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REniNDER_ : continuous optimization
minimize flxs , _ . . ,xm) ×:(a , . . _a) ER

"

In

a

"
vector spaceIR

n: dimension ofLook for ✗* such that
Fan problem .

flak)≤ flx) + ✗ (€1Bn)



When n --1 min Jk)
✗EIR

0

if(g)local optimum?¥→
locate this point

n --2
,
we can represent functions via level sets .

be = { ✗ c- R
" I f- G) = c }



flx ) = ✗if + *I , what is the geometric shape of its level set
.

I.
Derivability or differentiability
in = 1- ,

let f : R→ R

we say
that f is derivable / diterentiable in ✗ if
him fl✗+%L eeists , the limit is denotes f-%)
h→o

and it is called the derivative off in
✗



sht f-b) +hf%)÷÷÷:;;÷
F
' tangent in ×

* f=◦

If f- is differentiable in ✗ then

f-↳ + b) = f- 6) + f- + ◦(11h11)
-

Taylor expansion of f- in × , at first order

For h small enough htsflx -1h) is approximately equal
to htrflxltflxlh



god c- ◦Hh") ↓¥ °

glh) is a small o of h if it goes faster to

◦ than 11h11
.

eiampe glh) = 11hr / = 1h14 C- ◦ ( 11h11)

¥a¥="%÷ -_ "au →b-so



• How do we generalize derivative from n = 1 tons1 ?

Differential of f- : IR
"
→ Rm

Let f : M
"

→ Mm
,
we say that f- is differentiable in ×

if there exists a linear transformation Dfx : R
"

→ Pim{ such that th c- pin flx-ihl-flxi-DF.lk) + ◦(11%1)
-

If n = 1- , Dfxlh) E- f'G) h
Eka ?

f'G) (ha + ha) = f'4)hi + f'G) he{ 1%11%4 ) = ✗ [ ftp.h) ) ) ʰ→FHʰLinear in h



Exercise:X. flx) = Ax where A is a nxn matrix

✗ c- Rn (⇒ Ax c- 112 ")Dfx = A

4. fk) = 11×112
, Dfxllf = 2Ñh

✗C-Rn

1) flx)= Ax A- [
"

' ii] In ✗c- Rn

f-1*+1,1 =
IR" Mn

(we try to find a linear mapping 2 SI flxth)=fH+Uh)
+ 01114111



faith/ = A 1×+4 = Ax + Ah = f +↳¥÷.net %,µ,hts Ah is Linear{ pin→ Mn

so f- is differentiable in × and

Dfx = A Dfxlh) = Ah

If f-G)=Hx1R=s f :P" → R

f/✗ + b) = ( ✗ +hi /✗ +h↳fʰ
= ✗+ ✗ + ✗Th + htx + hth
= *✗ + 2¥¥iÉaʰñhn2= 04h11)

Dfx : his 2 ✗Th



htx ?= ✗th 11×112 ✗Tx

big ⇐¥;) kn;÷
F)

C- IR
= Exit

(h = htx +
i=a

in - C)→ l )
= ✗tT
= ✗Th ↓ ( ab)I btat
we have htx = Th

why : bit 2 xth linear .

holhnthz) = 21hr) -121ha) → 21ham)=2Ñ(hi-hat
= Zxthi +2✗TheLl #%) = ¥11bn) = Whitt 4h21



CHAINRUE-flfklgtxdk-ffdgkd-gkf%Df.IR
→ R g : Rts R

Lfpg)
"

4) = f-
"

(gud) . g'4)
composition

✗ its sin /×) foglx) = f- (gas)=sin(x2)
✗ to ✗

2

flxlglx) ?= sink) - ✗2

[ composition 2- product of functions are different

Dlfg)* (b) =Dfg⇒(Dgxlhl)



We
go

back to f : M
"
→ R [m --1]

When f : IR
"
→ R is differentiable in ×

,
there is

a specific representation of the differential of Linx
Dfx :B

"
→ M

3- a C- Rn such that Dfx (h) = < a,h)

[This comes from the
= ath

Priest representation] The rector a has a specific
theorem name a=Dfx

[Gradient off in ×)
Dfx (h) = Ltfx , h > LINK BETWEEN

DIFFERENTIAL

A GRADIENT



The gradient can also be defined with partial
derivatives

.

