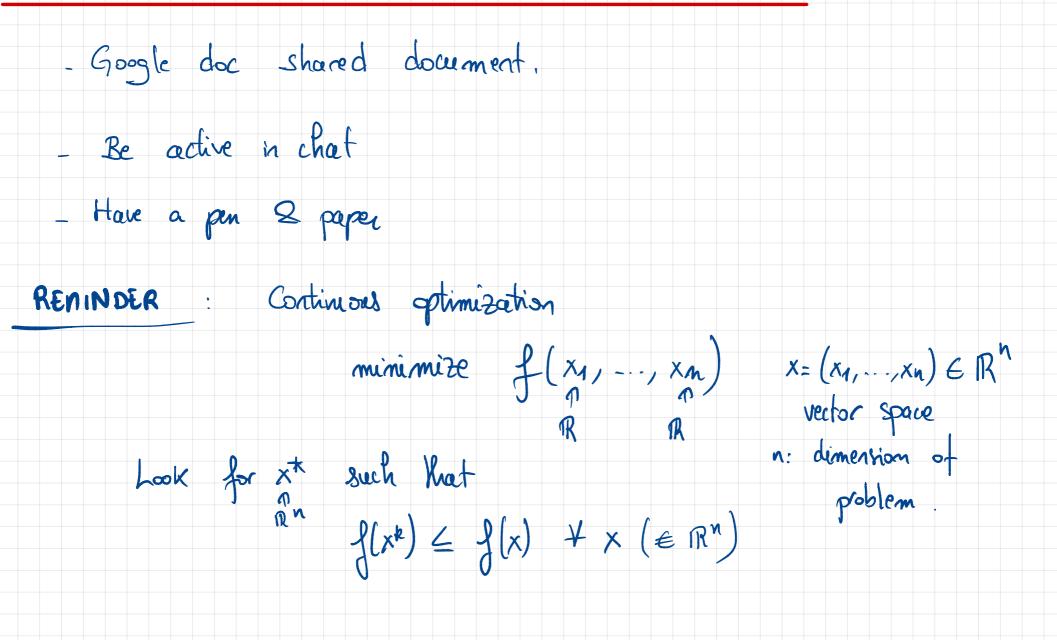
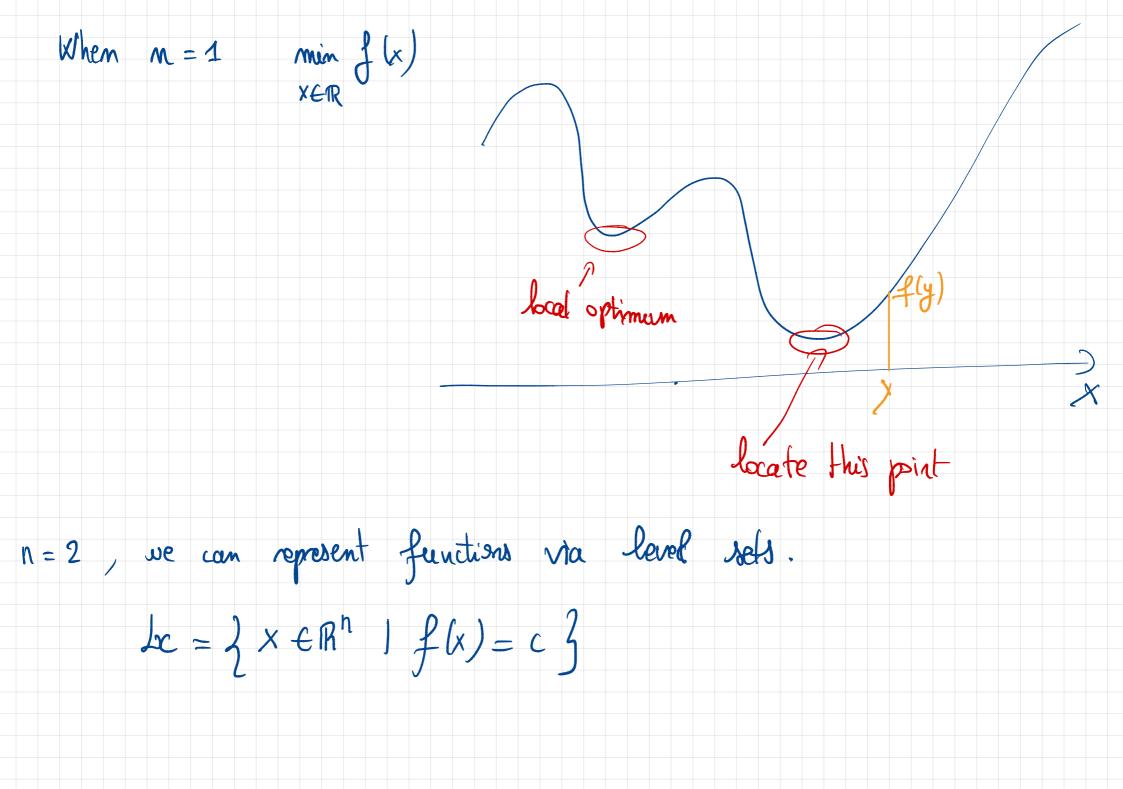
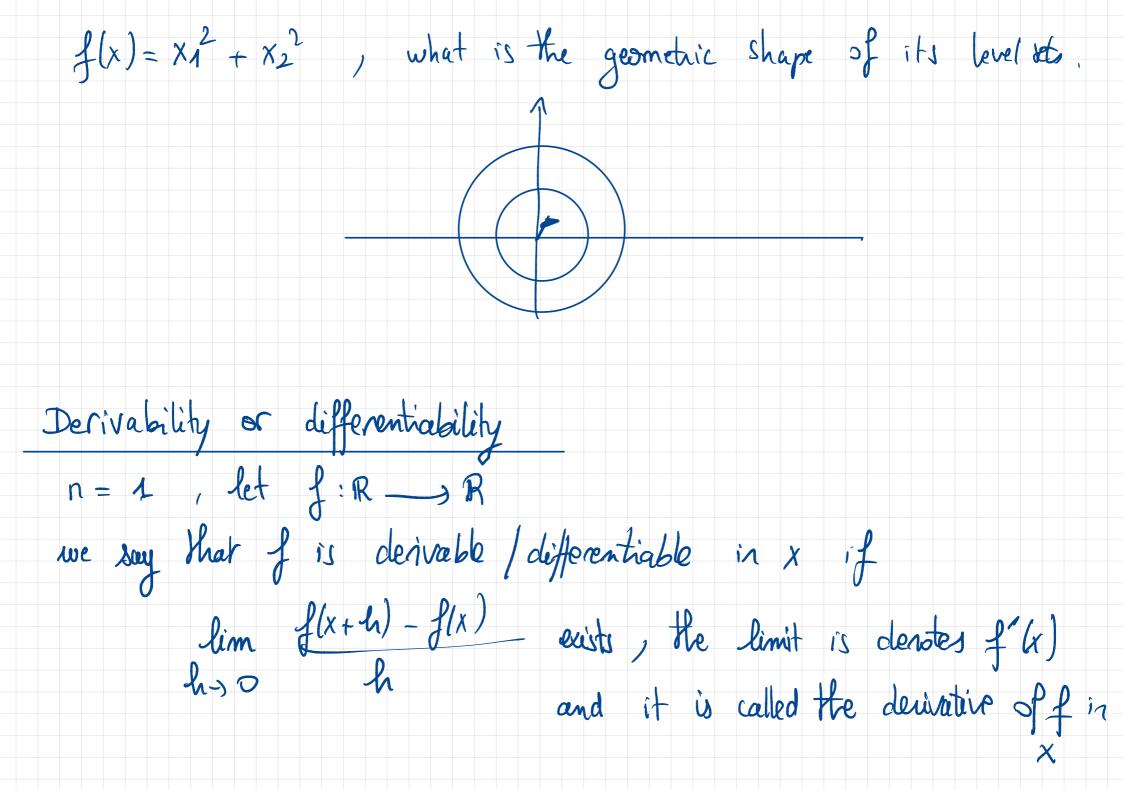
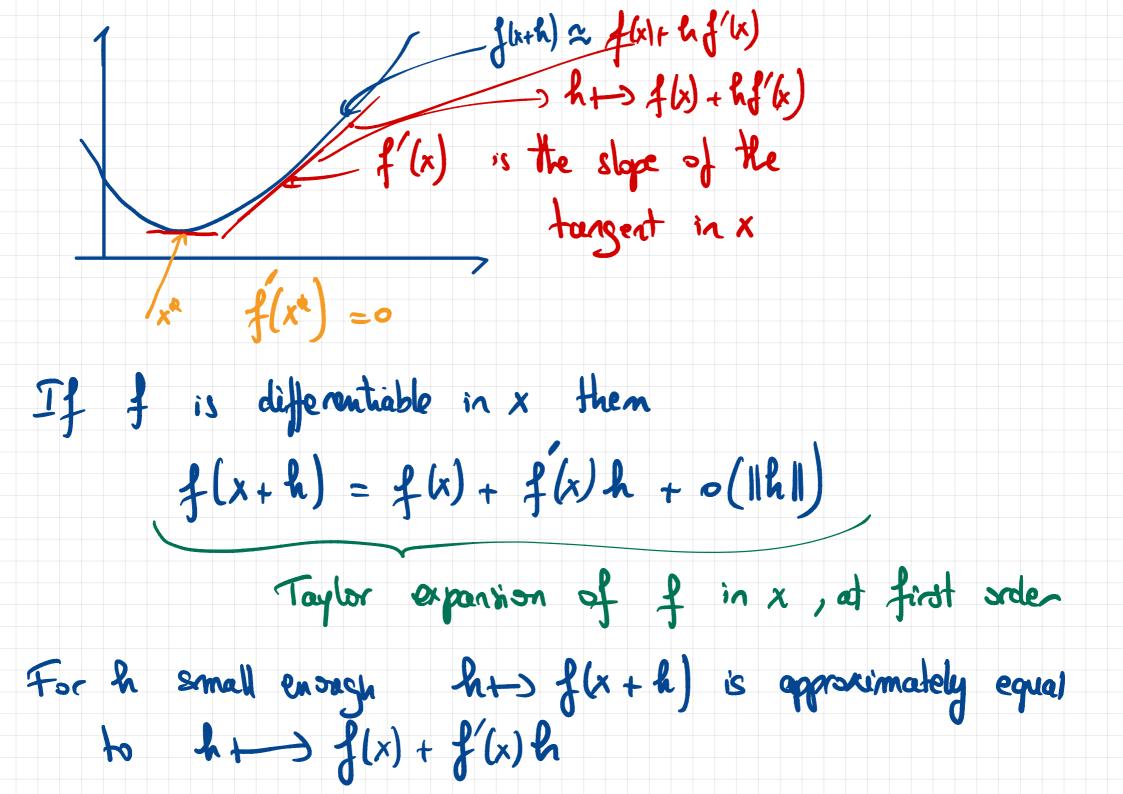
OPTIMIZATION FOR MACHINE LEARNING 2022 CLASS 2



