Optimization for Machine Learning

Lecture 5: Constraints, Discrete Optimization |

December 1, 2022
TC2 - Optimisation
Université Paris-Saclay

s’ p Anne Auger and Dimo Brockhoff
A Inria Saclay — lle-de-France

INVENTOI THI ITAL WORLD

Course Overview

Thu, 3.11.2022 DB
Thu, 10.11.2022 AA

Thu, 17.11.2022 AA

Thu, 24.11.2022 AA

Thu, 1.12.2022 DB

Thu, 8.12.2022 DB

Thu 15.12.2022 DB

Date | |Topc

Introduction

Continuous Optimization I: differentiability, gradients,
convexity, optimality conditions

Continuous Optimization Il: constrained optimization,
gradient-based algorithms, stochastic gradient

Continuous Optimization Ill: stochastic algorithms,
derivative-free optimization
written test / « contréle continue »

Constrained optimization, Discrete Optimization I:
graph theory, greedy algorithms

Discrete Optimization Il: dynamic programming,
branch&bound

Written exam

classes from 13h30 — 16h45 (2" break at end)

© Anne Auger and Dimo Brockhoff, Inria

TC2: Optimization for Machine Learning, U. Paris-Saclay

Constrained Optimization

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for Machine Learning, U. Paris-Saclay, Dec. 1, 20

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for Machine Learning, U. Paris-Saclay, Dec. 1, 2022

Equality Constraint

Objective:

Generalize the necessary condition of V'f(x) = 0 at the optima of f
when f is in C1, i.e. is differentiable and its differential is continuous

Theorem:
Be f:R" - R, g:R" - Rin CL.
Let a € R" satisfy

{f (@) = min {f(x) | x € R", g(x) = 0}
g(a) =0
l.e. a is optimum of the problem
If Vg(a) + 0, then there exists a constant 1 € R called Lagrange
multiplier, such that
‘ Vf(a) + AVg(a) = (} Euler — Lagrange equation
|
i.e. gradients of f and g in a are colinear

© Anne Auger and Dimo Brockhoff, Inria

Geometrical Interpretation Using an Ex

Exercise:

Consider the problem
min {f(x,y) | (x,y) € R? g(x,y) = 0}

fO,y)=y—x% gl,y)=x2+y?—-1=0

1) Plot the level sets of f, plot g =0
2) Compute Vf and Vg
3) Find the solutions with Vf + AVg =0
equation solving with 3 unknowns (x,y, 1)

4) Plot the solutions of 3) on top of the level set graph of 1)

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for Machine Learning, U. P

2.?5

o

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for Machine Learning, U. Paris-Saclay, Dec. 1, 20

=
|
b=
N
3
Q
X
)
o
D

3 1 .
RS 1) [min globalj

|
NI

= % 1) [min globall

Note:

Here we see clearly that the previous conditions are necessary
conditions but not sufficient conditions.

© Anne Auger and Dimo Brockhoff, Inria

Interpretation of Euler-Lagrange Equation

Intuitive way to retrieve the Euler-Lagrange equation:

= |n alocal minimum a of a constrained problem, the
hypersurfaces (or level sets) f = f(a) and g = 0 are necessarily
tangent (otherwise we could decrease f by moving along g = 0).

= Since the gradients Vf(a) and Vg(a) are orthogonal to the level
sets f = f(a) and g = 0, it follows that Vf (a) and Vg(a) are
colinear.

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for Machine Learning, U. Paris-Saclay, D

Generalization to More than One Constraint

Theorem

= Assume f:R" > Rand g,:R" > R (1 < k <p)are C'.
= Let a be such that

f(a) = min {f(x) | x € R", gr(x) =0, 1<k<p}
gr(@) =0 foralll<k<p

= |f (ng(a))1<k<p are linearly independent, then there exist p real
constants (4;);<k<p Such that

p
Vf(a) + 2 AVgr(a) =0
k=1

|

Lagrange multiplier

again: a does not need to be global but local minimum

© Anne Auger and Dimo Brockhoff, Inria

The Lagrangian

= Define the Lagrangian on R™ x R? as

p
L0 D = O+) Agic(0)
k=1

= To find optimal solutions, we can solve the optimality system
(

p
Find (x, {Ax}) € R™ X R? such that Vf(x) + z A Vg (x) =0
k=1
gr(x) =0 foralll<k<p
Find (x, {1x}) € R™ x RP such that V,, L(x,{1;}) =0
72, L {4 (x) =0 foralll <k <p

A

.

