
1TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 1

Optimization for Machine Learning

Discrete Optimization

December 9, 2021

TC2 - Optimisation

Université Paris-Saclay

Anne Auger and Dimo Brockhoff

Inria Saclay – Ile-de-France

2TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 2

Date Topic

Thu, 4.11.2021 DB Introduction

Thu, 11.11.2021 no lecture

Thu, 18.11.2021 AA Continuous Optimization I: differentiability, gradients,

convexity, optimality conditions

Thu, 25.11.2021 AA Continuous Optimization II: constrained optimization,

gradient-based algorithms, stochastic gradient

[written test / « contrôle continue »]

Thu, 2.12.2021 AA Continuous Optimization III: stochastic algorithms,

derivative-free optimization

Thu, 9.12.2021 DB Discrete Optimization: greedy algorithms,

branch&bound, dynamic programming

Thu 16.12.2021 DB Written exam

! always 13h30 till 16h00

Course Overview

3TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 3

Written exam

 multiple choice, typically 4 answers each (1-4 answers correct)

 closed book (nothing allowed but pen) easier questions

 next Thursday (Dec. 16) @ 1:30pm

 1.5 hours

Concrete Information About Exam

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

1

▪ Back to some examples of optimization problems in Machine
Learning …

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

2

▪ Classification

▪ Is there a cat on the picture?

Supervised Learning

Yes / No

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

3

▪ Classification

▪ Is there a cat on the picture?

Supervised Learning

Yes

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

4

▪ Classification

▪ Is there a cat on the picture?

Supervised Learning

Yes

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

5

▪ Classification

▪ Is there a cat on the picture?

Supervised Learning

No

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

6

▪ Labelled data / training sets

Supervised Learning

x1 x2 x3

y1 = 1 y2 = 1 y3 = − 1

Given a set of examples with the
features and labels/targets

{(x1, y1), . . . , (xn, yn)} xi

yi

Input or
features

Output
labels
Target

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

7

Supervised Learning

Given a set of examples with the
features and labels/targets

{(x1, y1), . . . , (xn, yn)} xi

yi

Find a mapping that will assign the
“correct” target to each input

h : x 2 X ! y 2 R

Learning algorithm

h

New image (not in the training set)

= − 1

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

8

Example 1: Linear Regression

Hypothesis: linear model

hw(x) = w0 + w1x1 + . . .+ wd�1xd�1 = hw, xi
x0 = 1

Find via solving the minimization problemhw(x)

min
w2Rd

1

n

nX

i=1

(hw(x
i)� yi)2

x

hw(x)

xi

yi

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

9

Example 1: Linear Regression

Hypothesis: linear model

hw(x) = w0 + w1x1 + . . .+ wd�1xd�1 = hw, xi
x0 = 1

Find via solving the minimization problemhw(x)

x

hw(x)

min
w2Rd

1

n

nX

i=1

(hw(x
i)� yi)2

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

11

Generalization: Parametrization of the Hypothesis

Linear: hw(x) = hw, xi =
d�1X

i=0

wixi

Polynomial: hw(x) =
d�1X

i,j=0

wi,jxixj

Neural network: hw(x)

x1

x2

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

12

Generalization: Different Loss Functions

Start from the linear regression problem:

Loss function:

min
w2Rd

1

n

nX

i=1

(hw(x
i)� yi)2

Let yh := hw(x)

l : R⇥ R ! R+

(yh, y) ! l(yh, y)

Training (optimization) problem:

min
w2Rd

1

n

nX

i=1

l(hw(x
i), yi)

l(yh, y) = (yh � y)2
For linear regression

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

13

Generalization: Different loss functions

Quadratic loss: l(yh, y) = (yh � y)2

Hinge loss: l(yh, y) = max{0, 1� yhy}

l(yh, y) =

(
0 if yh = y

1 if yh 6= y
Binary loss:

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

15

Numerical Optimization

Very often it is not possible to solve analytically the equation
and we have to resort to an iterative algorithm (or numerical
optimization algorithm) that will generate a sequence of points
ds that should converge to

rf(x) = 0

{xk : k � 0} argminxf(x)

Optimization algorithm:

initialize
while not happy do

end-do

[other state variables]k = 0, x0

return

update xk
k = k + 1

input

xk, k

f , rf , (r2f)

f(xk+1) f(xk) (typically)

Goal:
limk!1 f(xk) = minx f(x)

limk!1 kxk � x⇤k = 0

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

16

Algorithm Classes

Zero-order’s algorithms: only use f (no gradients, …). Those methods
are also called derivative-free optimization algorithms. Used when
gradient or Hessian are difficult to compute, or when the functions
are not differentiable.