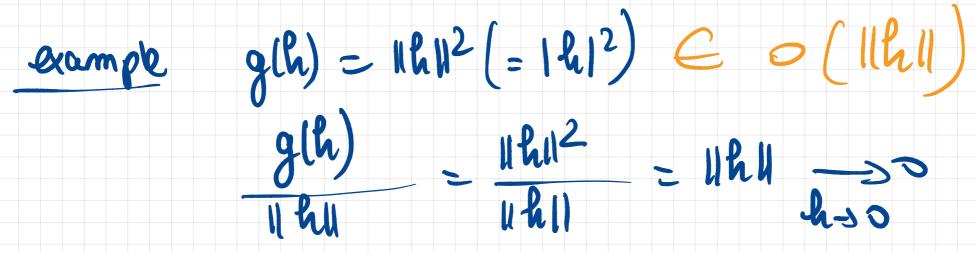




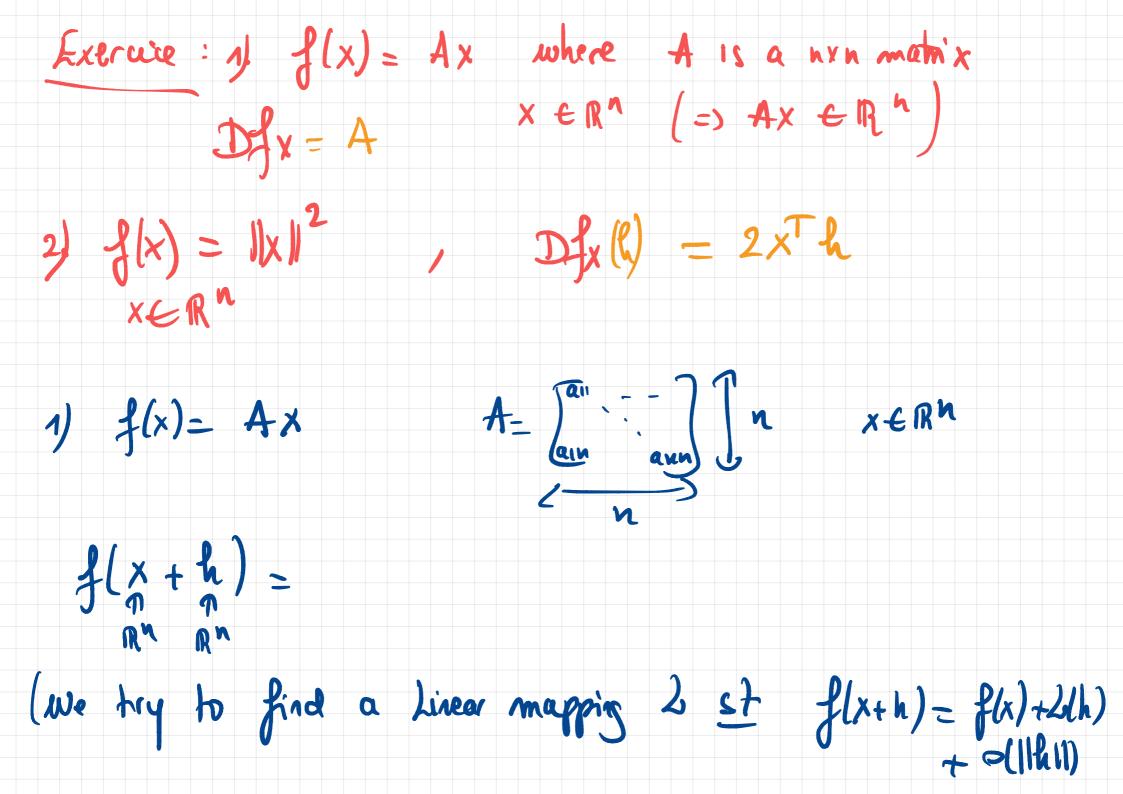


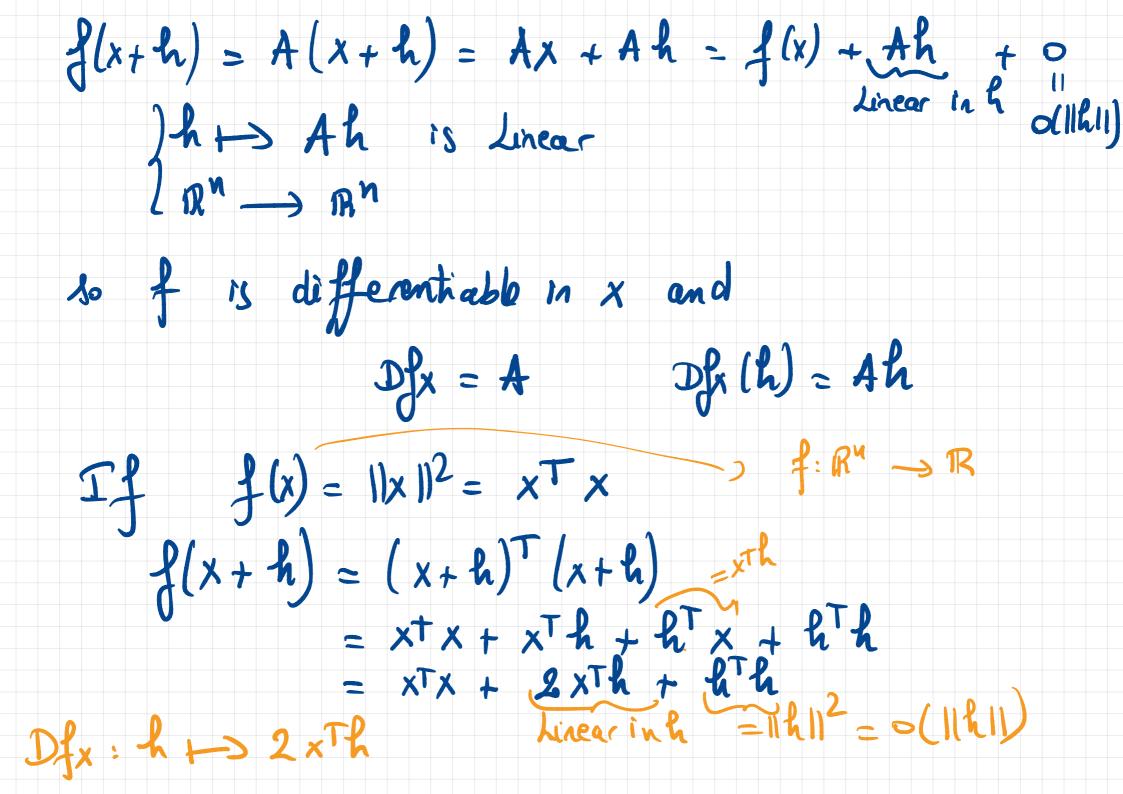
g(h) is a small o of h if it goes faster to

