optimization for machine learning 202 class 2

- Google doc shared document.
- Be active in chat
- Have a per 2 paper

RENINDER:Contimons optimization

$$
\begin{gathered}
\text { minimize } f\left(x_{1}, \ldots, x_{n}\right) \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \\
\mathbb{R} \quad \mathbb{R}
\end{gathered} \quad \text { vector space }
$$

Look for $\frac{x_{n}^{*}}{\mathbb{R}_{n}}$ such that
n : dimension of poblem.

$$
f\left(x^{k}\right) \leqslant f(x) \quad \forall x\left(\in \mathbb{R}^{n}\right)
$$

When $n=1 \quad \min _{x \in \mathbb{R}} f(x)$

$n=2$, we can represent functions via level sets.

$$
L x=\left\{x \in \mathbb{R}^{n} \mid f(x)=c\right\}
$$

$f(x)=x_{1}^{2}+x_{2}^{2}$, what is the geometric shape of its level exes.

Derivability or differentiability

$$
n=1 \text {, let } f: \mathbb{R} \longrightarrow \mathbb{R}
$$

we say that f is derivable/differentiable in x if $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exists, the limit is denotes $f^{\prime}(x)$ and it is called the derivative of f in

If f is differentiable in x them

$$
f(x+h)=f(x)+f^{\prime}(x) h+o(\|h\|)
$$

Taylor expansion of f in x, at first sorer
For h small enough $h \mapsto f(x+h)$ is approximately equal to $h \longmapsto f(x)+f^{\prime}(x) h$

$$
g(h) \in o(\|h\|) \quad \frac{g(h)}{\|h\|} \underset{h \rightarrow 0}{\longrightarrow} 0
$$

$g(h)$ is a small 0 of h if it goes fatter to - than $\|h\|$.
example $g(h)=\|h\|^{2}\left(=|h|^{2}\right) \in \circ(\|h\|)$

$$
\frac{g(h)}{\|h\|}=\frac{\|h\|^{2}}{\|h\|}=\|h\| \underset{h \rightarrow 0}{\longrightarrow 0}
$$

- How do we generalize derivative from $n=1$ to $n>1$?

Differential of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we say that f is differentiable $n x$ of there exists a linear transformation $D f_{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $\quad \forall h \in \mathbb{R}^{n} \quad f(x+h)=f(x)+D f_{x}(h)+o(\|h\|)$

$$
\begin{aligned}
& \text { If } n=1, D f_{x}(h) \stackrel{?}{=} \underbrace{f^{\prime}(x) h}_{\text {Linear in } h} \\
& \left\{\begin{array}{l}
\left.f^{\prime}(x)\left(h_{1}+h_{2}\right)=f^{\prime}(x) h_{1}+f^{\prime}(x) h_{2}\right) \text { hr } \rightarrow f^{\prime}(x) h \\
\left.f^{\prime}(x)(d h)=\alpha\left[f^{\prime}(x), h\right)\right] \text { Linear in h }
\end{array}\right.
\end{aligned}
$$

Exercise : 1) $f(x)=A x$ where A is a nun matrix

$$
D f_{x}=A \quad x \in \mathbb{R}^{n} \quad\left(\Leftrightarrow A x \in \mathbb{R}^{n}\right)
$$

2) $\underset{\substack{ \\ \\x \in \mathbb{R}^{n}}}{ }=\|x\|^{2}, \quad D f_{x}(h)=2 x^{\top} h$

$$
\left.\begin{array}{c}
f\left(\begin{array}{l}
x \\
\underset{\sim}{n} \\
\mathbb{R}^{n}
\end{array}\right)= \\
\mathbb{R}^{n}
\end{array}\right)=
$$

(we try to find a Linear mapping 2 st $f(x+h)=f(x)+\alpha(h)$ $+o(\|$ hi l $)$

$$
\begin{aligned}
& f(x+h)=A(x+h)=A x+A h=f(x)+\underbrace{A h}_{\text {Linear in } h^{\prime}}+0 \\
& \left\{\begin{array}{l}
\text { "l ll\|i) } \\
h \\
\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
\end{array}\right.
\end{aligned}
$$

so f is differentiable in x and

$$
D f_{x}=A \quad D f_{x}(h)=A h
$$

If $f(x)=\|x\|^{2}=x^{\top} x \quad, f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\begin{aligned}
f(x+h) & =(x+h)^{\top}(x+h)=x^{T h} \\
& =x^{\top} x+x^{\top} h+h^{\top} x+h^{\top} h \\
& =x^{\top} x+2 x^{\top} h+h^{\top} h^{2}
\end{aligned}
$$