Depending on the information the algorithm is using to create a new
point (or iterate) we distinguish

First-order algorithms: use and . Standard algorithms when is
differentiable, convex.

f

rf r2f

f

Second-order algorithms: use , and . When we can have an
“easy” access to the Hessian matrix.

f

rf

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

17

Descent Algorithm

descent direction
step-size

Illustration idea from “Alexander & Michael Bronstein” Numerical Optimization slides

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

18

Descent Algorithm

Line search: 1-d minimization along
the descent direction

Generic algorithm:

choose an initial point ,
while not happy

choose a descent direction
line-search: choose a step-size

x0

xk+1 = xk + �kdk

k = 0

�k

dk

k = k + 1

� ! f(xk + �dk)

Descent direction: direction such that for small enough
f(xk + �dk) < f(xk)

�

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

19

Stopping criteria

When are we “happy”, i.e. when do we stop the algorithm?

•when gradient norm becomes small

krf(xk)k ✏

•when step-size becomes small

•when progress in f becomes small

kxk+1 � xkk ✏

|f(xk+1)�f(xk)|
|f(xk)| ✏

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

20

Newton’s Algorithm

Take as descent direction the Newton step:
dk = �[r2f(xk)]�1rf(xk)

The Newton’s direction minimizes the best locally quadratic
approximation of f. Indeed, by Taylor’s expansion we can
approximate f locally in x by

⇡ f(x+ h)

Minimizing g with respect to h yields:

h = �[r2f(x)]�1rf(x)

g(h) = f(x) +rf(x)>h+ 1
2h

>r2f(x)h

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

21

Quasi-Newton’s Methods

In quasi-Newton’s methods, the Newton direction is approximated by
using solely first order information (gradient)

Key idea: successive iterates xk, xk+1 and gradients
yield second order information

pk = xk+1 � xk, qk = rf(xk+1)�rf(xk)

qk ⇡ r2f(xk+1)pk

rf(xk)

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

22

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm

BFGS algorithm:

Bk approximation of Hessian matrix

dk = �B�1
k rf(xk)

xk+1 = xk + �kdk (find �k via line-search)

yk = rf(xk+1)�rf(xk)

Bk+1 = Bk +
yky>k

y>k �kdk
� Bkdkd>k Bk

d>k Bkdk

Considered as the state-of-the-art quasi-Newton’s algorithm.
Implemented in all (good) optimization toolboxes

efficient update to compute the inverse of Bk

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

23

Gradient Descent - Simple Theoretical Analysis

algorithm slower and slower with increasing condition
number

kxk+1 � x⇤k c kxk � x⇤k2 with c < 1

In comparison, convergence of Newton’s method is quadratic:

kxk+1 � x⇤k2 c2
�
kxk � x⇤k2

�2
with c < 1

Theorem[Linear convergence of gradient descent] Assume f : Rd ! R is twice contin-
uously di↵erentiable, convex and for all x, µId 4 r2f(x) 4 LId with µ > 0. Let x⇤ be
the unique global minimum of f . The gradient descent algorithm with fixed step-size
�t =

1
L satisfies

kxk+1 � x⇤k2
⇣
1� µ

L

⌘
kxk � x⇤k2 .

That is the algorithm converges geometrically (also called linearly):

kxk � x⇤k2
⇣
1� µ

L

⌘k
kx0 � x⇤k2

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

25

Stochastic Gradient - Motivation

We now come back to our training optimization problem

Gradient descent update:

wk+1 = wk � �k
1

n

nX

i=1

rfi(wk)

min
w2Rd

1

n

nX

i=1

l(hw(x
i), yi)| {z }

fi(w) the fi can include a
regularization term

Problem: each iteration requires to compute a gradient for each
data point. We don’t want to do that when n is large (quite typical).

rfi(w)

TC2: Introduction to Optimization, U. Paris-Saclay© Anne Auger and Dimo Brockhoff, Inria

