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What is Optimization?

Typically, we aim at
* finding solutions x which minimize f(x) in the shortest time possible
(maximization is reformulated as minimization)

= or finding solutions x with as small f(x) in the shortest time possible
(if finding the exact optimum is not possible)
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Course Overview
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Thu, 1.12.2022 DB
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Date | |Topc

Introduction

Continuous Optimization I: differentiability, gradients,
convexity, optimality conditions

Continuous Optimization Il: constrained optimization,
gradient-based algorithms, stochastic gradient

Continuous Optimization Ill: stochastic algorithms,
derivative-free optimization
written test / « contrdle continue »

Discrete Optimization |: graph theory, greedy
algorithms

Discrete Optimization Il: dynamic programming,
branch&bound

Written exam
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Introduction

Continuous Optimization I: differentiability, gradients,
convexity, optimality conditions

Continuous Optimization Il: constrained optimization,
gradient-based algorithms, stochastic gradient

Continuous Optimization Ill: stochastic algorithms,
derivative-free optimization
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Discrete Optimization |: graph theory, greedy
algorithms
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branch&bound

Written exam

classes from 13h30 — 16h45 (2"d break at end)
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= possibly not clear yet what the lecture is about in detail

= but there will be always examples and small exercises to learn
“‘on-the-fly” the concepts and fundamentals

Overall goals:
© (give a broad overview of where and how optimization is used
® understand the fundamental concepts of optimization algorithms
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The Final Exam

= will be a written multiple choice exam
= open book

= 2 hours, starting from 13nh30

= counts 60% of overall grade

= please prepare pen&paper
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Intermediate Written Exam (“controle co

» |nstead of a group project
= one smaller written exam/test of about 20min
= November 24 (4" lecture)
= goal: spread learning of lecture content over the course
= accounts 40% to overall grade
= might be in part multiple choice

All information also available at

http://www.cmap.polytechnique. fr/
~dimo.brockhoff/optimizationSaclay/2022/

(in particular the lecture slides)
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Overview of Today’s Lecture

» More examples of optimization problems

* |ntroduce some basic concepts of optimization problems
such as domain, constraint, ...

= Beginning of continuous optimization part
= typical difficulties in continuous optimization
= differentiability
= ... [weé'll see how far we get]
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General Context Optimization

Given:

set of possible solutions Search space

quality criterion Objective function
Objective:

Find the best possible solution for the given criterion
Formally: nl

Maximize or minimize ‘ \ZAy
F:Q— R, -

global minimum

x — F(x) F & = @
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Maximize or minimize Maximize or minimize

F:Q— R, F: Q— R
x — F(x) x — F(x)
where g;(x) < 0
hl(X) =0
example of a

unconstrained

(
Constraints explicitly or implicitly define the feasible solution set
[e.g. ||X]|| - 7 = 0 vs. every solution should have at least 5 zero entries]

constrained ()

Hard constraints must be satisfied while soft constraints are preferred

to hold but are not required to be satisfied
[e.g. constraints related to manufacturing precisions vs. cost constraints]

Optimization for Machine Learning, U. Paris-Saclay, Nov. 3, 202
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Example 1. Combinatorial Optimization

Knapsack Problem
= Given a set of objects with
a given weight and value (profit)
= Find a subset of objects whose
overall mass is below a certain
limit and maximizing the
total value of the objects

Dake

n
max E p;jx; with x; € {0,1}
j=1

.. Ejzlexj <w Q= {O’l}nJ
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Example 2: Combinatorial Optimization

Traveling Salesperson Problem (TSP)
= Given a set of cities and their
distances
= Find the shortest path going
through all cities
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Example 3: A “Manual” Engineering Problem

Optimizing a Two-Phase Nozzle [Schwefel 1968+]
* maximize thrust under constant starting conditions
= one of the first examples of Evolution Strategies

initial design: &= .