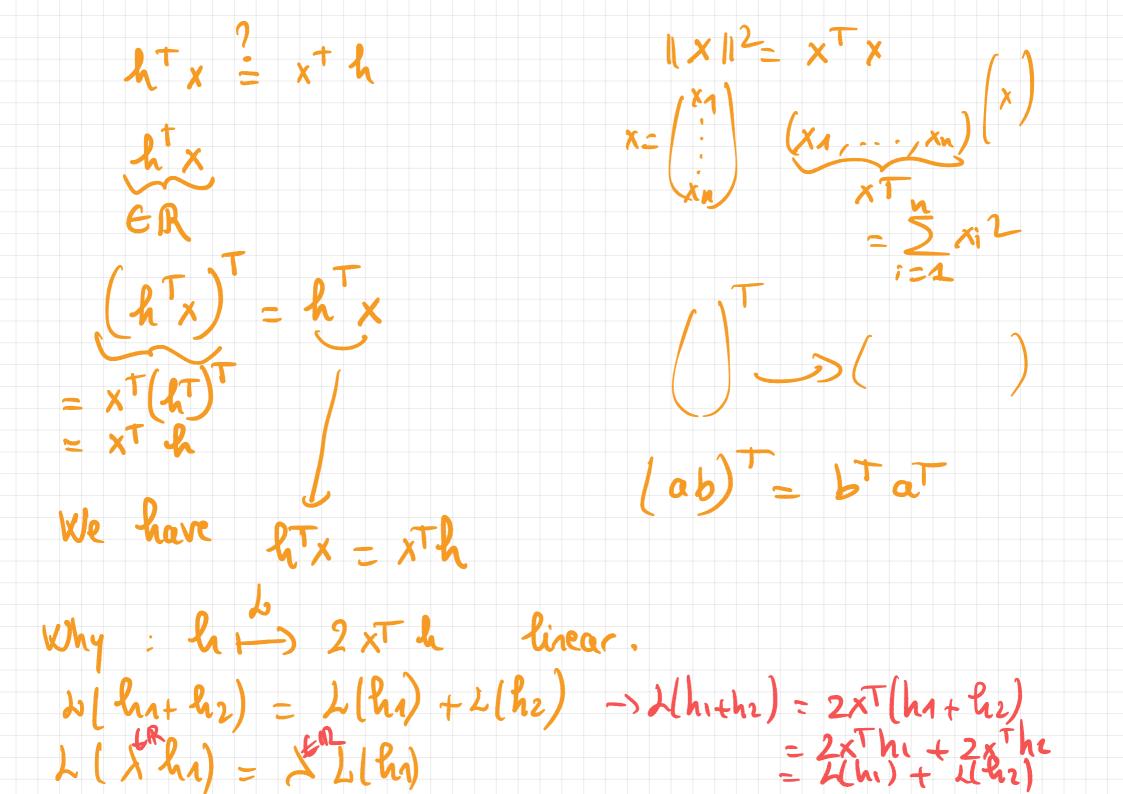
o Khan IlhII.

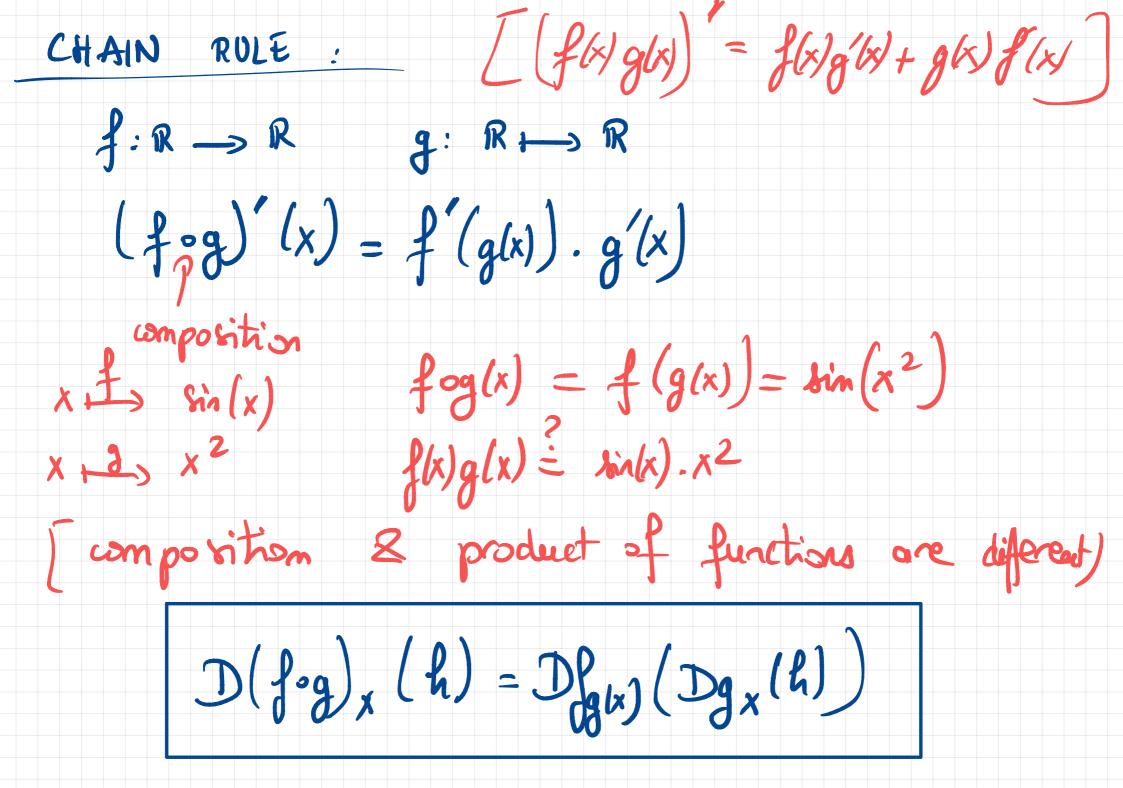


. How do we generalize derivative from n = 1 to n > 1? Differential of f: Rn -> Rm Let $f: \mathbb{R}^n \longrightarrow \mathbb{N}^m$, we say that f is differentiable in xif there exists a linear transformation $Df_x: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ such that $\forall h \in \mathbb{R}^n$ $f(x + h) = f(x) + Df_x(h) + o(1|h||)$ $Df_x(h) \doteq f(x)h$ If n = 1, Linear in h? $\int f'(x)(h_1 + h_2) = f'(x)h_1 + f'(x)h_2 \quad h \to f'(x)h$ $\int f'(x)(d_1h) = d[f'(x),h] \quad h \to f'(x)h$