Mastertitelformat bearbeiten

26

Stochastic Gradient

The gradient of f(w) = 1
n

Pn
i=1 fi(w) is approximated by the gradient of a single data

function fi(w) at each iteration

rf(w) ⇡ rfi(w) for j chosen at random

wk+1 = wk � �krfi(wk)

Stochastic gradient descent update:

sample j 2 {1, . . . , n}

27TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 27

Date Topic

Thu, 4.11.2021 DB Introduction

Thu, 11.11.2021 no lecture

Thu, 18.11.2021 AA Continuous Optimization I: differentiability, gradients,

convexity, optimality conditions

Thu, 25.11.2021 AA Continuous Optimization II: constrained optimization,

gradient-based algorithms, stochastic gradient

[written test / « contrôle continue »]

Thu, 2.12.2021 AA Continuous Optimization III: stochastic algorithms,

derivative-free optimization

Thu, 9.12.2021 DB Discrete Optimization: greedy algorithms,

branch&bound, dynamic programming

Thu 16.12.2021 DB Written exam

! always 13h30 till 16h00

Course Overview

28TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 28

Combinatorial Optimization

 Search space not necessarily

anymore a subset of ℝ𝑛

 for example, optimization on

graphs

ML example:

structure optimization of neural

networks

Discrete Optimization

Integer Programming

 variables are integers

 simplest example:

optimization in 0, 1 𝑛

ML example:

hyperparameter tuning with

algorithm parts being present

(𝑥𝑖 = 1) or not (𝑥𝑖 = 0)

29TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 29

Important Differences/Observations

 finite search space still: enumeration impracticable

 discrete neighborhood, sometimes not even clear how to define

 gradient inexistent follow locally best neighbor?

 different neighborhoods, different definition of local optimum!

example later

 partial evaluations common for discrete problems

 blackbox vs. greybox vs. whitebox

…meaning that solvers for discrete problems are typically more specialized

Discrete vs. Continuous Optimization

30TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 30

Algorithms for discrete problems:

 often highly problem-specific

 but some general concepts are repeatedly used:

 greedy algorithms

 branch and bound

 dynamic programming

 randomized search heuristics [not in this lecture]

Motivation for this Last Part of the Lecture:

 get an idea of the most common algorithm design principles

 we cannot

 go into details and present many examples of algorithms

…but for a few

 analyze algorithms theoretically with respect to their

runtime

Overview Discrete Optimization

31TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 31

Greedy Algorithms

32TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 32

From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem

solving heuristic of making the locally optimal choice at each

stage with the hope of finding a global optimum.”

 Note: typically greedy algorithms do not find the global optimum

Greedy Algorithms

33TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 33

What we will see:

 Example 1: Money Change problem

 Example 2: 𝜖-Greedy Algorithm for Multi-Armed Bandits

Lecture Outline Greedy Algorithms

34TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 34

Change-making problem

 Given n coins of distinct values w1=1, w2, ..., wn and a total

change W (where w1, ..., wn, and W are integers).

 Minimize the total amount of coins Σxi such that Σwixi = W and

where xi is the number of times, coin i is given back as change.

Greedy Algorithm

Unless total change not reached:

add the largest coin which is not larger than the remaining

amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:

finishing darts (from 501 to 0 with 9 darts)

Example 1: Money Change

35TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 35

 generic problem of

resource allocation

 classic reinforcement learning

problem showing the

exploration–exploitation tradeoff

dilemma

Example 2: Multi-Armed Bandits

Yamaguch

i先生

36TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 36

 𝐾 single-arm bandits with a lever

 Each bandit has a fixed but unknown probability distribution ℛ_𝑖
attached to it with a mean 𝜇𝑖

 At each time step 𝑡, we decide to pull a lever (𝑖) and get a

reward 𝑟𝑡 according to ℛ_𝑖

 Overall, we want to maximize the sum of the rewards

 The regret after T steps is defined as 𝜌 = 𝑇𝜇𝑚𝑎𝑥 − σ𝑡=1
𝑇 𝑟𝑡

Example 2: Multi-Armed Bandits

…

ℛ1 ℛ2 ℛ𝐾

Yamaguch

i先生

37TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 37

Exploration: pull new levers (or underexplored ones) to get better

estimates on the expected rewards

Exploitation: pull the arm, we think is the best arm

…the latter being the greedy approach here

The 𝝐-Greedy Algorithm

 With probability 1-𝜖: pull the lever, we think is best

 With probability 𝜖: pull a random lever (uniformly)