Df✗=(
¥741

i.

:¥w)
Exera Compute the gradient of .

flx) = K ✗ EIR "

fix =aT✗ a- %;)
*Tx



fkn, ✗2) = ✗1 he =/ ✗ =/ Xuxa / ER
' / Xn= c)

Level KH
.

¥151 Dflxl
⇒

DflxlDfat

☐f×=(:)



The gradient vector is orthogonal to the level sets
.



Second order deniability / differentiability
n= 1- ( 1 D- case)
Let f- : IR→ Pr be differentiable on R and let

f
'
: ✗ → f' A) be its derivative function

If f
"

is derivable / differentiable, then we denote f
"

its derivative
.

f-
" Ix) is called the second order derivative of f-

If f- is two times differentiable then

fl ✗ + b) = f. 1×1 + f'A) h + { f"G) h2 + ◦1111114
SECOND ORDER TAYLOR / EXPANSIONFORMULA



for h small enough htsflx) + fix)he§f"Hh
' (which

is quadratic in h ) approximates f- . This is called a

second order approximation of f-
htflx) +f'1×14+1=1-4×142

quadratic approximation ofder

fin ×appixmation



if ✗ ≥ ° ✗ € Rft) = {¥2 if ✗ ≤ °

f4×I= } 2x
×≥ 0

- 2x ✗ ≤ 0 tf'41=21×1
^

+ derivable
in Zero



We want to generalize second order derivative to

functions f : IR" → R

The Hessian matrix generalizes f-
"4)

:÷Hessian 1×1=179-1×1 =[É¥¥¥¥i
%n

'

:¥
.

The Hessian matrix is symmetric g÷×np=g*?÷×,
Schuvart theorem



Éamp Compute the Hessian matrix for flx/ ={ ✗TAX
A Symmetric nxn matrix .

start with A- 1 ? ;)

gµ=? g Llx)='z✗T(? 1)✗ = { (9×12 -1×22+2×1 ✗2)

2¥ -_ 1212.5*+2×2) T.it#=?--9a+xz)-- 9
= 9×1-1×2

2%2.io?-E9xi-xz)--i7g?----t2l2x2-2xr)=xzi-xnFf--*--g?-[112-1×1]=1



Rf = (9, E) = A

If f-4) = { ✗
1- Ax with A symmetric . A : nxn

☐Zflx)= A

If A is not symmetric : D6)= { (A + At)



DETAIL ABOUT :

Llx/= {×✗ = { (9×12 -1×22+2×1 ✗2)
1: :X:) -1¥: ::-)

9×1-1×2

)1 ✗
T (9×1-1×2) =#✗i ✗2) ( ✗1 + ✗2I ✗1 1- ✗2

=-2×1 (9×1-1×2) + ✗21×1-1×2)
=€9 ✗12 -1×1×2 -1×1×2 -1×22)
¥9412 + 2×1×2 -1×22)



SECOND ORDER TAYLOR EXPANSION :

If f- : IR" → IR is twice differentiable , then

f- (✗ +b) = flx) -1 Dftxth +± hTD2fHh + ◦( Mhk)
A 9

117" IR "



Ill - conditioning is a difficulty in optimization .

For a convex - quadratic problem f- 4) = { G-A)TAK-A)
where A is symmetric positive definite .

R6r : If A- Id = (ly) , fix ={ (x-✗a)TAK-¥
= {(x-A)Tx -xD
={ 11 × -✗£112

*



If A≠ Id ,
the bevel sets are ellipsoid .

dmax : largest square
root of A#%ⁿÑ 1min : smallest square
root ofA

For a ill- conditioned problem we have a large ratio between
the largest axis of ellipsoid and smallest axis, equivalently we
have a large ratio between the largest eigenvalue of A and

the smallest eigenvalue of A .



for a ill - conditioned problem ,the condition number of
the matrix A is large ( of the order of 106 or higher
and (A) = '÷¥f-↑
symetric matrix
M

A ill- conditioned convex- quadratic problem is a problem
with a ill- conditioned Hessian matrix .