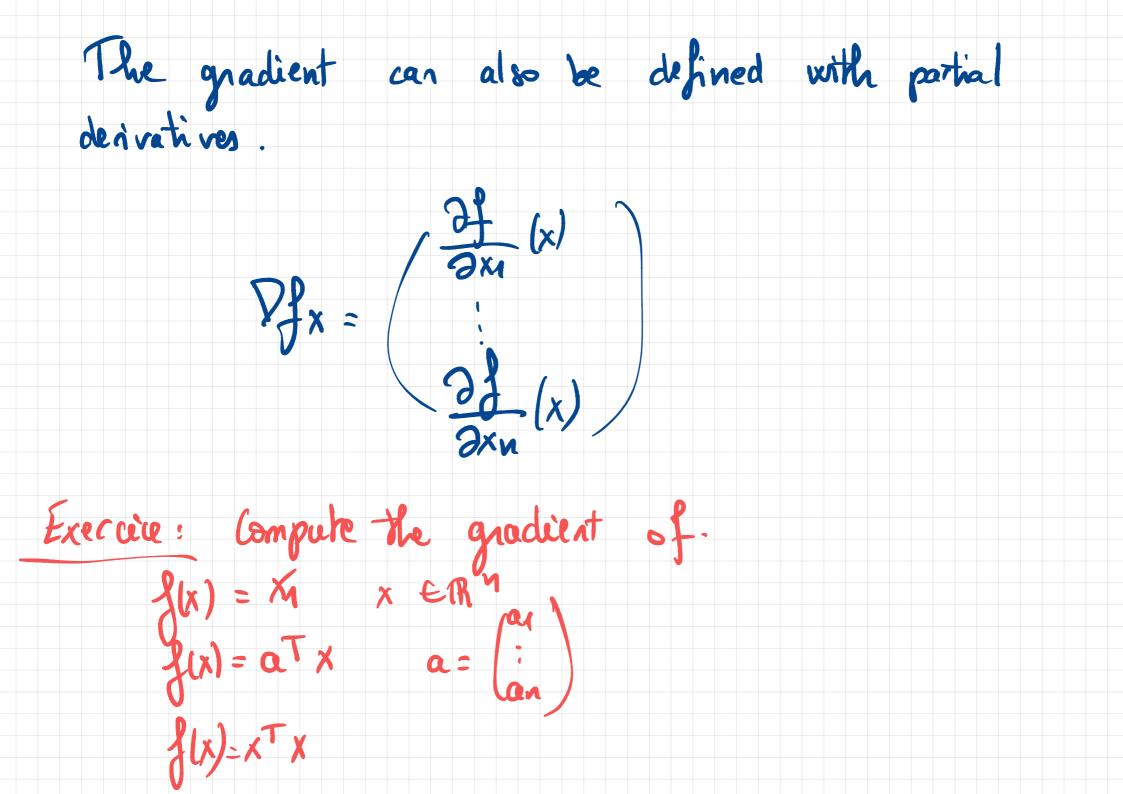






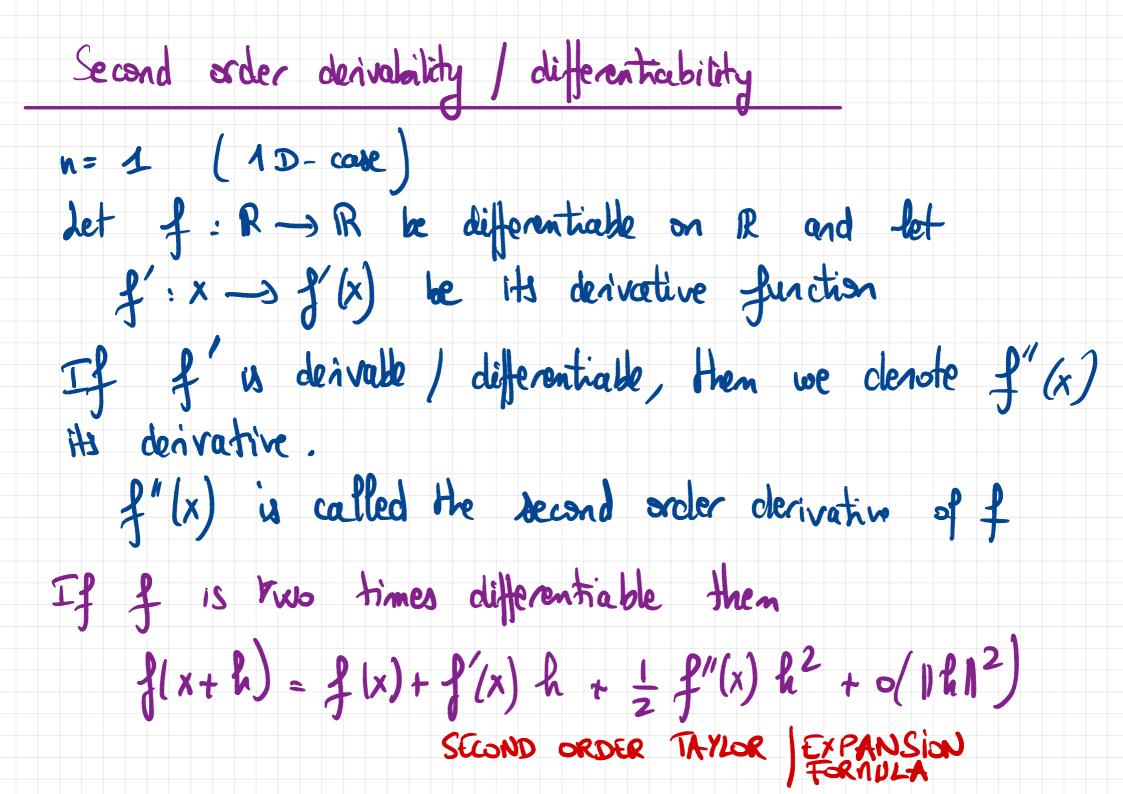


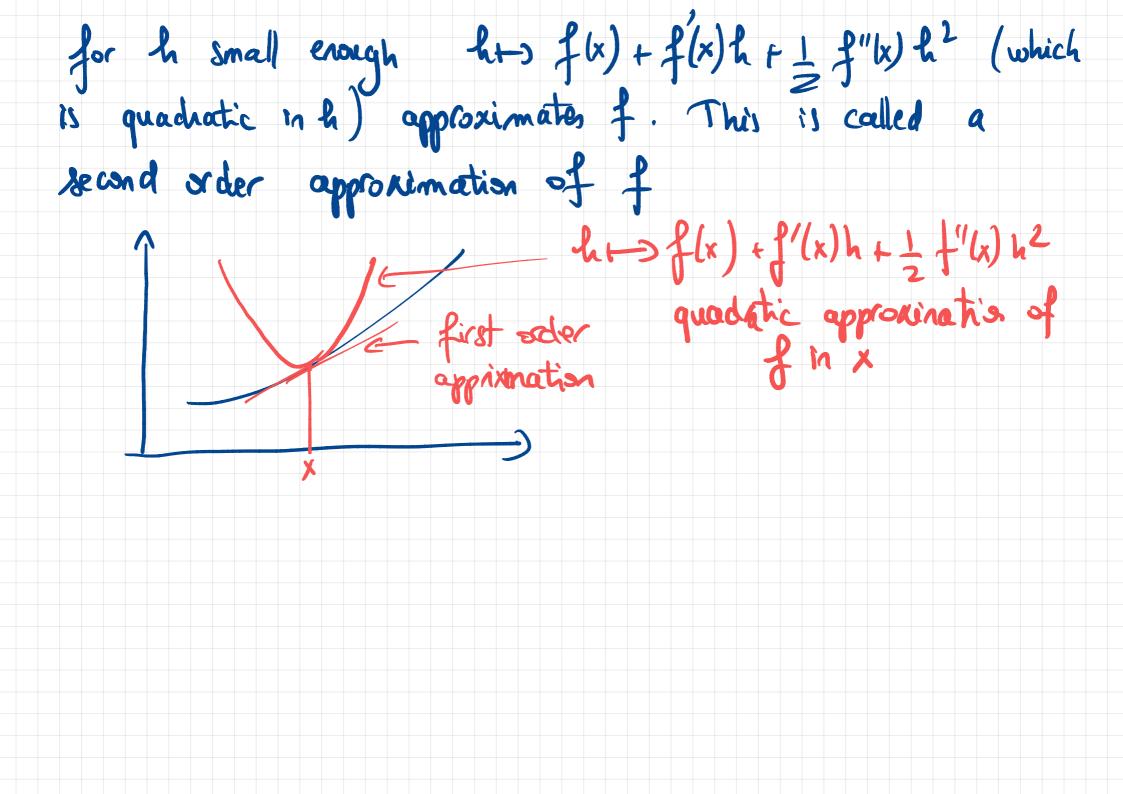
We go back to j: Rⁿ - R [m=1] When $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable in x, there is a specific representation of the differential of f in x $\mathbb{D}f_{x}: \mathbb{R}^n \to \mathbb{R}$ $\exists a \in \mathbb{R}^n$ such that $\mathbb{D}f_{x}(h) = \langle a, h \rangle$ $= a^T h$ This comes from the Riese representation The vector a has a specific theorem name $a = \nabla f x$ [Gradient of f in <math>x] $Df_x(h) = \langle \nabla f_x, h \rangle$ Link BETREEN DiffERENTIAL 2 GRADIENT

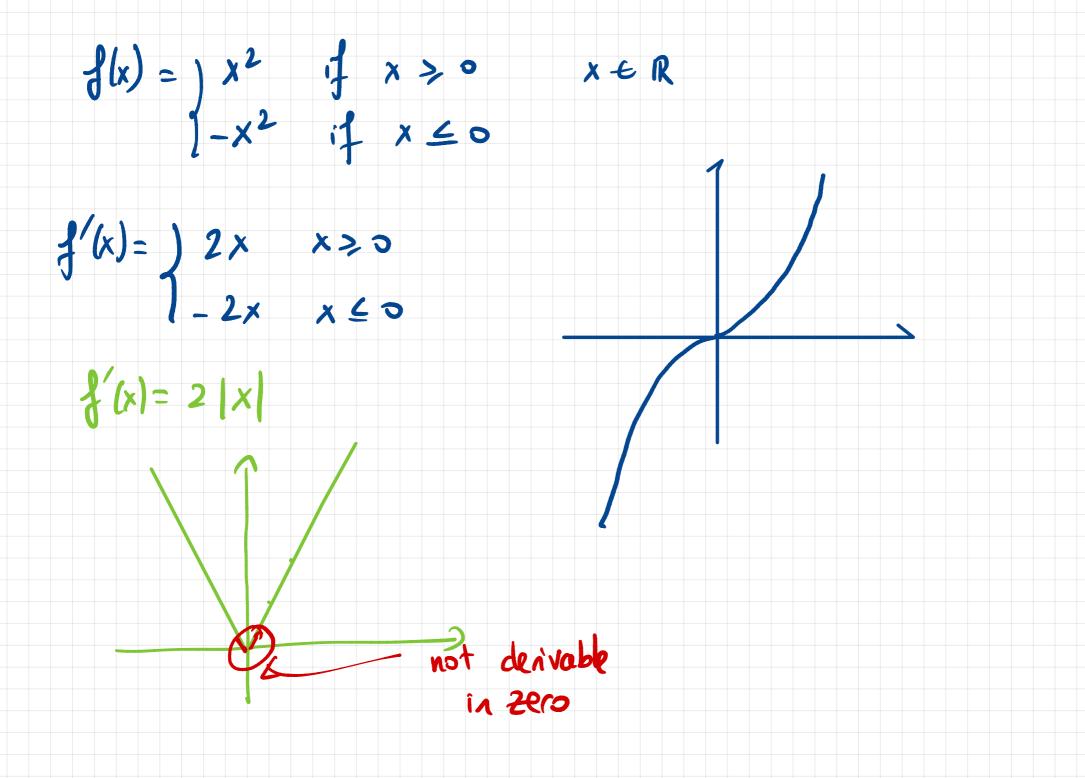




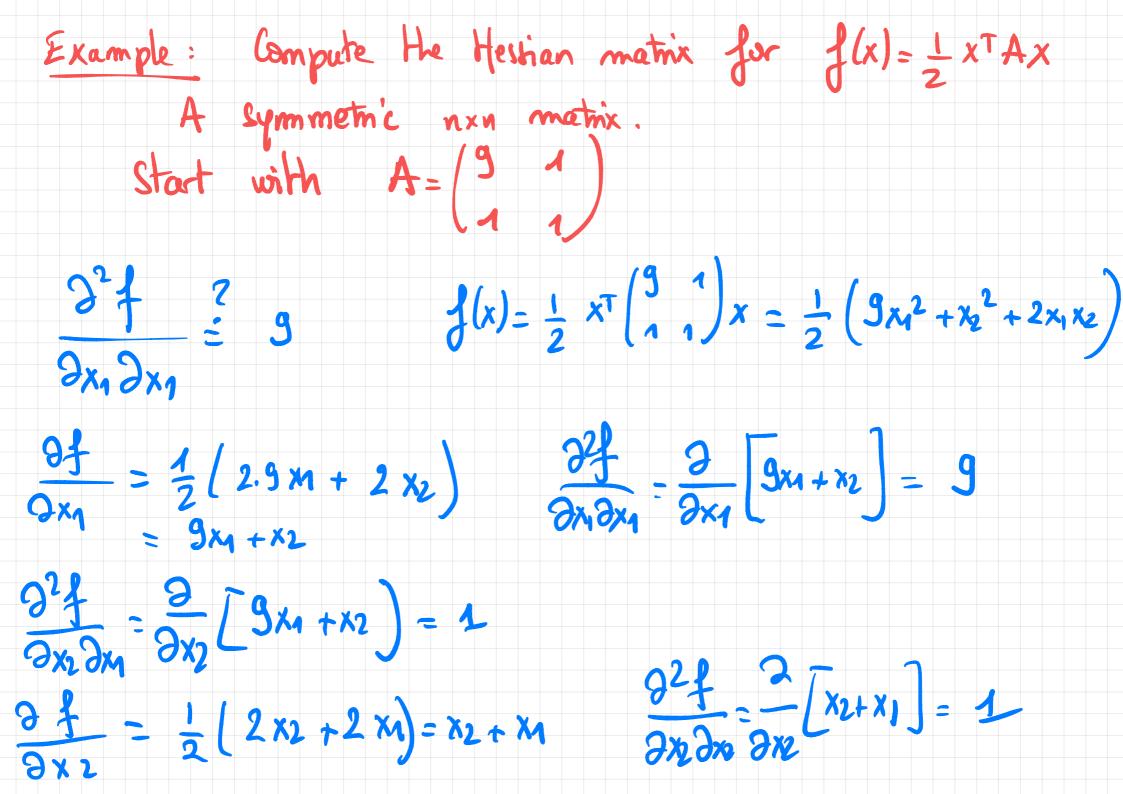
The gradient vector is schogonal to the level sets.