To be decided (not discussed further here):

How to estimate the probabilities (e.g. pulling each lever once at first)

How to choose 𝜖 (constant vs. decreasing over time)

constant 𝜖 gives linear regret

Exploration vs. Exploitation: The 𝝐-Greedy Algorithm

38TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 38

Branch and Bound

39TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 39

 Basically enumerates the entire search space

 But uses clever strategies to avoid enumerations in bad areas

Idea Behind Branch and Bound

Whole problem

branch

subproblem 1 subproblem 2

branch

subproblem 1.1 subproblem 1.2

branch

subproblem 2.1 and so forth…

40TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 40

Idea Behind Branch and Bound

Whole problem

branch

subproblem 1 subproblem 2

branch

subproblem 1.1 subproblem 1.2

branch

subproblem 2.1 and so forth…

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1
𝐿𝐵1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.1
𝐿𝐵1.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.2
𝐿𝐵1.2 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2.1
𝐿𝐵2.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2
𝐿𝐵2 ≤ 𝑓𝑜𝑝𝑡

41TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 41

when can we actually avoid evaluating all solutions?

Idea Behind Branch and Bound

Whole problem

branch

subproblem 1 subproblem 2

branch

subproblem 1.1 subproblem 1.2

branch

subproblem 2.1 and so forth…

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1
𝐿𝐵1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.1
𝐿𝐵1.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.2
𝐿𝐵1.2 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2.1
𝐿𝐵2.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2
𝐿𝐵2 ≤ 𝑓𝑜𝑝𝑡

42TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 42

We can stop exploring/branching if

 UB=LB

 UB for new subproblem lower than LB for another

[when maximizing]

Idea Behind Branch and Bound

Whole problem

branch

subproblem 1 subproblem 2

branch

subproblem 1.1 subproblem 1.2

branch

subproblem 2.1 and so forth…

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1
𝐿𝐵1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.1
𝐿𝐵1.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵1.2
𝐿𝐵1.2 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2.1
𝐿𝐵2.1 ≤ 𝑓𝑜𝑝𝑡

𝑓𝑜𝑝𝑡 ≤ 𝑈𝐵2
𝐿𝐵2 ≤ 𝑓𝑜𝑝𝑡

max.

43TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 43

We assume again maximization here…

 A feasible solution gives us a lower bound

the optimum will be at least as good as a solution, we know

 Hence, fast (non-exact) algorithms such as greedy can give us

lower bounds

 For upper bounds, we can relax the problem

for example, by removing constraints

How do we get Upper and Lower Bounds?

44TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 44

An Example: Branch&Bound for the KP

Dake

45TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 45

! order of variables plays an important role

optimally, the subproblems don’t overlap

KP: How to Branch?

Whole problem

branch

branch branch

and so forth…

𝑥1 = 0 𝑥1 = 1

𝑥1 = 0 & 𝑥2 = 0 𝑥1 = 0 & 𝑥2 = 1 𝑥1 = 1 & 𝑥2 = 0

46TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 46

Maximization, so LB by greedy approach for example:

Choose items in decreasing profit/weight ratio until knapsack full

UB by relaxation of constraints (on the variables here):

Use greedy algorithm and pack add. item partially if there is space

…this variable can be used to branch next

KP: How to Bound?

Whole problem

branch

branch branch

and so forth…

𝑥1 = 0 𝑥1 = 1

𝑥1 = 0 & 𝑥2 = 0 𝑥1 = 0 & 𝑥2 = 1 𝑥1 = 1 & 𝑥2 = 0

47TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 47

Dynamic Programming

48TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 48

Wikipedia:

“[...] dynamic programming is a method for solving a complex

problem by breaking it down into a collection of simpler

subproblems.”

But that’s not all:

 dynamic programming also makes sure that the subproblems are

not solved too often but only once by keeping the solutions of

simpler subproblems in memory (“trading space vs. time”)

 it is an exact method, i.e. in comparison to the greedy approach, it

always solves a problem to optimality

Dynamic Programming

49TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 49

Optimal Substructure

A solution can be constructed efficiently from optimal solutions of

sub-problems

Overlapping Subproblems

Wikipedia: “[...] a problem is said to have overlapping

subproblems if the problem can be broken down into

subproblems which are reused several times or a recursive

algorithm for the problem solves the same subproblem over and

over rather than always generating new subproblems.”