More generally ( not just for convex guah-a.tt functions ,
a function f- : Rn → R where the Hessian matrix is

ill - conditioned is said to be ill - conditioned
.



GRADIENT DIRECTION VERSUS NEWTON DIRECTION

Gradient direction : Dflx)
Newton direction : - [174-61]-1 Dflx)

Exera f-1×1 = 2- ✗THX , ✗ c- R2 H =/! ;)
y Ikot level set off
4 D-lot the gradient detection at different *
2) Compute 2- plot the Newton direction



OPTIMIZATION FOR MACHINE LEARNING 2022 CLASS 3

Correction of previous exercéce
.

Had -_ ( ¥;)flx/ = { (9×7-1×22)

Rfk) :( ]
-
(5) → 7=9-2
• Dft)

¥É;÷¥¥¥i*i



Dyad :( ;) 9-
"

= (¥ ;)
If D= is diagonal ☐

"
= (¥
.

'

. ¥!)
why : Indeed DD

-'
= Id = (

^

; . ;)
Étui. - [DYAD

"

Rfa) =-1! ;) /
9"

)✗2
= - (E) = - ×



É¥¥?
m µ..⇒ rate

✗t+ i = ✗t + 701 (-Df

same with Newton direction

✗1-+1 = ✗t + y ( - [174-1×1-151 Dflxt))



We observe that the Newton direction points towards the

optimum on convex- quadratic problems independently of
the condition number of the Hessian matrix .

Whereas
_ Dflx) points towards the optimum at ✗=/

if and only if D2fCx1= Id ( and thus the

condition number equal to 1) .

If the Hessian matrix is not diagonal anymore ✗I ✗TAX

A Sym . potNewton direction
A not det

diagonal

17¥



Dfcx) = Ax

172ft) = A Newton : - [A)
"

Ax = - Id × = - ✗
direction

Optimality conditions

Assume



Optimality conditions

Assume f : R→ R is differentiable If%) exists for all ×)
which one of the following statements are correct :

① f/(✗*) = ° ⇒ ✗
*
is a local optimum off WRONG

fad = ✗
3

② ✗
* is a local optimum ⇒ fÉʰ ) = poppy#1×1=2×2→in:|:)③ f-4×4--0 ⇒ ✗

*
is a global optimum

WRONG (same as ① for
⑥ ✗& is a global optimum ⇒ f-%) =0 counter - example)

CORRECT

THEOREM ( first order necessary condition)
Let f : IR

"
→ R be a differentiable function . If ✗* is a

focal optimum off ( minimum or maximum) them Df/✗a) = ◦
-



themarkr we talk about first order condition because it
involves only first order derivative .

derivative is zero

€np•taᵗi•whʰ"w
⇔
'¥

pthooF-forn-1.fi/x)--limflx+Ha-fk)h-so
assume that ✗

k is a local minimum : flair) ≤ fkk+n)
th small
enough



[3- I such th ≤ I f( xD ≤ faith))
Alh)=fl¥4a≥? if h ≥ ◦ AID ≥o

if h ≤o Alk) ≤o

him A!¥=f4% ≥ ◦ , Ligo Alh) -44×4<-0

ʰ⇒µ⇔=◦ʰ≤#



SECOND ORDER NECESSARY AND SUFFICIENT CONDITIONS :

Let's assume that f- is twice continuously differentiable .

NECESSARYCONDitiowi-T-f.lk is a local minimum
,
them

Dfw) = ° and DFG) is positive semi- definite .