$D f_{x}: h \mapsto 2 x^{\top} h$

$$
\begin{aligned}
& h^{\top} x \stackrel{?}{=} x^{+} h \\
& \underbrace{h^{\top} x}_{\in \mathbb{R}} \\
& \left(h^{\top} x\right)^{\top}=h^{\top} x \\
= & x^{\top}\left(h^{\top}\right)^{\top} \\
= & x^{\top} h
\end{aligned}
$$

$$
\begin{aligned}
& \|x\|^{2}=x^{\top} x \\
& \begin{aligned}
& x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \underbrace{\left(x_{1}, \ldots, x_{n}\right)}_{x^{\top}} \\
&=\sum_{i=1}^{n} x_{i}^{2}
\end{aligned}
\end{aligned}
$$

$$
()^{\top} \rightarrow(
$$

We have $h^{\top} x=x^{\top} h$

$$
(a b)^{\top}=b^{T} a^{T}
$$

Why : $h \stackrel{L}{\longmapsto} 2 x^{\top} h \quad$ linear.

$$
\begin{aligned}
\alpha\left(h_{1}+h_{2}\right) & =L\left(h_{1}\right)+L\left(h_{2}\right) \rightarrow \alpha\left(h_{1}+h_{2}\right)
\end{aligned}=2 x^{\top}\left(h_{1}+h_{2}\right), ~\left(\lambda^{\top} L\left(h_{1}\right) \quad=2 x^{\top} h_{1}+2 x^{\top} h_{2}\right)
$$

CHAIN RULE: $\quad\left[(f(x) g(x))^{\prime}=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)\right]$

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \quad g: \mathbb{R} \mapsto \mathbb{R} \\
& (f ; g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
\end{aligned}
$$

$$
\begin{array}{ll}
x \xrightarrow[\rightarrow]{f^{\text {composition }}} \sin (x) & f \circ g(x)=f(g(x))=\sin \left(x^{2}\right) \\
x \mapsto x^{2} & f(x) g(x) \stackrel{?}{\rightrightarrows} \sin (x) \cdot x^{2}
\end{array}
$$

[composition \& product of functions are different)

$$
D(f \circ g)_{x}(h)=D \rho_{g(x)}\left(D g_{x}(h)\right)
$$

We go back to $f: \mathbb{R}^{n} \longrightarrow \mathbb{R} \quad[m=1]$
when $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable in x, there is a specific representation of the differential of $\operatorname{fin} x$ $D_{f_{x}:} \mathbb{R}^{n} \rightarrow \mathbb{R}$
$\exists a \in \mathbb{R}^{n}$ such that $D f_{x}(h)=\langle a, h\rangle$
$\left[\begin{array}{l}\text { This comes from the } \\ \text { Rest representation }\end{array}\right]$
Pies representation The vector a
theorem name $a=\nabla f_{x}$

$$
=a^{\top} h
$$

The vector a hes a specific

$$
D f_{x}(h)=\left\langle\nabla f_{x}, h\right\rangle \quad[\text { Gradient of } f \text { in } x]
$$

2 gradient

The gradient can also be defined with partial derivatives.

$$
\nabla f x=\left(\begin{array}{c}
\frac{\partial f}{\partial x}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(x)
\end{array}\right)
$$

Execcice: Compute the gradient of.

$$
\begin{array}{ll}
f(x)=x_{1} & x \in \mathbb{R}^{n} \\
f(x)=a^{\top} x & a=\left(\begin{array}{l}
a \\
\vdots \\
a_{n}
\end{array}\right) \\
f(x)=x^{\top} x &
\end{array}
$$

$$
f\left(x_{1}, x_{2}\right)=x_{1} \quad L_{c}=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}=c\right\}
$$

$$
\nabla f_{x}=\binom{1}{0}
$$

The gradient vector is orthogonal to the level sets.

