Optimization for Machine Learning
 Lecture 5: Constraints, Discrete Optimization I

December 1, 2022
TC2 - Optimisation
Université Paris-Saclay

Anne Auger and Dimo Brockhoff Inria Saclay - Ile-de-France

Course Overview

Date		Topic
Thu, 3.11.2022	DB	Introduction
Thu, 10.11.2022	AA	Continuous Optimization I: differentiability, gradients, convexity, optimality conditions
Thu, 17.11.2022	AA	Continuous Optimization II: constrained optimization, gradient-based algorithms, stochastic gradient
Thu, 24.11.2022	AA	Continuous Optimization III: stochastic algorithms, derivative-free optimization written test / « contrôle continue »
Thu, 1.12.2022	DB	Constrained optimization, Discrete Optimization I: graph theory, greedy algorithms
Thu, 8.12.2022	DB	Discrete Optimization II: dynamic programming, branch\&bound
Thu 15.12.2022	DB	Written exam

Constrained Optimization

Small exercises on whiteboard

Equality Constraint

Objective:

Generalize the necessary condition of $\nabla f(x)=0$ at the optima of f when f is in \mathcal{C}^{1}, i.e. is differentiable and its differential is continuous

Theorem:

Be $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ in \mathcal{C}^{1}.
Let $a \in \mathbb{R}^{n}$ satisfy

$$
\left\{\begin{array}{c}
f(a)=\min \left\{f(x) \mid x \in \mathbb{R}^{n}, g(x)=0\right\} \\
g(a)=0
\end{array}\right.
$$

i.e. a is optimum of the problem

If $\nabla g(a) \neq 0$, then there exists a constant $\lambda \in \mathbb{R}$ called Lagrange multiplier, such that
$\underbrace{\nabla f(a)+\lambda \nabla g(a)=0}$ Euler - Lagrange equation
i.e. gradients of f and g in a are colinear

Geometrical Interpretation Using an Example

Exercise:

Consider the problem

$$
\min \left\{f(x, y) \mid(x, y) \in \mathbb{R}^{2}, g(x, y)=0\right\}
$$

$$
f(x, y)=y-x^{2} \quad g(x, y)=x^{2}+y^{2}-1=0
$$

1) Plot the level sets of f, plot $g=0$
2) Compute ∇f and ∇g
3) Find the solutions with $\nabla f+\lambda \nabla g=0$
equation solving with 3 unknowns (x, y, λ)
4) Plot the solutions of 3) on top of the level set graph of 1)

Answer

Answer

- $\left(x_{1}, y_{1}, \lambda_{1}\right)=\left(0,1,-\frac{1}{2}\right) \quad$ [max global $]$

$$
=\left(0,-1, \frac{1}{2}\right) \quad[\text { max local }]
$$

$$
=\left(\sqrt{\frac{3}{4}},-\frac{1}{2}, 1\right)[\min \text { global }]
$$

$$
=\left(-\sqrt{\frac{3}{4}},-\frac{1}{2}, 1\right)[\text { min global }]
$$

Note:

Here we see clearly that the previous conditions are necessary conditions but not sufficient conditions.

Interpretation of Euler-Lagrange Equation

Intuitive way to retrieve the Euler-Lagrange equation:

- In a local minimum a of a constrained problem, the hypersurfaces (or level sets) $f=f(a)$ and $g=0$ are necessarily tangent (otherwise we could decrease f by moving along $g=0$).
- Since the gradients $\nabla f(a)$ and $\nabla g(a)$ are orthogonal to the level sets $f=f(a)$ and $g=0$, it follows that $\nabla f(a)$ and $\nabla g(a)$ are colinear.