() = all possible nozzles of given number of slices

copyright Hans-Paul Schwefel
[http://Is11-www.cs.uni-dortmund.de/people/schwefel/EADemos/]
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Example 4. Continuous Optimization Problem

Computer simulation teaches itself to walk upright (virtual robots (of
different shapes) learning to walk, through stochastic optimization
(CMA-ES)), bv Utrecht Universitv:

We present a control system based on 3D muscle actuation

https://www.youtube.com/watch?v=pgaEE27nsQw

T. Geitjtenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based
Locomotion for Bipedal Creatures"”, SIGGRAPH Asia, 2013.
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Example 5. Constrained Continuous Optimiz

Design of a Launcher position

Injection en
orbite ~

- vitesse

largage coiffe flux thermique
(flux thermiqug)

11111

Séparations
(pression ~
dynamique) —

— fragmentati
Vol atmosphérique ST
- efforts généraux —
- pilotage o cotr

Y

<> <

copyriaht by Astrium
Scenario: multi-stage launcher brings a
satellite into orbit

Minimize the overall cost of a launch

Parameters: propellant mass of each stage /
diameter of each stage / flux of each engine /
parameters of the command law

23 continuous parameters to optimize
+ constraints
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Example 6: An Expensive Real-World Problem

Well Placement Problem

for a given structure,

per well:

« angle & distance to
previous well

« well depth

structure + RS - #wells

®
=
S
®
Oil flow+®me (m3/day)

Time (days) >

o € Q: variable length!
4
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Example 7. Data Fitting — Data Calibration

Objective

= Given a sequence of data points (x;,y;) € RP X R,i =1, ..., N,
find a model "y = f(x)" that "explains" the data
experimental measurements in biology, chemistry, ...

= In general, choice of a parametric model or family of functions
(fo)oern
use of expertise for choosing model
or only a simple model is affordable (e.g. linear, quadratic)

= Try to find the parameter 6 € R" fitting best to the data

Fitting best to the data
Minimize the quadratic error:

N
min Z|fe(xi) — yil?
=1

GeRM
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Example 8. Deep Learning

Actually the same idea:
match model best to given data

{Ju_1£n11

e '"‘\___

Model here: )
artificial neural nets

with many hidden layers

(aka deep neural networks)

i
i
)

h

Parameters to tune:

weights of the connections (continuous parameter)
= topology of the network (discrete)
= firing function (less common)

Specificity:

large amount of training data, hence often batch learning

© Anne Auger and Dimo Brockhoff, Inria

Optimization for Machine Learning, U. Paris-Saclay, Nov. 3, 202



Example 9: Hyperparameter Tuning

Scenario:
= many existing algorithms (in ML and elsewhere) have internal
parameters

= “In machine learning, a hyperparameter is a parameter whose
value is set before the learning process begins.” --- Wikipedia

= can be model parameters
= #trees in random forest
= #nodes in neural net
.
= or other generic parameters such as learning rates, ...
= choice has typically a big impact and is not always obvious
= search space often mixed discrete-continuous or even categorical
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Example 10: Interactive Optimization

Coffee Tasting Problem

= Find a mixture of coffee in order to keep the coffee taste from
one year to another

= QObjective function = opinion of one expert

OFR S

Quasipalm

M. Herdy: “Evolution Strategies with subjective
selection”, 1996
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Many Problems, Many Algorithms?

Observation:
= Many problems with different properties
*» For each, it seems a different algorithm?

In Practice:

= often most important to categorize your problem first in order
to find / develop the right method

= - problem types
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Problem Types

= discrete vs. continuous

= discrete: integer (linear) programming vs. combinatorial
problems

= continuous: linear, quadratic, smooth/nonsmooth,
blackbox/DFO, ...

= both discrete&continuous variables: mixed integer problem
= categorical variables (“no order”)
= unconstrained vs. constrained (and then which type of constraint)

Not covered in this introductory lecture:
» deterministic vs. stochastic outcome of objective function(s)
= one or multiple objective functions
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Example: Numerical Blackbox Optimizati

Typical scenario in the continuous, unconstrained case:

Optimize f: Q c R® » R¥

x € R"

fEER

derivatives not available or not useful
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General Concepts in Optimization

= search domain
= discrete or continuous or mixed integer or even categorical
= finite vs. infinite dimension
= constraints
= bound constraints (on the variables only)
» linear/quadratic/non-linear constraints
= blackbox constraints

=  many more
(see e.g. Le Digabel and Wild (2015), https://arxiv.org/abs/1505.07881)

Further important aspects (in practice):