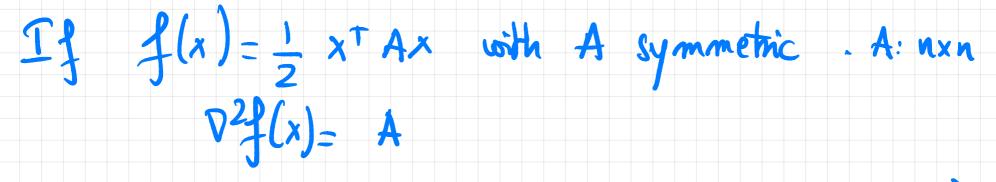


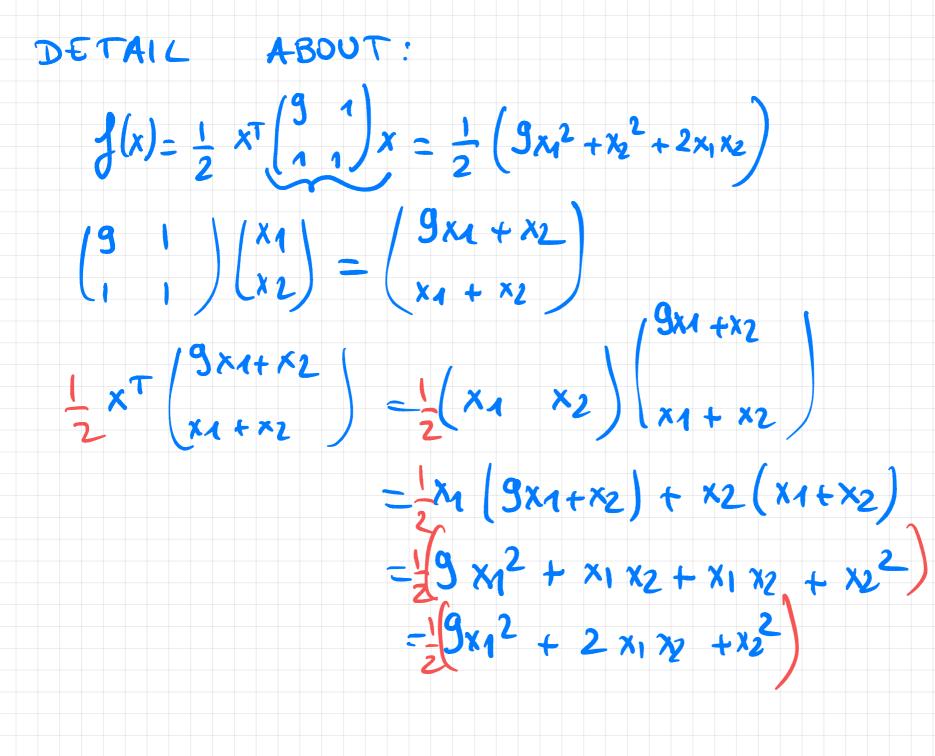




We want to generalize second order derivative to functions $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ The Hessian matrix generalizes f Hessian $(x) = \nabla^2 f(x) = \frac{\partial^2 f}{\partial x_1 \partial x_1}$ The Hessian matrix is symmetric Dry Dry 7 2xn 2x1 Schworz thesen

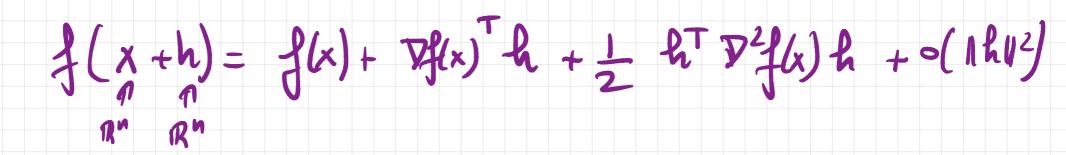






SECOND ORDER TAYLOR EXPANSION:

If f: RM -> IR is twice differentiable, then

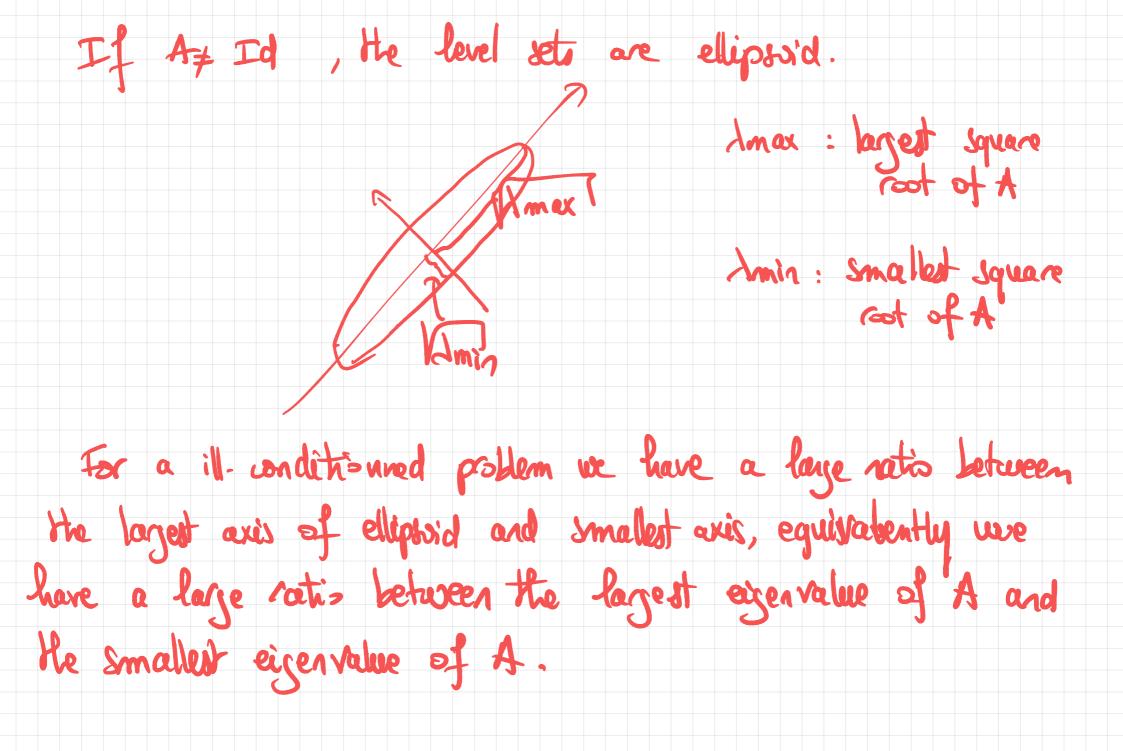


Ill-conditionning is a difficulty in optimization.

For a convex-quadratic problem $f(x) = \frac{1}{2}(x-x^{*})^{*}A(x-x^{*})$

cert

where A is symmetric positive definite.



for a ill-whichioned problem, the condition number of

of the order of 10° 5 higher) He matrix A 13 loge (

 $\operatorname{cend}(A) = \frac{\operatorname{Amax}(A)}{\operatorname{Amin}(A)}$

Symetric matrix

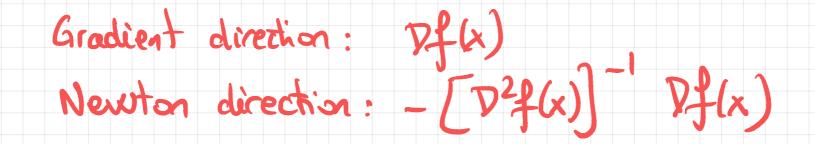
A ill-inditionned convex-quadratic poblem is a poblem

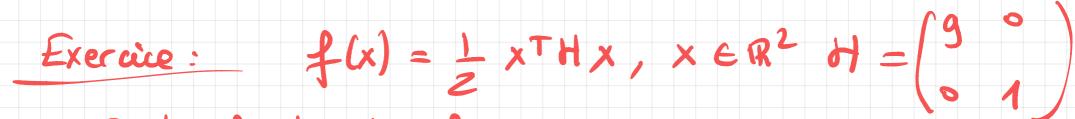
with a ill-conditionnel dtersion matrix.