Two Properties Needed

50TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 50

Main idea: solve larger subproblems by breaking them down to

smaller, easier subproblems in a recursive manner

Typical Algorithm Design:

 decompose the problem into subproblems and think about how

to solve a larger problem with the solutions of its subproblems

 specify how you compute the value of a larger problem

recursively with the help of the optimal values of its subproblems

(“Bellman equation”)

 bottom-up solving of the subproblems (i.e. computing their

optimal value), starting from the smallest by using the Bellman

equality and a table structure to store the optimal values

 eventually construct the final solution (can be omitted if only the

value of an optimal solution is sought)

Main Idea Behind Dynamic Programming

51TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 51

Knapsack Problem

Example: The Knapsack Problem (KP)

Dake

52TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 52

Consider the following subproblems:

1) 𝑃(𝑖): optimal profit when packing exactly 𝑖 items

2) 𝑃(𝑖): optimal profit when packing at most 𝑖 items

3) 𝑃(𝑖, 𝑗): optimal profit when allowing to pack the first 𝑖 items into a

knapsack of size 𝑗

Which one allows us to solve larger subproblems from the solutions

of smaller ones?

Which value are we actually interest in, when trying to solve the

problem?

What are Good Subproblem Definitions for the KP?

53TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 53

Consider the following subproblem:

𝑃(𝑖, 𝑗): optimal profit when allowing to pack the first 𝑖 items into a

knapsack of size 𝑗

Optimal Substructure

The optimal choice of whether taking item 𝑖 or not can be made

easily for a knapsack of weight 𝑗 if we know the optimal choice

for items 1… 𝑖 − 1:

𝑃 𝑖, 𝑗 = ቐ

0
𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑖 = 0 or 𝑗 = 0
if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

Overlapping Subproblems

a recursive implementation of the Bellman equation is simple,

but the 𝑃(𝑖, 𝑗) might need to be computed more than once!

Opt. Substructure and Overlapping Subproblems

54TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 54

To circumvent solving the subproblems more than once, we can

store their results (in a matrix for example)...

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 ... W-1 W

0

1 P(i,j)

2

...

n-1

n

it
e

m
s

knapsack weight

best achievable

profit with items 1...i

and a knapsack of

size j

55TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 55

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

it
e

m
s

knapsack weight

initialization:

𝑃 𝑖, 𝑗 = 0 if 𝑖 = 0 or 𝑗 = 0

56TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 56

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

initialization:

𝑃 𝑖, 𝑗 = 0 if 𝑖 = 0 or 𝑗 = 0

57TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 57

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

58TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 58

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

59TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 59

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

60TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 60

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

61TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 61

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝1(= 4)
4

62TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 62

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝1(= 4)
4

63TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 63

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

64TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 64

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

65TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 65

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝2(= 10)
10

66TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 66

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

67TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 67

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

68TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 68

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
4

69TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 69

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
4

70TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 70

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4

4 0

5 0

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

+𝑝3(= 3)
10 etc.

71TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 71

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

72TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 72

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is 𝑊 = 11.

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

73TC2: Optimization for ML, U. Paris-Saclay, Dec. 9, 2021© Anne Auger and Dimo Brockhoff, Inria 73

Question: How to obtain the actual packing?

Answer: we just need to remember where the max came from!

Dynamic Programming Approach to the KP

P(i,j) 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 4 4 4 4 4 4 4

2 0 0 0 0 0 4 4 10 10 10 10 10

3 0 0 3 3 3 4 4 10 10 13 13 13

4 0 0 3 3 5 5 8 10 10 13 13 15

5 0 0 3 3 5 6 8 10 10 13 13 15

it
e

m
s

knapsack weight

for 𝑖 = 1 to 𝑛:

for 𝑗 = 1 to 𝑊:

𝑃 𝑖, 𝑗 = ൝ 𝑃(𝑖 − 1, 𝑗)

max{𝑃 𝑖 − 1, 𝑗 , 𝑝𝑖 + 𝑃(𝑖 − 1, 𝑗 − 𝑤𝑖)}

if 𝑤𝑖 > 𝑗
if 𝑤𝑖 ≤ 𝑗

𝒙𝟓 = 𝟎

𝒙𝟒 = 𝟏

𝒙𝟑 = 𝟎

𝒙𝟐 = 𝟏

𝒙𝟏 = 𝟎