Generalization to More than One Constraint

Theorem

- Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}(1 \leq k \leq p)$ are \mathcal{C}^{1}.
- Let a be such that

$$
\left\{\begin{array}{r}
f(a)=\min \left\{f(x) \mid x \in \mathbb{R}^{n}, \quad g_{k}(x)=0, \quad 1 \leq k \leq p\right\} \\
g_{k}(a)=0 \text { for all } 1 \leq k \leq p
\end{array}\right.
$$

- If $\left(\nabla g_{k}(a)\right)_{1 \leq k \leq p}$ are linearly independent, then there exist p real constants $\left(\lambda_{k}\right)_{1 \leq k \leq p}$ such that

$$
\nabla f(a)+\sum_{k=1 \uparrow}^{p} \lambda_{k} \nabla g_{k}(a)=0
$$

again: a does not need to be global but local minimum

The Lagrangian

- Define the Lagrangian on $\mathbb{R}^{n} \times \mathbb{R}^{p}$ as

$$
\mathcal{L}\left(x,\left\{\lambda_{k}\right\}\right)=f(x)+\sum_{k=1}^{p} \lambda_{k} g_{k}(x)
$$

- To find optimal solutions, we can solve the optimality system
$\left\{\right.$ Find $\left(x,\left\{\lambda_{k}\right\}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{p}$ such that $\nabla f(x)+\sum_{k=1}^{p} \lambda_{k} \nabla g_{k}(x)=0$

$$
g_{k}(x)=0 \text { for all } 1 \leq k \leq p
$$

$$
\Leftrightarrow\left\{\begin{array}{c}
\text { Find }\left(x,\left\{\lambda_{k}\right\}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{p} \text { such that } \nabla_{x} \mathcal{L}\left(x,\left\{\lambda_{k}\right\}\right)=0 \\
\nabla_{\lambda_{k}} \mathcal{L}\left(x,\left\{\lambda_{k}\right\}\right)(x)=0 \text { for all } 1 \leq k \leq p
\end{array}\right.
$$

Inequality Constraint: Definitions

$$
\text { Let } \mathcal{U}=\left\{x \in \mathbb{R}^{n} \mid g_{k}(x)=0(\text { for } k \in E), g_{k}(x) \leq 0(\text { for } k \in I)\right\} .
$$

Definition:

The points in \mathbb{R}^{n} that satisfy the constraints are also called feasible points.

Definition:

Let $a \in \mathcal{U}$, we say that the constraint $g_{k}(x) \leq 0($ for $k \in I)$ is active in a if $g_{k}(a)=0$.

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, all \mathcal{C}^{1}
Furthermore, let $a \in \mathbb{R}^{n}$ satisfy
$\left\{f(a)=\min \left(f(x) \mid x \in \mathbb{R}^{n}, g_{k}(x)=0(\right.\right.$ for $k \in E), g_{k}(x) \leq 0($ for $k \in \mathrm{I})$

$$
\begin{array}{cl}
g_{k}(a)=0(\text { for } k \in E) & \text { also works again for } a \\
g_{k}(a) \leq 0(\text { for } k \in I) & \text { being a local minimum }
\end{array}
$$

Let I_{a}^{0} be the set of constraints that are active in a. Assume that $\left(\nabla g_{k}(a)\right)_{k \in E \cup I_{a}^{0}}$ are linearly independent.
Then there exist $\left(\lambda_{k}\right)_{1 \leq k \leq p}$ that satisfy

$$
\left\{\begin{array}{c}
\nabla f(a)+\sum_{k=1}^{p} \lambda_{k} \nabla g_{k}(a)=0 \\
g_{k}(a)=0(\text { for } k \in E) \\
g_{k}(a) \leq 0(\text { for } k \in I) \\
\left.\lambda_{k} \geq 0 \text { (for } k \in I_{a}^{0}\right) \\
\lambda_{k} g_{k}(a)=0(\text { for } k \in E \cup I)
\end{array}\right.
$$