Note generally (not just for convex quatratic functions), a function $f: \mathbb{R}^n \to \mathbb{R}$ where the Herrian matrix is

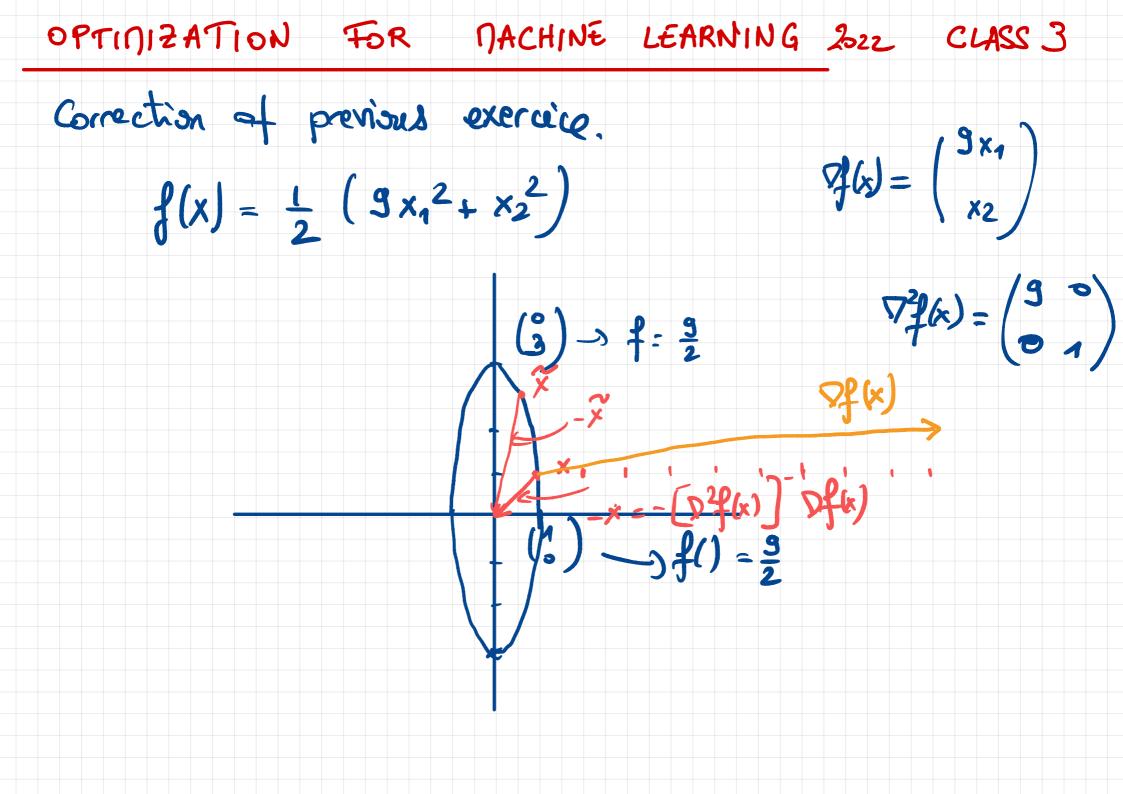
ill-conditionned is said to be ill-conditionned.

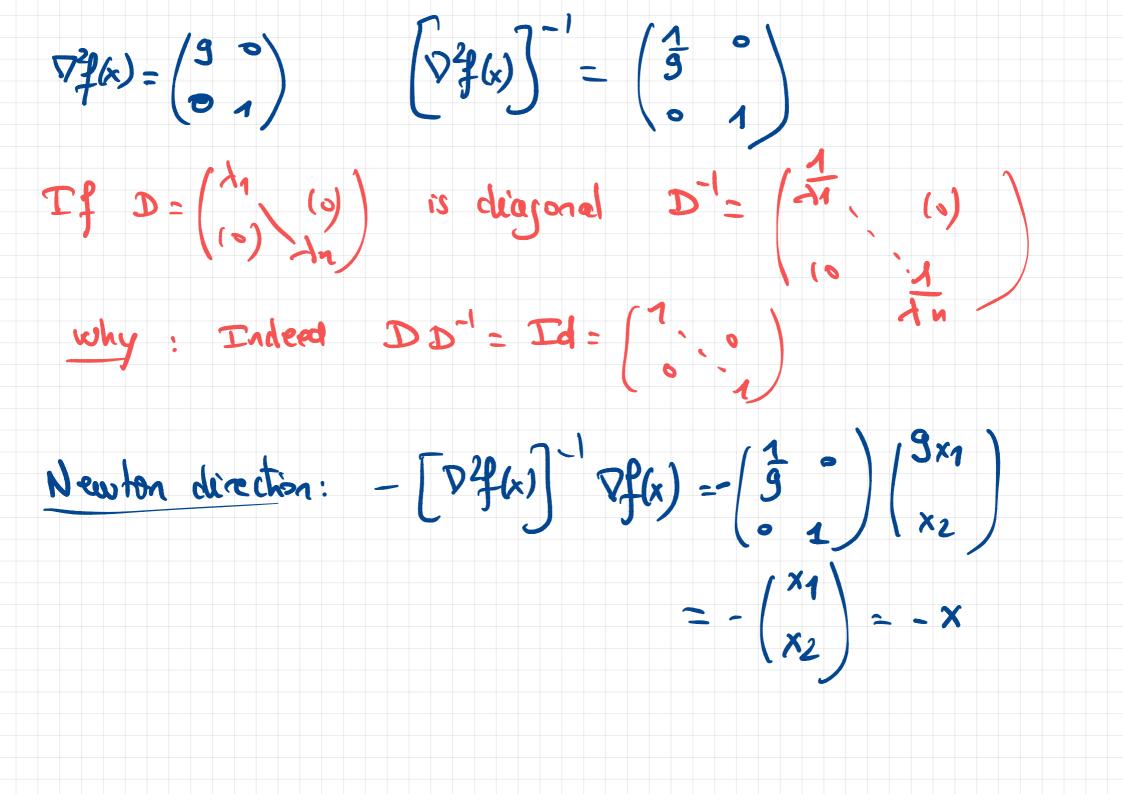
GRADIENT DIRECTION VERSUS NEWTON DIRECTION

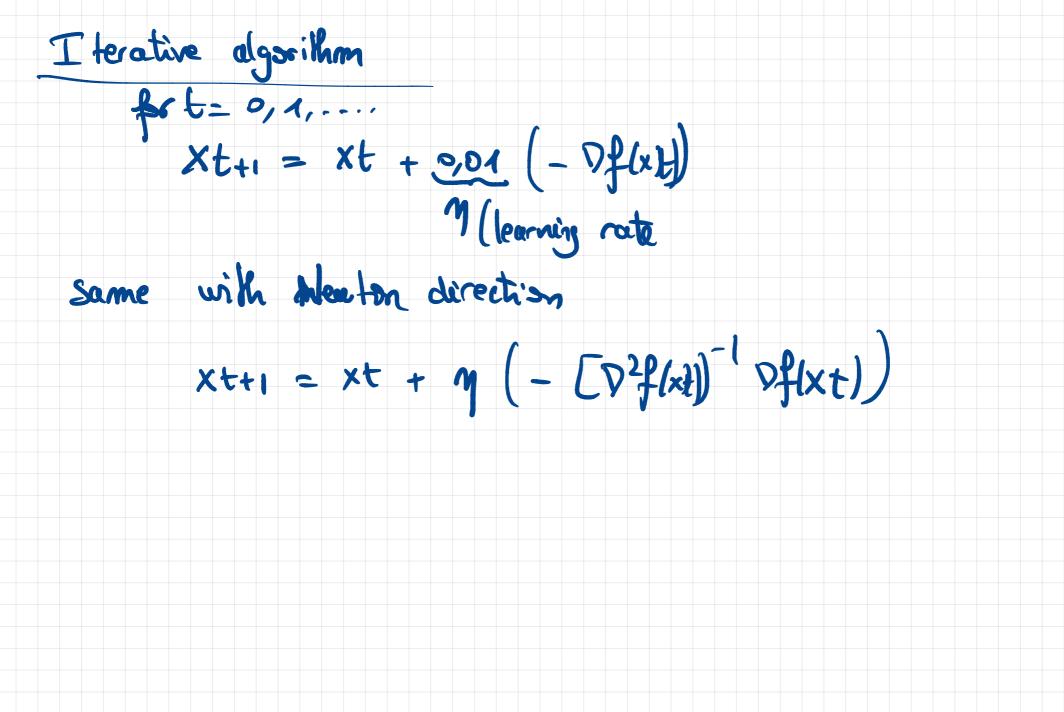




- 1) Plot level sets of f 2) Plot the gradient direction at different X 2) Compute 2 plot the Nexton direction







We observe that the Newton direction points towards the optimum on convex quadratic prédens independently of the condition number of the Hessian matrix. Whereas $- \nabla f(x)$ points towards the optimum at $x = \binom{1}{1}$ if and only if $D^2 f(x) = Id$ (and thus the condition number equal to 1). If the Herrian matrix is not diagonal anymore $f(x) = \frac{1}{2} x^{T} A x$ A syn. p-1 A vot def Newton direction dia jone/ OP(n)

 $\nabla f(x) = Ax$ $\nabla^2 f(x) = A$ Newton: $-\begin{bmatrix} A \end{bmatrix}^{-1}Ax = - Id x = -x$ directrize Optimality conditions Assume

Optimality conditions

Assume $f: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable (f'(x) exists for all x)