Second order derivability / differentiability

$$
n=1 \quad(1 D-\text { case })
$$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable on \mathbb{R} and let $f^{\prime}: x \rightarrow f^{\prime}(x)$ be its derivative function
If f^{\prime} is deivalb/ differentiable, then we denote $f^{\prime \prime}(x)$ its derivative.
$f^{\prime \prime}(x)$ is called the second order derivation of f
If f is two times differentiable then

$$
f(x+h)=f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}+o\left(\|h\|^{2}\right)
$$

SECOND ORDER TAYLOR | Expansion
for h small erargh $h \rightarrow f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}$ (which is quachatic in h) approximates f. This is called a second order approximation of f

$$
h \mapsto f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}
$$ quadratic approninatios of f in x

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{ll}
x^{2} & \text { if } x \geqslant 0 \\
-x^{2} & \text { if } x \leq 0
\end{array} \quad x \in \mathbb{R}\right. \\
& f^{\prime}(x)= \begin{cases}2 x & x \geqslant 0 \\
-2 x & x \leq 0\end{cases} \\
& f^{\prime}(x)=2|x|
\end{aligned}
$$

We want to generalize second order derivative to functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
The Hessian matrix generalizes $f^{\prime \prime}(x)$

The Heston matrix is symmetric $\frac{\partial^{2} f}{\partial x^{2} \partial x_{n}}=\frac{\partial^{2 f}}{p x_{n} \partial x_{1}}$
Schuurez the sen

Example: Compute the Hessian matrix for $f(x)=\frac{1}{2} x^{\top} A x$
A symmetric $n \times n$ matrix.
Start with $A=\left(\begin{array}{ll}9 & 1 \\ 1 & 1\end{array}\right)$

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} \stackrel{?}{=} 9 \quad f(x)=\frac{1}{2} x^{\top}\left(\begin{array}{ll}
9 & 1 \\
1 & 1
\end{array}\right) x=\frac{1}{2}\left(9 x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}\right) \\
& \begin{array}{ll}
\frac{\partial f}{\partial x_{1}}=\frac{1}{2}\left(2.9 x_{1}+2 x_{2}\right) \quad \frac{\partial f}{\partial x_{1} \partial x_{1}}=\frac{\partial}{\partial x_{1}}\left[9 x_{1}+x_{2}\right]=9 \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}=\frac{\partial}{\partial x_{2}}\left[9 x_{1}+x_{2}\right)=1 \\
\frac{\partial f}{\partial x_{2}}=\frac{1}{2}\left(2 x_{2}+2 x_{1}\right)=x_{2}+x_{1} \quad \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}=\frac{2}{\partial x_{2}}\left[x_{2}+x_{1}\right]=1
\end{array}, l
\end{aligned}
$$

$$
\nabla^{2} f=\left(\begin{array}{ll}
9 & 1 \\
1 & 1
\end{array}\right)=A
$$

If $f(x)=\frac{1}{2} x^{\top} A x$ with A symmetric. $A: n \times n$

$$
\nabla^{2} f(x)=A
$$

If A is not symmetric: $\nabla^{2} f(x)=\frac{1}{2}\left(A+A^{T}\right)$

DETAIL ABOUT:

$$
\begin{aligned}
&f(x)=\frac{1}{2} x^{\top} \underbrace{9} \begin{array}{ll}
9 & 1 \\
1
\end{array}) x=\frac{1}{2}\left(9 x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}\right) \\
&\left(\begin{array}{ll}
9 & 1 \\
1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{9 x_{1}+x_{2}}{x_{1}+x_{2}} \\
&\left.\begin{array}{rl}
\frac{1}{2} x^{\top}\binom{9 x_{1}+x_{2}}{x_{1}+x_{2}} & =\frac{1}{2}\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\binom{9 x_{1}+x_{2}}{x_{1}+x_{2}} \\
& =\frac{1}{2} x_{1}\left(9 x_{1}+x_{2}\right)+x_{2}\left(x_{1}+x_{2}\right) \\
& \left.=\frac{1}{2} 9 x_{1}^{2}+x_{1} x_{2}+x_{1} x_{2}+x_{2}^{2}\right) \\
& =\frac{1}{2} 9 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}
\end{array}\right)
\end{aligned}
$$