» deterministic vs. stochastic algorithms

= exact vs. approximation algorithms vs. heuristics

= anytime algorithms

» simulation-based optimization problem / expensive problem
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continuous optimization



Continuous Optimization

QcR*" >R
X = (X1, ., Xp) = f(X1, eer, Xp)

eER

=  Optimize f: {
unconstrained optimization

= Search space is continuous, i.e. composed of real vectors x € R"

. _ | dimension of the problem
=7 dimension of the search space R™ (as vector space)

{Ge)s

1-D problem 2-D level sets

-/ M
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Unconstrained vs. Constrained Optimization

Unconstrained optimization
inf{f(x) | x € R"}

Constrained optimization
» Equality constraints: inf {f(x) | x € R", gx(x) = 0,1 < k < p}

= |nequality constraints: inf{f(x) | x € R", gx(x) < 0,1 < k < p}

where always g;: R" - R
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Example of a Constraint

min f(x) = x% such that x < —1
XER
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Analytical Functions

Example: 1-D
filx) = alx —xp)* +b
where x,xy,b € R,a € Ry,

Generalization:
convex quadratic function

fax) = (x —x0)"A(x —x0) + b
where x,x, E R", b € R ,A € Rinx1}
and A symmetric positive definite (SPD)

Exercise:
What is the minimum of f,(x)?
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Levels Sets of Convex Quadratic Functions

Continuation of exercise:
What are the level sets of f,?

—

Reminder: level sets of a function
Le={x€eR"| f(x) =c}

(similar to topography lines /
level sets on a map)

PUBLIC
DOMAIN
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Levels Sets of Convex Quadratic Functions

Continuation of exercise:
What are the level sets of f,?

= Probably too complicated in general, thus an example here

= Consider 4 = (8 (1)),19 =0,n=2,ie. f,(x) =xTAx

a) Compute £, (x).
b) Plot the level sets of £, (x).

c) More generally, forn = 2, if A is SPD with eigenvalues 1, =
9 and 1, = 1, what are the level sets of £, (x)?
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What Makes a Function Difficult to Solve?

= dimensionality
(considerably) larger than three
= non-separability
dependencies between the objective variables
* jll-conditioning
* ruggedness

non-smooth, discontinuous, multimodal, and/or
noisy function

cut from 3D example,
solvable with an
evolution strategy
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Curse of Dimensionality

= The term Curse of dimensionality (Richard Bellman) refers to
problems caused by the rapid increase in volume associated
with adding extra dimensions to a (mathematical) space.

= Example: Consider placing 100 points onto a real interval, say
10,1]. To get similar coverage, in terms of distance between
adjacent points, of the 10-dimensional space [0,1]*° would
require 1001° = 102Y points. The original 100 points appear now
as isolated points in a vast empty space.

= Consequently, a search policy (e.g. exhaustive search) that is
valuable in small dimensions might be useless in moderate or
large dimensional search spaces.
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Separable Problems

Definition (Separable Problem)
A function f is separable if

argmin f(xq, ..., x,) = (argmin f(xq,...),...,argmin f (..., xn))
(X1,-Xn) X1 Xn

= it follows that f can be optimized in a sequence of
n independent 1-D optimization processes

3 NN N
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Non-Separable Problems

Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system
= f:x+— f(x) separable
= f:x+— f(Rx) non-separable
R rotation matrix

3r —~ 2 \W/ AN\ \/ . S 3 l'i-\ J T = X-S:—;}r" /__\. = ".'é_///.' ;
© ©_ © 6 © © s 2o 290 -
N A e N 210~ "\Q/’ ‘:_ N Ol@E
h © 000 © 2005005 06
(@) O O O O O) O) == Oy = QI
) X ’ A\ ) l ( )! » \9
VR(®) © © © . . SO = (O =
P O ©@O©O© O ¢ R "0 O . ~Op
::O(:' 5 O » ] (@] 'Q @) "/C‘)\; o "O. ~— o
T BN A A7 D ZUON 7 0N =
09_\@_@' © @@\f YO0 @ 2 @
o) : O ) P4UK Q) Q) % M ‘I@ ~ IK\Q.)/ A A
D 0 ©©© O 00— Oz < ©
N\ -\ NN = -1 =G5 B Q)ia O~
'OI /‘ Q , ‘O' ‘A\O/\v: — I\ J = > / r“‘(\'»\l
S - — AN :..{;/‘ (u =) / ) = \9)
2 © 0 © 0O © G 2~ 9o~ Yo n
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[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in
evolution strategies: The generating set adaptation”. Sixth ICGA, pp. 57-64, Morgan Kaufmann