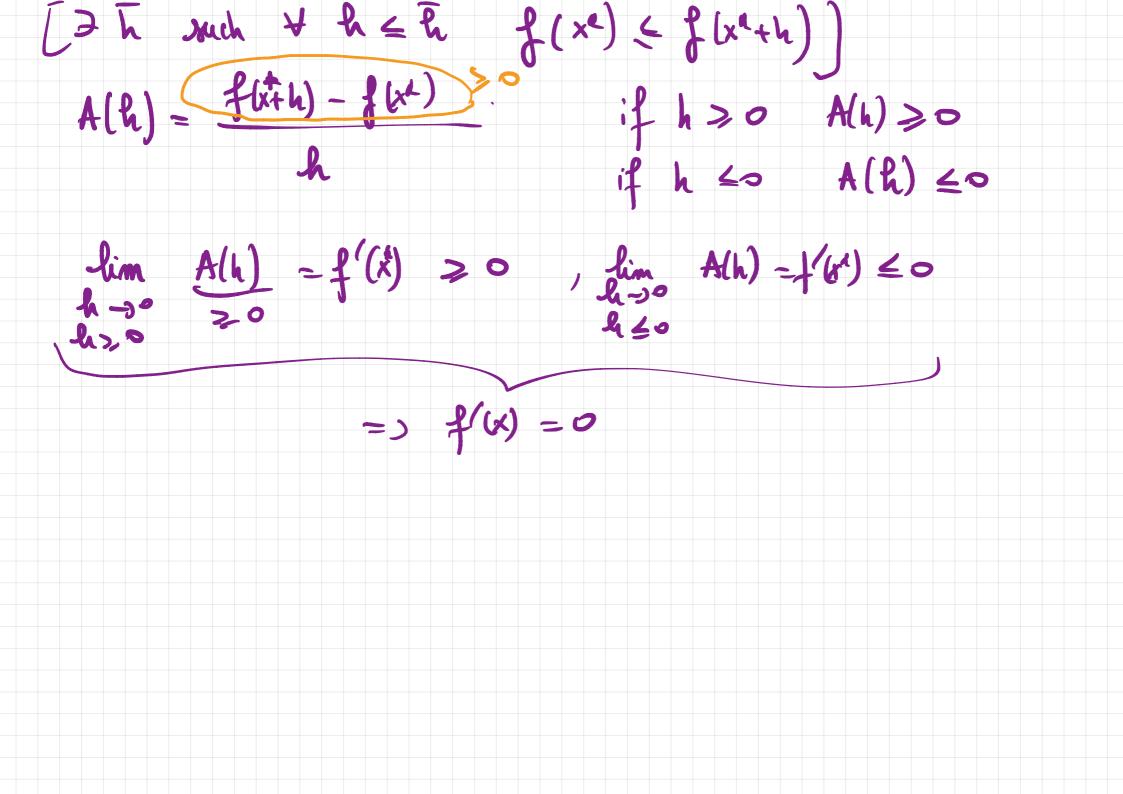
Which one of the following statements are correr:

(1) $f'(x^*) = 0 \implies x^*$ is a local optimum of f When $f(x) = x^3$

2 x * is a local optimum =) $f(x^2) = 2x^2$

(3) $f'(x^*) = 2 \Rightarrow x^2$ is a global optimum (1) x^* is a global optimum = $f'(x^*) = 2$ course - example (1) x^* is a global optimum = $f'(x^*) = 2$ course - example CORRECT THEOREN (first order necessary condition) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. If x^* is a local optimum of f(minimum or maximum) then $\nabla f(x^*) = 2$

Remark: we talk about first order condition because it involves only first order derivative. Interpretation when n=1: de rivetive il 2000 PROOF for n=1: = lim f(x+h) h-20 that x* is a local minimum : $(x^{2}) \leq f(x^{2} + h)$ $\forall h \text{ small}$ asjume erough



SECOND ORDER NECESSARY AND SUFFICIENT CONDITIONS . Let's assume that f is twice continuously differentiable. NECESSARY CONDITION: If x* is a local minimum, then $\nabla f(x^{*}) = 0$ and $\nabla^{2} f(x)$ is positive semi-definite. $(if n = 1 \times local minimum =) f(x) = 0, f''(x) \ge 0)$ $\left[\begin{array}{ccc} A & sym. matrix is positive if \forall y y^T A y \ge 0 \end{array}\right]$ definite $y^T A y = 0 = 0$ positive definite yt Ay >0 Hy 70 positive semi-definite ytAy >0 Yy Not sufficient: $f(x) = x^3 / f'(x) = 0$ f''(x) = 0 > 0, yet it not a local minimum.

SOFFICIENT CONDITION: If xª such that Df(xa) => and D²f(x) is possitive definite, then x^a is a strict local minimum.

 $\left|\left(i + n = 1, x^{t}\right)$ such that f'(x) = 2 f'(x) > 0 = 2 x^{t} is a strict local optimur.

Example: $f(x) = x^2$, f'(x) = 2x f''(x) = 2

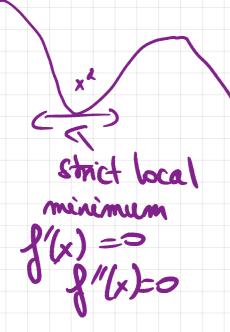
0 satisfies f((0) = 0 f"(0) = 2 > 0

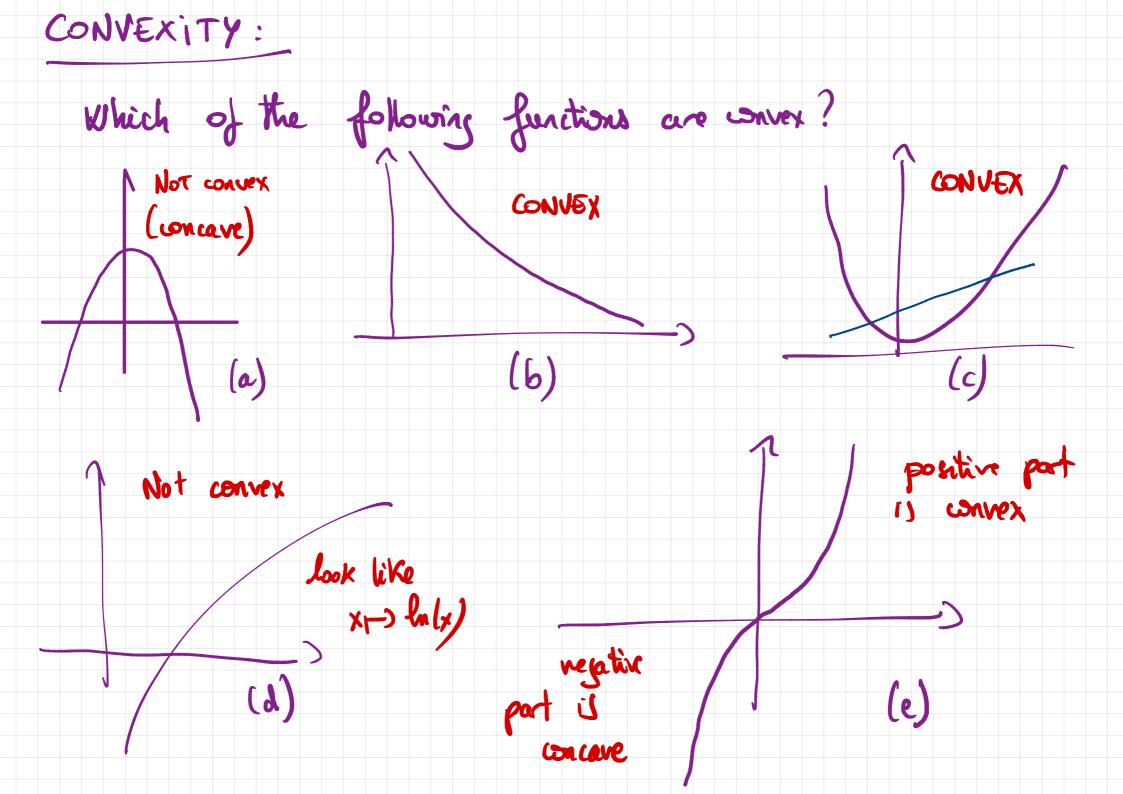
then O is a stric local minimum of the function

strict local minimum:

strict local minimum

local minimum





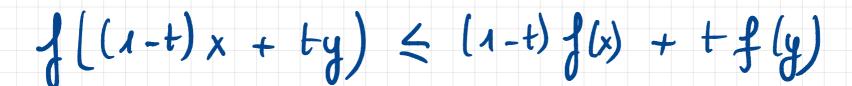
CONVEX FUNCTIONS

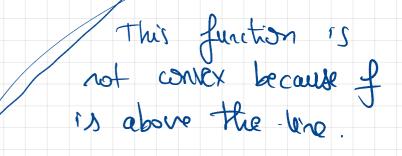
Let f: UC Rn -

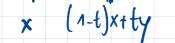
- open convex set
- VEG [0,1]