SECOND ORDER TAYLOR EXPANSION:
If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice differentiable, them

$$
\underset{\substack{n \\ \mathbb{R}^{n}}}{(x+h)}=f(x)+\nabla f(x)^{\top} h+\frac{1}{2} h^{\top} \nabla^{2} f(x) h+o\left(1 h v^{2}\right)
$$

Ill-conditionning is a difficulty in optimization.
For a convex-quadratic problem $f(x)=\frac{1}{2}\left(x-x^{k}\right)^{\top} A\left(x-x^{2}\right)$ where A is symmetric positive definite.
Reminder: If $A=I d=\left(\begin{array}{ll}1 & \\ & \\ & \\ & \\ & 1\end{array}\right)$

$$
\begin{aligned}
f(x) & =\frac{1}{2}\left(x-x^{a}\right)^{\top} A\left(x-x^{k}\right) \\
& =\frac{1}{2}\left(x-x^{k}\right)^{\top}\left(x-x^{k}\right) \\
& =\frac{1}{2}\left\|x-x^{k}\right\|^{2}
\end{aligned}
$$

cut

If $A \neq I d$, the level sets are ellipsoid.

$\lambda_{\text {max }}$: lager square root of A
$\lambda_{\text {min : }}$ smallest square root of A

For a ill-conditionned problem use have a lase nato between the lager axis of ellipsoid and smallest axis, equisabeenty we have a large ratio between the lagest eyenvalue of A and He smallest eigenvalue of A.
for a ill-conelitionued problem, the condition number of the matixi A is loge (of the order of 10^{6} or higher)

$$
\text { cord }(A)=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}
$$

Symmetric matrix
A ill-concitionned convex-quachatic problem is a problem with a ill-conditionned Hessian matrix.

Dore generally (not just for convex quatatic functions), a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ where the Hessian matrix is ill-conditionned is said to be ill-conclitionned.

GRADIENT DIRECTION VERSUS NEWTON DIRECTION
Gradient direction: $\nabla f(x)$
Newton direction: $-\left[\nabla^{2} f(x)\right]^{-1} \nabla f(x)$
Exercise: $f(x)=\frac{1}{2} x^{\top} H x, x \in \mathbb{R}^{2} H=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right)$

1) Plot level sets of f
2) Plot the gradient direction at different x
3) Compute 8 plot the Norton direction
optimization for machine learning 2022 class 3 Correction of previous exercice.

$$
f(x)=\frac{1}{2}\left(9 x_{1}^{2}+x_{2}^{2}\right)
$$

$$
g(x)=\binom{9 x_{1}}{x_{2}}
$$

$$
\nabla^{2} f(x)=\left(\begin{array}{ll}
9 & 0 \\
0 & 1
\end{array}\right) \quad\left[\nabla^{2} f(x)\right]^{-1}=\left(\begin{array}{ll}
1 & 0 \\
9 & 0 \\
0 & 1
\end{array}\right)
$$

If $D=\left(\begin{array}{ll}\lambda_{1} & (0) \\ 10 & (0) \\ \lambda_{n}\end{array}\right)$ is diagonal $D^{-1}=\left(\begin{array}{ccc}\frac{1}{\lambda 1} & & (0) \\ 10 & \frac{1}{\lambda_{n}}\end{array}\right)$
why: Indeed $D D^{-1}=I d=\left(\begin{array}{ccc}1 & & \\ 0 & \ddots \\ 0 & & 1\end{array}\right)$
Newton direction: $-[\nabla f(x)]^{-1} \nabla f(x)=-\left(\begin{array}{ll}1 & 0 \\ 9 & 1\end{array}\right)\binom{9 x_{1}}{x_{2}}$

$$
=-\binom{x_{1}}{x_{2}}=-x
$$

Iterative algorithm

$$
\begin{aligned}
& f r t=0,1, \ldots . \\
& x t+1=x t+\underbrace{0,01}_{\eta(\text { learning rate }}(-\nabla f(x) t))
\end{aligned}
$$

Same with Newton direction

$$
x_{t+1}=x t+\eta\left(-\left[\nabla^{2} f(x t)\right)^{-1} \nabla f(x t)\right)
$$

We observe that the Newton direction points towards the optimum on convex-queachatic problems independently of the condition number of the Hessian matrix.