[2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark
Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278
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IlI-Conditioned Problems: Curvature of Leve

Consider the convex-quadratic function
1 1 z 1 z
f(X) = — (x — x*)TH(x — x*) = — hi l-xl-z + — huxlx]
2 2 i 2 i ’

H is Hessian matrix of f and symmetric positive definite

gradient direction —f'(x)?
Newton direction —H~1f"(x)!

lll-conditioning means squeezed level sets (high curvature).

Condition number equals nine here. Condition numbers up to 100
are not unusual in real-world problems.

If H = I (small condition number of H) first order information (e.g.
the gradient) is sufficient. Otherwise second order information
(estimation of H~1) information necessary.

Optimization for Machine Learning, U. Paris-Sacla’
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Different Notions of Optimum

Unconstrained case
= Jocal vs. global
* |ocal minimum x*: 3 a neighborhood V of x* such that
Vx eV:f(x) = f(x¥)
= global minimum: vx € Q: f(x) = f(x*)
= strict local minimum if the inequality is strict

Constrained case
= a bit more involved
= hence, later in the lecture ©

© Anne Auger and Dimo Brockhoff, Inria Optimization for Machine Learning, U. Paris-Saclay, Nov. 3, 2022



Mathematical Characterization of Optima

Objective: Derive general characterization of optima

Example: if f: R — R differentiable,
f'(x) = 0 at optimal points

= generalizationto f:R" > R ?
»= generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

optima of such function can be easily
approached by certain type of methods
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Reminder: Continuity of a Function

£V Hy) — (WL | w) is continuous in x € V if
Ve > 0,dn >0suchthatvy e V: |[x —y|ly <n; If(x) = fFOD|lw < €

not continuous

continuous
function discontinuity
« point
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Reminder: Differentiability in 1D (n=1)

f:R — R is differentiable in x € R if

lim L&MW qvists h e R
h—-0 h
Notation:
/ o f(x+h)—f(x)
f1e0 = fim =

()4

\

The derivative corresponds to the slope of the tangent in x.

© Anne Auger and Dimo Brockhoff, Inria
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Reminder: Differentiability in 1D (n=1)

Taylor Formula (Order 1)
If £ is differentiable in x then

fix+h) = fx)+ f (x)h+o(h]])

l.e. for h small enough, h — f(x + h) is approximated by h +—

f(x) + f(x)h

h— f(x)+ f'(x)h is called a first order approximation of f(x + h)
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Reminder: Differentiability in 1D (n=1)

Geometrically:

The notion of derivative of a function defined on R" is generalized

via this idea of a linear approximation of f(x + h) for h small
enough.

How to generalize this to arbitrary dimension? J
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Gradient Definition Via Partial Derivatives

= In(R" || ||,) where ||x|], = +/{x, x) is the Euclidean norm
deriving from the scalar product (x,y) = xTy

daf
o

Vi) =

Y,

0x,
» Reminder: partial derivative in x,

fir y = f(25, 0, 67y, %6, 2F)

d
a_»]; (x0) = £/ (%)
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Exercise: Gradients
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Exercise: Gradients

Exercise:

Compute the gradients of

a) f(x)=xy withx e R"

b) f(x) =a’x witha x € R"

c) f(x)=xTx(=]|x||?) with x € R"

Some more examples:
= inR",if f(x) = xTAx, then Vf(x) = (A + AD)x
= InR, Vf(x) = f'(x)
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Gradient: Geometrical Interpretation

Exercise:

Let L, = {x € R"| f(x) = c} be again a level set of a function f(x).

Compute the level sets for fi,(x) = a’x and f.(x) = ||x||* and
the gradient in a chosen point x, and observe that Vf (x;) is
orthogonal to the level set in x,.

Again: if this seems too difficult, do it for two variables (and a
concrete a € R?) and draw the level sets and the gradients.

More generally, the gradient of a — et fle)

differentiable function is orthogonal to O /
its level sets. R”
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