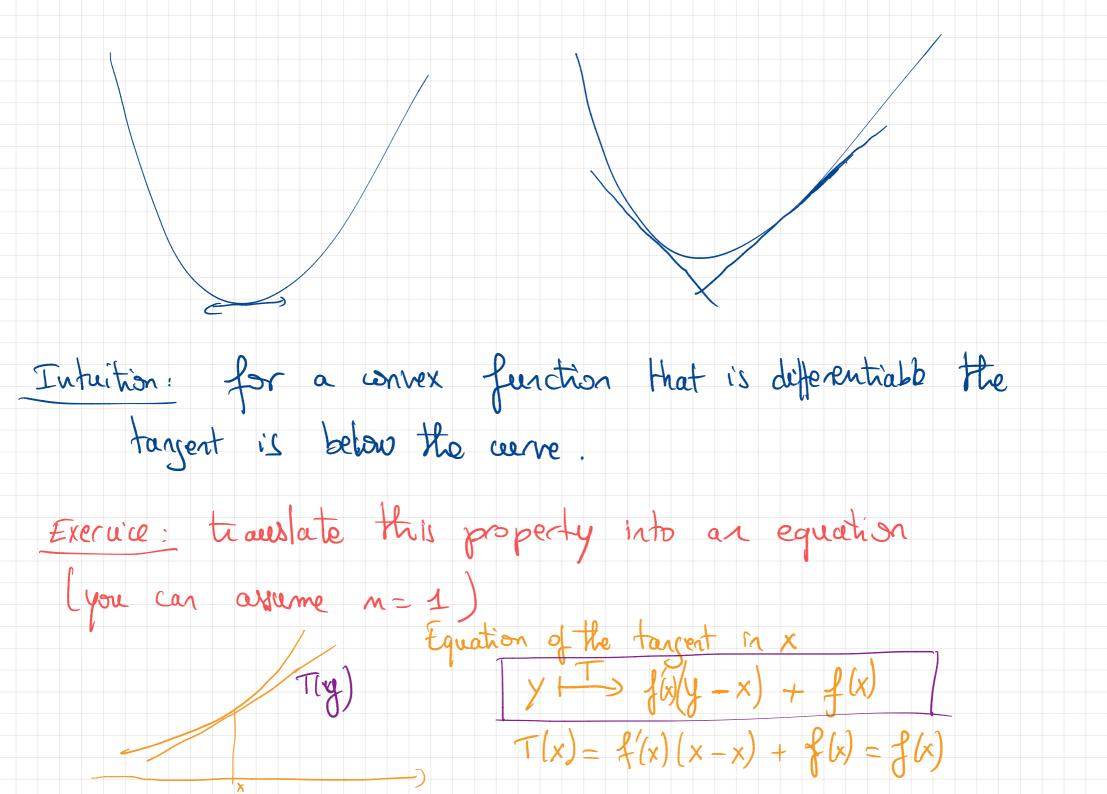
(1-t) f(x)

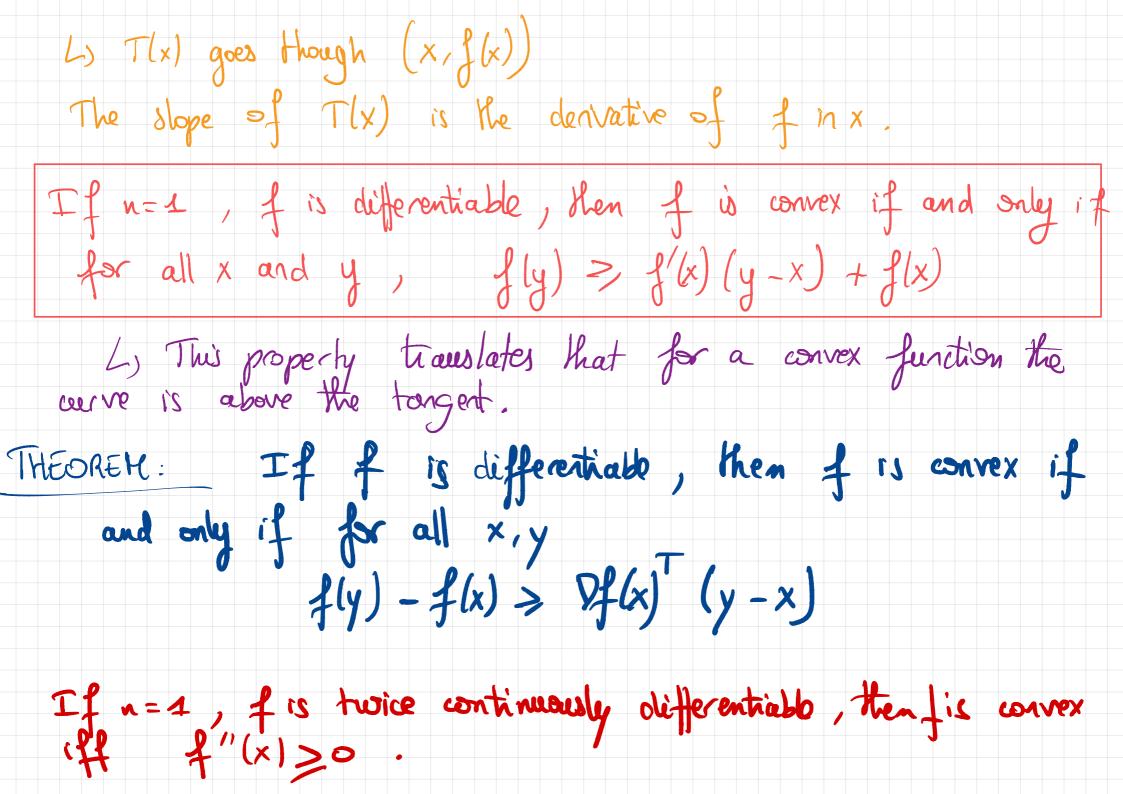
+t fly





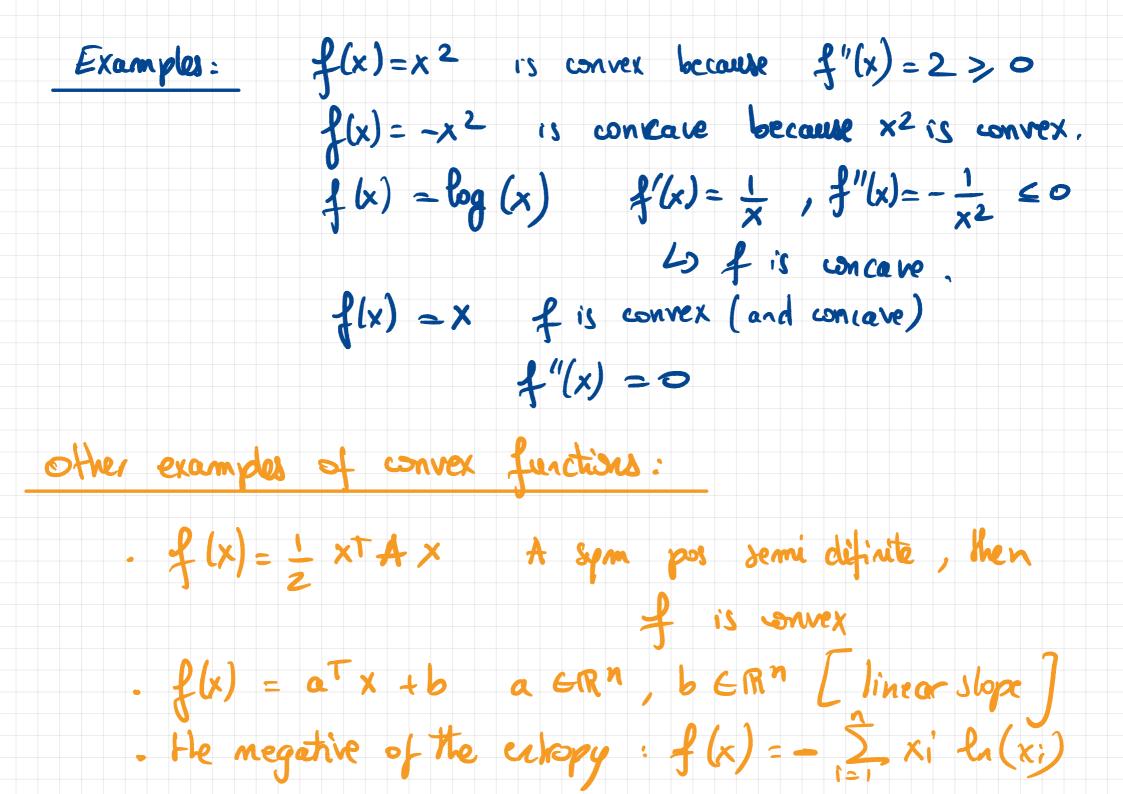






THEOREN: If f is twice continuously differentiable, then f is convex if and only if $D^2f(x)$ is positive semi-definite for all X.

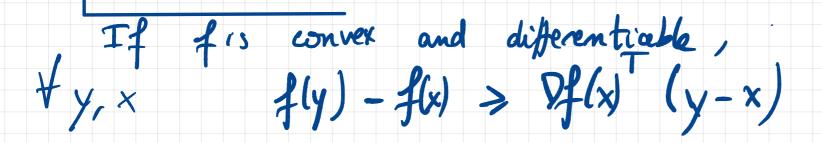
Definition: A function is concave if and only if -f is convex.



EXERCICE: Let f: UCRⁿ - SR be a convex and differentiable function. convex open subset of Rⁿ

Prove that if Pf(x) = 0, then x^{\perp} is a

global minimum of the function.



If x^* is such that $\nabla f(x^*) = 0$, then $\nabla f(x^*)^T (y - x^*) = 0$

and He previous equation gives

 $f(y) \ge f(x^*)$ $\forall y$ which means that x^* is a global minimum of f. The important consequence is that for convex and differenties functions, critical points, in points where $\nabla f(x^a) = 0$ are global minima of the function. that f: VCR" _> R where V is an open We assumed convex set. "open : intruition, ball with boundary". [0,1] closed []0,1[])0,1(1(0,1),30,1)Same robation for open intervall (excluding and 1 form [a, 1]