Whereas - $\nabla f(x)$ prints towards the optimum at $x=\binom{1}{1}$ if and only if $D^{2} f(x)=$ Id (and thus the condition number equal to 1).
If the Hessian matrix is not diagonal anymore $f(x)=\frac{1}{2} x^{\top} A x$
 A spa. P dele
A not diagonal

$$
\begin{array}{ll}
D f(x)=A x \\
D^{2} f(x)=A \quad & \text { Newton: }-[A]^{-1} A x=-I d x=-x
\end{array}
$$

Optimality conditions
Assume

Optimality conditions
Assume $f: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable ($f^{\prime}(x)$ exists $f x$ all x) Which one of the following statements are correl:
(1) $f^{\prime}\left(x^{*}\right)=0 \Rightarrow x^{*}$ is a local optimum of f WRONG
(2) x^{*} is a local optimum $\Rightarrow f^{\prime}\left(x^{N}\right)=0_{\text {confECt }} \quad \begin{aligned} & f(x)=x^{3} \\ & f^{\prime}(x)=2 x^{2}\end{aligned}$
(3) $f^{\prime}\left(x^{d}\right)=0 \Rightarrow x^{4}$ is a global optimum
(4) x^{2} is a global optimum $\Rightarrow f^{\prime}\left(x^{2}\right)=0$
\qquad Wrong (same as (1) for coariter-erample)
THEOREm (first order necessary condition)
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function. If x^{n} is a local optimum of f (minimum or marimuem) them D $f\left(x^{a}\right)=0$

Remark: we talk about first sorer condition because it involves only fist order derivative.
Interpretation when $n=1$:

Proof for $n=1$:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

assume that x^{k} is a local minimum: $f\left(x^{2}\right) \leq f\left(x^{2}+k\right)$ $\forall h$ small enough

$$
\begin{aligned}
& {\left[\exists \bar{h} \text { such } \forall h \leqslant \bar{h} \quad f\left(x^{e}\right) \leqslant f\left(x^{2}+h\right)\right]} \\
& A(h)=\frac{f\left(x^{+}+h\right)-f\left(x^{\alpha}\right)}{h} \quad \begin{array}{ll}
\text { if } h \geqslant 0 \quad A(h) \geqslant 0 \\
& \text { if } h \leqslant 0 \quad A(h) \leqslant 0
\end{array} \\
& \lim _{\substack{h \rightarrow 0 \\
h \rightarrow 0}} \frac{A(h)}{\geqslant 0}=f^{\prime}\left(x^{\prime}\right) \geqslant 0, \lim _{\substack{\lim _{\begin{subarray}{c}{h \\
h \leq 0} }} A(h)=f^{\prime}\left(x^{\prime}\right) \leq 0}\end{subarray}}^{\substack{ \\
h \rightarrow 0}} \\
& \Rightarrow f^{\prime}(x)=0
\end{aligned}
$$

SECOND ORDER NECESSARY AND SUFFICIENT CONDITITINS:
Let's assume that f is twice continuously differentiable. Necessary condition: If x^{k} is a local minimum, them $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f(x)$ is positive semi-defirite. (if $n=1 x^{\prime}$ local minimum $\Rightarrow f^{\prime}\left(x^{\prime}\right)=0, f^{\prime \prime}(x) \geqslant 0$)
[A sym. matrix is positive if $\forall y y^{\top} A y \geqslant 0$ definite $y^{\top} A y=0 \Rightarrow y=0$
positive definite $y^{\top} A y>0 \quad \forall y \neq 0$
positive semi-definite $y^{\top} A y \geqslant 0 \quad \forall y$
Not sufficient: $f(x)=x^{3}, f^{\prime}(x)=0 \quad f^{\prime \prime}(x)=0 \geqslant 0$, yet it not a local minimums

SUFFicient condition : If x^{2} such that $D f\left(x^{a}\right)=0$ and $\nabla^{2} f(x)$ is positive definite, then x^{2} is a strict local minimus. ($1+n=1, x^{2}$ sech that $f^{\prime}(x)=0 f^{\prime \prime}(x)>0 \Rightarrow x^{2}$ is a strict local option.
Example: $f(x)=x^{2}, f^{\prime}(x)=2 x \quad f^{\prime \prime}(x)=2$

0 satisfies $f^{\prime}(0)=0 \quad f^{\prime \prime}(0)=2>0$
them O is a stric local minimum of the function
strict local minimum:

CONVEXITY:
Which of the following functions are convex?