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for Machine Learning, U. Paris-Saclay, Dec.

Inequality Constraint: Definitions

LetU ={x e R*| gx(x) =0 (fork € E), gix(x) <0 (fork € I)}.

Definition:
The points in R™ that satisfy the constraints are also called feasible
points.

Definition:
Let a € U, we say that the constraint g, (x) < 0 (for k € I) is active
inaif g,(a) =0.

© Anne Auger and Dimo Brockhoff, Inria

Inequality Constraint: Karush-Kuhn-Tucker T

Theorem (Karush-Kuhn-Tucker, KKT):
Let f:R" > R, g: R" - R, all ¢*
Furthermore, let a € R™ satisfy

(f(a) =min(f(x) | x € R*, g, (x) =0 (fork € E), gy (x) < 0 (for k € 1)
) gr(a) = 0 (for k € E) also works again for a
L gi(a) <0 (fork €1) being a local minimum

Let 12 be the set of constraints that are active in a. Assume that
(Vs (a))k < L o @re linearly independent.

Then there exist (1x)1<k<p that satisfy
(

vf(a) + 2 LV gi(a) = 0

gr(a) = O (fork € E)
grx(a) <0 (fork €1)

Ay =0 (fork € 12)
\Akgr(a) =0 (fork e EUI)

AN

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for Machine Learning, U. Paris-Saclay, De

Inequality Constraint: Karush-Kuhn-Tucker

Theorem (Karush-Kuhn-Tucker, KKT):

Let f:R" > R, g: R" - R, all ¢*

Furthermore, let a € R™ satisfy

(f(a) =min(f(x) | x € R*, g, (x) =0 (fork € E), gy (x) < 0 (for k € 1)
3 gix(a) =0 (fork € E)

\ grx(a) <0 (fork €1)

Let 12 be the set of constraints that are active in a. Assume that
(Vs (a))k < L o @re linearly independent.

Then there exist (1x)1<k<p that satisfy
(

vf(a) + 2 LV gi(a) = 0

gi(a) = () (for k € E) either active constraint
gr(@) <0 (fork €)

A = 0 (for k-c1Y)
(Argr(a) =0 (for k€EUI)

A

ord, =0

© Anne Auger and Dimo Brockhoff, Inria

Discrete Optimization

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for Machine Learning, U. Paris-Saclz

Discrete Optimization

Context discrete optimization:

= discrete variables

= or optimization over discrete structures (e.g. graphs)

= search space often finite, but typically too large for enumeration
= - need for smart algorithms

Algorithms for discrete problems:
= typically problem-specific
= but some general concepts are repeatedly used:
= greedy algorithms
= [branch and bound]
= dynamic programming
= randomized search heuristics

before 2 excursions:
the O-notation
& graph theory

Motivation for this Part:
= get an idea of the most common algorithm design principles

© Anne Auger and Dimo Brockhoff, Inria

Excursion: The O-Notation

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for Machine Learning, U. Paris-Saclay, Dec. 1, 20

Excursion: The O-Notation

Motivation:

= we often want to characterize how quickly a function f(x) grows
asymptotically

= e.g. when we say an algorithm takes quadratically many steps
(in the input size) to find the optimum of a problem with n

(binary) variables, it is most likely not exactly n?, but maybe n?+1
or (n+1)3?

Big-O Notation
should be known, here mainly restating the definition:

Definition 1 We write f(x) = 0(g(x)) iff there exists a constant
c > 0 and an xy > 0 such that |f(x)| < ¢ g(x) holds for all x > x,

we also view O(g(x)) as a set of functions growing at most as
quick as g(x) and write f(x)eO(g(x))

© Anne Auger and Dimo Brockhoff, Inria

Big-O: Examples

f(x) + ¢ = O(f(x)) [if f(x) does not go to zero for x to infinity]
c-f(x) = O(f(x))
) -

f(x) - g(x) = O(i(x) - g(x))
3n* +n% -7 =0(n%)

Intuition of the Big-O:

if f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically)

for f excluding constants and lower order terms
With Big-O, you should have ‘<’ in mind

An algorithm that solves a problem in polynomial time is "efficient”
An algorithm that solves a problem in exponential time is not

But be aware:

In practice, often the line between efficient and non-efficient lies
around nlogn or even n (or even logn in the big data context) and
the constants do matter!!!