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, all \mathcal{C}^{1}
Furthermore, let $a \in \mathbb{R}^{n}$ satisfy
$\left\{\begin{array}{c}f(a)=\min \left(f(x) \mid x \in \mathbb{R}^{n}, g_{k}(x)=0 \text { (for } k \in E\right), g_{k}(x) \leq 0(\text { for } k \in \mathrm{I}) \\ \left.g_{k}(a)=0 \text { (for } k \in E\right) \\ \left.g_{k}(a) \leq 0 \text { (for } k \in I\right)\end{array}\right.$
Let I_{a}^{0} be the set of constraints that are active in a. Assume that $\left(\nabla g_{k}(a)\right)_{k \in E \cup I_{a}^{0}}$ are linearly independent.
Then there exist $\left(\lambda_{k}\right)_{1 \leq k \leq p}$ that satisfy

$$
\left\{\begin{array}{c}
\nabla f(a)+\sum_{k=1}^{p} \lambda_{k} \nabla g_{k}(a)=0 \\
g_{k}(a)=0(\text { for } k \in E) \\
g_{k}(a) \leq 0(\text { for } k \in I) \\
\lambda_{k} \geq 0\left(\text { for } k \in I_{a}^{0}\right) \\
\lambda_{k} g_{k}(a)=0(\text { for } k \in E \cup I)
\end{array}\right.
$$

either active constraint or $\lambda_{k}=0$

Discrete Optimization

Discrete Optimization

Context discrete optimization:

- discrete variables
- or optimization over discrete structures (e.g. graphs)
- search space often finite, but typically too large for enumeration
- \rightarrow need for smart algorithms

Algorithms for discrete problems:

- typically problem-specific
- but some general concepts are repeatedly used:
- greedy algorithms
- [branch and bound]
- dynamic programming
- randomized search heuristics
before 2 excursions: the O-notation \& graph theory

Motivation for this Part:

- get an idea of the most common algorithm design principles

Excursion: The O-Notation

Excursion: The O-Notation

Motivation:

- we often want to characterize how quickly a function $f(x)$ grows asymptotically
- e.g. when we say an algorithm takes quadratically many steps (in the input size) to find the optimum of a problem with n (binary) variables, it is most likely not exactly n^{2}, but maybe $n^{2}+1$ or $(\mathrm{n}+1)^{2}$

Big-O Notation

should be known, here mainly restating the definition:

Definition 1 We write $f(x)=O(g(x))$ iff there exists a constant $c>0$ and an $x_{0}>0$ such that $|f(x)| \leq c \cdot g(x)$ holds for all $x>x_{0}$
we also view $O(g(x))$ as a set of functions growing at most as quick as $g(x)$ and write $f(x) \in O(g(x))$

Big-O: Examples

- $f(x)+c=O(f(x)) \quad[i f f(x)$ does not go to zero for x to infinity]
- $\quad c \cdot f(x)=O(f(x))$
- $f(x) \cdot g(x)=O(f(x) \cdot g(x))$
- $3 n^{4}+n^{2}-7=O\left(n^{4}\right)$

Intuition of the Big-O:

- if $f(x)=O(g(x))$ then $g(x)$ gives an upper bound (asymptotically) for f excluding constants and lower order terms
- With Big-O, you should have ' \leq ' in mind
- An algorithm that solves a problem in polynomial time is "efficient"
- An algorithm that solves a problem in exponential time is not
- But be aware:

In practice, often the line between efficient and non-efficient lies around $n \log n$ or even n (or even $\log n$ in the big data context) and the constants do matter!!!

Excursion: The O-Notation

Further definitions to generalize from ' \leq ' to ' \geq ' and ' $=$ ':

- $f(x)=\Omega(g(x))$ if $g(x)=O(f(x))$
- $f(x)=\Theta(g(x))$ if $f(x)=O(g(x))$ and $g(x)=O(f(x))$

Note: extensions to '<' and '>’ exist as well, but are not needed here.

Example:

- Algo A solves problem P in time $\mathrm{O}(\mathrm{n})$
- Algo B solves problem P in time $O\left(\mathrm{n}^{2}\right)$
- which one is faster?
only proving upper bounds to compare algorithms is not sufficient!

Excursion: The O-Notation

Further definitions to generalize from ' \leq ' to ' \geq ' and ' $=$ ':

- $f(x)=\Omega(g(x))$ if $g(x)=O(f(x))$
- $f(x)=\Theta(g(x))$ if $f(x)=O(g(x))$ and $g(x)=O(f(x))$

Note: extensions to '<' and '>’ exist as well, but are not needed here.

