
OPTIMIZATION FOR MACHINE LEARNING CO2L CLASS 4

DESCENT METHODS #.minimize f: M" -> H

M
General principle

t=0

xtm
a descent *

Choosearealpritto
a

res
diecir · choose a descent enough (

direction of to dtalRh
↓xt+1 =xt+otdt

. teach

I -> choose step-size of 10

-> Set Xt+1 = xt+otdf

sef t = t+1



Remains to decide: - What is dt?

- how to choose of

How to choose a descent

direction I

MNAIt Proposition
dt = - Df(xt)



For a small enough step-vices, if I follow - Df(xt)
then f(Xt +o(-Pf(xt))<f(x+)
If t is small enough

f(xt - -xf(x+)<f(xt) and Df(x+) = 0

Taylor Formula 1.Differentiable

f(x + h) =f(x) + hTDf(x) + O(l1h17)
L#true:f(x+h) = f(x) +hTDf(x) + o(IIGN)

Hilla c) Boundt & Infor he small



Apply Taylor Formula to f(xt --Df(xH)

f(x+ f(x+) =f(x+) + 7-Df(xt)
T

xf(xt) + 0(l1-D+*
h

= f(xt) = 0NDf(x+)11" + or 0(Il Df(x+ 112)
For a small enough

f(xt - -Df(xt)) = f(xt) Ixtl12
<O

<f(xt)
↳ Df(xt) is a descent direction.
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CHOICE OF THE STEP-STZE

f(x+ -ox+) -> constant?

o(xH) ↳ small enough

What is the optimal step-size.

mc f(x+ - oxf(x+)
acfl)x+ -oPf(x+))

T i
I
can minimize

o+f(x+ -oxf(x+)))ozmization
th



minimize of along- the gradient direction starting

from At

optimal stepsize
of = arg min f(x+- oDf(xt)

0x,0

Typically too expensive
to do those 14 optimization

perfectly
There exists different rules to approximate
optimal step-size. One wickly used is called Armijo
rule.



stopping criterion:

·If If(xt+1) - f(x+)1 <<
- Stop after a certain number of iterations

↳ no guarantee on whether the algorithm
has conveyed.

- Stop if IIDf(xtll small
Remark: If you need to maximize f and you only

have a minimizer implemented, then just
minimize-f



If I implement gradient descent but need to
maximize, I can implement gradient ascent.

Xt+1 = xt +o+ Df(xt)

Gradient descent is slow on ill-conditioned problems

-xf(x+) or a ill-conditioned

95E function - of typically
points in the won direction
and the convergence will be+f(x)very show.

Wecanprove thattheonepercent
condition number



Instead of -Df(xt), we could follow the
Newton direction - [DLf(xt)]

"

Df(xt)
The Newton direction minimizes the locally quachatic
approximation of f
f(+ BYANTAXtLBIAfDENewlon direction

minimizes this

If we can obtain in a "cheap" way the Newton

direction, we should use it.

But often too expensive to obtain (2g(xt) and
to invent it,



In the convex-quachatic case, the function
equals its second order approximation and the
Newton direction is perfect as it points towards the
optimum
For moth convex-quachatic case, the Newton

is typically good to follow but not point directly
towards the optimum.

QUASI-NENTON METHOD: BFGS (70's)
L-BFGS

Broyden Fletcher Poldfarb Shannon

Xt+ 1 = xt - of Ht Df(xt)
I approximation of[D2f(x)



(It is updated iteratively using Dfxt) without

computing the Hellian matrix) and it approximate
[D2f(xH]"'

of wikepedia page for update.
harge scale version of BFGS: L-BFGS

Limited- memory BFGS.



STOCHASTIC GRADIENT DESCENT

Minimize loss function of the following form:
P(w) =tEPi(w) N: #Date

#Examples
we can be weight of Neural Network.

How do we minimize P?

*

descent:(P(w) =tDQi(m)
wt+1 = wt - of DO(ut) [update of weights]

BACK PROPAGATION algorithm to compute DOi(x)



Typically N is very large, computation of
all DOi(w) i =1, . . . . ,N too expensive.

Instead we approximate MP(w)

Da(w) w DOi (m) (Gradient of
single example)

tomini batches;
rbatches

DB(w) + I DOi(w)
mbatches i=1

batches <cN



#

ic Gradient descent:

choose an initial vectors of parameters and a
step-size my

While not happy
- Randomly shuttle examples in training set
-
Fr i =1,... N

w(-w - yDdi(w)
(possibly mini-batches)

Not covered; choice of step-size (step-size adapted
wig "momentum
techniques" ADAN (



- increase elements of mini-batches