(b)

(c)

Convex Functions
Let $f: \cup \subset \mathbb{R}^{n} \longrightarrow \mathbb{R}$. We say that f is convex, if open convex set for all $x, y \in U$

$$
\begin{aligned}
& \forall t \in[0,1] \\
& \qquad f((1-t) x+t y) \leqslant(1-t) f(x)+t f(y)
\end{aligned}
$$

This function is not convex because f is above the the

Intuition: for a convex function that is differentiable the tangent is below the curve.

Exeruice: translate this property into an equation (you can assume $n=1$)

Equation of the tangent in x
$\pi(y)$

$$
\begin{aligned}
& y \stackrel{T}{\longleftrightarrow} f^{\prime}(y-x)+f(x) \\
& T(x)=f^{\prime}(x)(x-x)+f(x)=f(x)
\end{aligned}
$$

L) $T(x)$ goes though $(x, f(x))$

The slope of $T(x)$ is the denvative of f in x
If $x=1, f$ is differentiable, then f is convex if and only for all x and $y, \quad f(y) \geqslant f^{\prime}(x)(y-x)+f(x)$
4 , This property trouslates that for a convex function the serve is above the tangent.
THEOREH: If f is differentiable, then f is convex if and only if for all x, y

$$
f(y)-f(x) \geqslant \nabla f(x)^{\top}(y-x)
$$

If $n=1, f$ is twice continuously differentiabb, then is convex of $f^{\prime \prime \prime}(x) \geqslant 0$.

THEOREN: If f is twice continuously differentiable, them f is convex if and only of $\nabla^{2} f(x)$ is positive semidefinite for all x.

Definition: A function is concave if and sonly if - f is convex.

Examples: $f(x)=x^{2}$ is convex because $f^{\prime \prime}(x)=2 \geqslant 0$
$f(x)=-x^{2}$ is concave because x^{2} is convex.
$f(x)=\log (x) \quad f^{\prime}(x)=\frac{1}{x}, f^{\prime \prime}(x)=-\frac{1}{x^{2}} \leqslant 0$
$\rightarrow f$ is concave.
$f(x)=x \quad f$ is convex (and concave)

$$
f^{\prime \prime}(x)=0
$$

other examples of convex functions:

- $f(x)=\frac{1}{2} x^{\top} A x$ A sym pos semi definite, then f is convex

$$
\text { - } f(x)=a^{\top} x+b \quad a \in \mathbb{R}^{n}, b \in \mathbb{R}^{n}[\text { linear slope }]
$$

- He negative of the ectropy: $f(x)=-\sum_{i=1}^{n} x_{i} \ln \left(x_{i}\right)$

EXERCICE: Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex and differentiable function.

Prove that if $\nabla f\left(x^{*}\right)=0$, then x^{L} is a global minimum of the function.

If f is convex and differentiable,

$$
\forall y, x \quad f(y)-f(x) \geqslant \nabla f(x)^{\top}(y-x)
$$

If x^{2} is sech that $\nabla f\left(x^{2}\right)=0$, them $\nabla f\left(x^{2}\right)^{\top}\left(y-x^{2}\right)=0$ and the previous equation gives

$$
f(y) \geqslant f\left(x^{2}\right) \quad \forall y
$$

which means that x^{\wedge} is a global minimum of f.

The important consequence is that for convex and differences functions, critical point, ie prints where $\nabla f\left(x^{a}\right)=0$ are global minima of the function.

We assumed that $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ where U is an open convex set.
"open: intuition, ball with boundary".

$[0,1]$ closed $] 0,1[$

$$
\int_{0,1}(,(0,1),] 0,1[
$$

Same notation for open interval (exclucling 0 and 1 from $[0,1]$
$)_{0,1}(U) 2,3($ is also an open

U is open, if $\forall x \in U$, I can put a small, ball in U which is fully in

$$
)_{0,1}(v)_{1,2}(
$$