Example:

- Algo A solves problem P in time $\mathrm{O}(\mathrm{n})$
- Algo B solves problem P in time On $^{\left(n^{2}\right)} \Omega\left(n^{2}\right)$
- which one is faster?
only proving upper bounds to compare algorithms is not sufficient!

Exercise O-Notation

(1) Please order the following functions in terms of their asymptotic behavior (from smallest to largest):

- $\exp \left(\mathrm{n}^{2}\right)$
- $\log n$
- $\ln n / \ln \ln n$
- n
- $n \log n$
- $\exp (n)$
- In n !
(2) Pick one pair of runtimes and give a formal proof for the relation.

Exercise O-Notation (Solution)

Correct ordering:

$$
\begin{array}{lll}
\frac{\ln (n)}{\ln (\ln (n))}=O(\log n) & \log n=O(n) & n=O(n \log n) \\
n \log n=O(\ln (n!)) & \ln (n!)=O\left(e^{n}\right) & e^{n}=O\left(e^{n^{\wedge} 2}\right)
\end{array}
$$

but for example $\mathrm{e}^{\mathrm{n}^{\wedge}} \neq \mathrm{O}\left(\mathrm{e}^{\mathrm{n}}\right)$
One exemplary proof:
$\frac{\ln (n)}{\ln (\ln (n))}=O(\log n)$:

- $\left|\frac{\ln (n)}{\ln (\ln (n))}\right|=\frac{\log (n)}{\log (e) \ln (\ln (n))} \frac{3}{\uparrow} \frac{3 \log (n)}{\ln (\ln (n))} \leq 3 \log (n)$ for $n>1$ for $n>15$

Exercise O-Notation (Solution)

One additional proof: In $\mathrm{n}!=\mathbf{O}(\mathrm{n} \log \mathrm{n})$

- Stirling's approximation: $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$ or even

$$
\sqrt{2 \pi} n^{n+1 / 2} e^{-n} \leq n!\leq e n^{n+\frac{1}{2}} e^{-n}
$$

- $\ln n!\leq \ln \left(e n^{n+\frac{1}{2}} e^{-n}\right)=1+\left(n+\frac{1}{2}\right) \ln n-n$

$$
\begin{aligned}
& \leq\left(n+\frac{1}{2}\right) \ln n \leq 2 n \ln n=2 n \frac{\log n}{\log e}=c \cdot n \log n \\
& \text { okay for } c=2 / \log e \text { and all } n \in \mathbb{N}
\end{aligned}
$$

- $\mathrm{n} \ln \mathrm{n}=\mathrm{O}(\ln \mathrm{n}!)$ proven in a similar vein

Excursion:

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

Graphs

Definition 1 An undirected graph G is a tupel $G=(V, E)$ of edges $e=\{u, v\} \in$ E over the vertex set V (i.e., $u, v \in V$).

- vertices = nodes
- edges = lines

- Note: edges cover two unordered vertices (undirected graph)
- if they are ordered, we call G a directed graph

Graphs: Basic Definitions

- G is called empty if E empty
- u and v are end vertices of an edge \{u,v\}
- Edges are adjacent if they share an end vertex
- Vertices u and v are adjacent if $\{u, v\}$ is in E

Walks, Paths, and Circuits

Definition $1 A$ walk in a graph $G=(V, E)$ is a sequence

$$
v_{i_{0}}, e_{i_{1}}=\left(v_{i_{0}}, v_{i_{1}}\right), v_{i_{1}}, e_{i_{2}}=\left(v_{i_{1}}, v_{i_{2}}\right), \ldots, e_{i_{k}}, v_{i_{k}}
$$

alternating vertices and adjacent edges of G.

A walk is

- closed if first and last node coincide

- a trail if each edge traversed at most once
- a path if each vertex is visited at most once
a closed path is called a circuit or cycle