© Anne Auger and Dimo Brockhoff, Inria

Excursion: The O-Notation

Further definitions to generalize from ‘<’ to ‘="' and ‘="

= f(x) = Q(g(x)) if g(x) = O(f(x))
= f(x) = O(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x))

Note: extensions to ‘<’ and ‘>’ exist as well, but are not needed here.

Example:
= Algo A solves problem P in time O(n)
= Algo B solves problem P in time O(n?)

= which one is faster?
only proving upper
bounds to compare
algorithms is not sufficient!

© Anne Auger and Dimo Brockhoff, Inria

Excursion: The O-Notation

Further definitions to generalize from ‘<’ to ‘="' and ‘="

= f(x) = Q(g(x)) if g(x) = O(f(x))
= f(x) = O(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x))

Note: extensions to ‘<’ and ‘>’ exist as well, but are not needed here.

Example:
= Algo A solves problem P in time O(n)
= Algo B solves problem P in time 9@427 Q(n?)
= which one is faster?
only proving upper
bounds to compare
algorithms is not sufficient!

© Anne Auger and Dimo Brockhoff, Inria

Exercise O-Notation

O Please order the following functions in terms of their asymptotic
behavior (from smallest to largest):

= exp(n?)

= Jogn

" Inn/Ininn
" n

= nlogn

= exp(n)

= |nn!

® Pick one pair of runtimes and give a formal proof for the relation.

© Anne Auger and Dimo Brockhoff, Inria

Exercise O-Notation (Solution)

Correct ordering:

|
n log n = ©(In(n!)) In(n!)= O(e") e" = O(e"?)

but for example e"? # O(e")

One exemplary proof:

In(n) |
in(in(n)) ~ O(log n):
. In(n) | _ log(n) < 3 log(n) < 310g(n)

In(In(n)) - log(e)ln(ln(n))T ln(ln(n))T

forn>1 forn> 15

© Anne Auger and Dimo Brockhoff, Inria

Exercise O-Notation (Solution)

One additional proof: In n! = O(n log n)

n
= Stirling’s approximation: n!~+/2mn (g) or even

1
- Nn+—=— —
V2mn"t1/2e " < pl < en™2e ™

n+= 1
* |nn!<In(en "2e7") =1+ (n+§) Inn—n

logn

1
g(n+§)lnnS2nlnn=2n = c-nlogn

loge
okay forc = 2/loge and alln € N

* nlinn=0(Inn!) proven in a similar vein

© Anne Auger and Dimo Brockhoff, Inria

Excursion:
Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

TC2: Optimization for Machine Learning, U. is-

Definition 1 An undirected graph G is a tupel G = (V, E) of edges e = {u,v} €
E over the vertex set V (i.e., u,v € V).

= vertices = nodes

= edges = lines

= Note: edges cover two unordered vertices (undirected graph)
= f they are ordered, we call G a directed graph

© Anne Auger and Dimo Brockhoff, Inria TC2: Optimization for Machine Learning, U. Paris-Saclay, Dec

Graphs: Basic Definitions

» G is called empty if E empty
* uandyv are end vertices of an edge {u,v}
» Edges are adjacent if they share an end vertex

a loo
= \Vertices u and v are adjacent if {u,v}isin E P

© Anne Auger and Dimo Brockhoff, Inria

Walks, Paths, and Circuits

Definition 1 A walk in a graph G = (V, FE) is a sequence

Vigs €y = (Vig, Viy)s Vig» €ig = (Vig»Vin)s -+« 5 €iges Vi

alternating vertices and adjacent edges of G.

A walk is
= closed if first and last node coincide

» a frail if each edge traversed at most once
= a path if each vertex is visited at most once

a closed path is called a circuit or cycle

© Anne Auger and Dimo Brockhoff, Inria

TC2: Optimization for Machine Learning, U. Paris-Saclay, Dec.