( if n=1 ✗
• local minimum ⇒ f-'☒ =o , f-

"(x)≥ 0)
[A sym . matrix is positive if t y yTAy ≥ 0]definite yTAy=o ⇒ y = 0

positive definite ytAy > ◦ ty =/ 0

positive semi - definite yTAy≥° Ky
NotsuHiue flx)=x3 / 1-4×1=0 f-

" 1×1--0>-0 ,yet it not
a local minimum .



sofficiENTCONDitioN-a.IT ✗& such that Dfw) ⇒ and

D2flx) is positive definite , then ✗
* is a strict local minimum

.

n --1 ,
×
" such that f-'1×1=0 f-

"1×1>0 ⇒ ✗
*
is a strict
local optimum

.

="
s f'Gd=2× f-"1×1=2

0 satisfies f-%) = 0 f-
"G) = 2 > o

them 0 is a Stoic local minimum of
the function

1-stnitlocalminimunn Ei⇔m*minimum

local minimum



t⇔hstrict local
minimum

f'6)⇒
f"41=0



CONVEXITY.whe.ch
of the following functions are convex ?

Not convex CONVEX

(concave)

a. i÷ 1¥
convex

ngaµ
""" part

§ look like

⇔"

part is (e)
concave



CONVEX FUNCTIONS

Let f- : UCR
"
→ IR . We say that f- is convex

, if
↑

for all × ,y c- U
open convex set

ft c- [oil]

flu -1-1 ✗ + ty) ≤ 1^-1-1 fix + 1-fly)

::÷÷:not cortex because f-

+ t fly)iii.iii.¥÷t



¥
Intuitions for a convex function that is differentiable the

tangent is below the cave
.

Exeru translate this property into an equation
( you can assume m= 1)

Equation ofthe tangent in ✗

¥"
,

¥:÷¥¥×¥:¥¥=*→



↳ 1-1×1 goes though (✗ if /xD
The slope of Ttx) is the derivative of f- in ✗

.

If n= e- , f- is differentiable , then f- is convex if and only if
for all ✗ and y , fly) ≥ f'G) ly - ×) + LID
↳ This property translates that for a convex function the

curve is above the tangent .

THEoREM:_ IIff ¥ ☒ differentiable , then f- is convex if
and only if for all ✗ iy

fly) - fix) ≥ DfÑ ly - x)

If n=1 , f- is twice continuously differentiable , thentis convex

iff f- " 1×1≥◦ .



ñEoRt If f- is twice continuously differentiable , then
f- is convex if and only if D.2ft) is positive semi-

definite for all × .

Definition A function is concave if and only if
- f- is convex .



Examples : flx)=✗2 is convex because f- "G) =2 ≥ °

flx) = -✗ 2 is concave because ✗2 is convex .

f- 1×7 = log (x) f-
'G) = ¥ , f-

"

1×1=-1×-2 ≤ ◦
↳ f- is concave

.

flx) = × f is convex ( and concave)
f-
"1×1=0

other examples of convex functions :

• of 4) = { ✗TAX A sym pos semidefinite , then

f- is convex

• flx) = at ✗ + b a c-Rn
,
b C-Rn [ linear slope]

• the negative of the entropy : f- G) = - ¥2 ✗i ln(xD



ÉERCic Let f- : U CIR" → IR be a convex and

differentiable function convex open subset of R
"

Prove that if Dfl ⇒ , then ✗
•
is a

global minimum of stte function .

If f- is convex and differentiable ,
-

fy, × fly) - fad ≥ Dfkdtly - ×)
It × " is such that Dfw) = ◦ , then Dfkiytly.in)=o
and the previous equation gives

fly) ≥ flxD Fy
which means that ✗

•
is a global minimum off .



The important consequence is that for convex and different:&
functions , critical point ,ie_ points where PfH=0 are
global minima of the function .

We assumed that f : VCR" → IR where U is an open

convex set
.

"

open : intuition
,
ball with boundary

"

.

① Toil] closed T7
10,11 , (a) , Jo ,I

÷¥penirtewaH
( excluding • and 1 fooom to , 17



/ ◦ i 1 ( U ) 2,3 ( is also an open .

U is open , if tf ✗ C- U
,
I can

put a smalls ball in U which is fully in7 u

U open

lose / vk.at#
4- 2


