounds

 For upper bounds, we can relax the problem

for example, by removing constraints

How do we get Upper and Lower Bounds?
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An Example: Branch&Bound for the KP

Dake
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! order of variables plays an important role

optimally, the subproblems don’t overlap

KP: How to Branch?

Whole problem

branch

branch branch

and so forth…

𝑥1 = 0 𝑥1 = 1

𝑥1 = 0 & 𝑥2 = 0 𝑥1 = 0 & 𝑥2 = 1 𝑥1 = 1 & 𝑥2 = 0
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Maximization, so LB by greedy approach for example:

Choose items in decreasing profit/weight ratio until knapsack full

UB by relaxation of constraints (on the variables here):

Use greedy algorithm and pack add. item partially if there is space

…this variable can be used to branch next

KP: How to Bound?

Whole problem

branch

branch branch

and so forth…

𝑥1 = 0 𝑥1 = 1

𝑥1 = 0 & 𝑥2 = 0 𝑥1 = 0 & 𝑥2 = 1 𝑥1 = 1 & 𝑥2 = 0
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Dynamic Programming
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Wikipedia:

“[...] dynamic programming is a method for solving a complex 

problem by breaking it down into a collection of simpler 

subproblems.”

But that’s not all:

 dynamic programming also makes sure that the subproblems are 

not solved too often but only once by keeping the solutions of 

simpler subproblems in memory (“trading space vs. time”)

 it is an exact method, i.e. in comparison to the greedy approach, it

always solves a problem to optimality

Dynamic Programming
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Optimal Substructure

A solution can be constructed efficiently from optimal solutions of 

sub-problems 

Overlapping Subproblems

Wikipedia: “[...] a problem is said to have overlapping 

subproblems if the problem can be broken down into 

subproblems which are reused several times or a recursive 

algorithm for the problem solves the same subproblem over and 

over rather than always generating new subproblems.”

Two Properties Needed
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Main idea: solve larger subproblems by breaking them down to 

smaller, easier subproblems in a recursive manner

Typical Algorithm Design:

 decompose the problem into subproblems and think about how 

to solve a larger problem with the solutions of its subproblems

 specify how you compute the value of a larger problem 

recursively with the help of the optimal values of its subproblems

(“Bellman equation”)

 bottom-up solving of the subproblems (i.e. computing their 

optimal value), starting from the smallest by using the Bellman 

equality and a table structure to store the optimal values

 eventually construct the final solution (can be omitted if only the 

value of an optimal solution is sought)

Main Idea Behind Dynamic Programming
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Knapsack Problem

Example: The Knapsack Problem (KP)

Dake
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Consider the following subproblems:

1) 𝑃(𝑖): optimal profit when packing exactly 𝑖 items

2) 𝑃(𝑖): optimal profit when packing at most 𝑖 items

3) 𝑃(𝑖, 𝑗): optimal profit when allowing to pack the first 𝑖 items into a 

knapsack of size 𝑗

Which one allows us to solve larger subproblems from the solutions 

of smaller ones?

Which value are we actually interest in, when trying to solve the 

problem?

What are Good Subproblem Definitions for the KP?
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Consider the following subproblem:

𝑃(𝑖, 𝑗): optimal profit when allowing to pack the first 𝑖 items into a 

knapsack of size 𝑗

Optimal Substructure

The optimal choice of whether taking item 𝑖 or not can be made 

easily for a knapsack of weight 𝑗 if we know the optimal choice 

for items 1… 𝑖 − 1:

𝑃 𝑖, 𝑗 = ቐ

0
𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑖 = 0 or 𝑗 = 0
if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

Overlapping Subproblems

a recursive implementation of the Bellman equation is simple, 

but the 𝑃(𝑖, 𝑗) might need to be computed more than once!

Opt. Substructure and Overlapping Subproblems
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To circumvent solving the subproblems more than once, we can 

store their results (in a matrix for example)...

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 ... W-1 W

0

1 P(i,j)

2

...

n-1

n

it
e

m
s

knapsack weight

best achievable

profit with items 1...i

and a knapsack of

size j
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

it
e

m
s

knapsack weight

initialization:

𝑃 𝑖, 𝑗 = 0 if 𝑖 = 0 or 𝑗 = 0
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

initialization:

𝑃 𝑖, 𝑗 = 0 if 𝑖 = 0 or 𝑗 = 0
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝1(= 4)
4
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝1(= 4)
4



63TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 63

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝2(= 10)
10
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗



68TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 68

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
4
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
4
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
10 etc.
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗
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Question: How to obtain the actual packing?

Answer: we just need to remember where the max came from!

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

𝒙𝟓 = 𝟎

𝒙𝟒 = 𝟏

𝒙𝟑 = 𝟎

𝒙𝟐 = 𝟏

𝒙𝟏 = 𝟎


