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Date Topic

Thu, 3.11.2022 DB Introduction

Thu, 10.11.2022 AA Continuous Optimization I: differentiability, gradients, 

convexity, optimality conditions

Thu, 17.11.2022 AA Continuous Optimization II: constrained optimization, 

gradient-based algorithms, stochastic gradient

Thu, 24.11.2022 AA Continuous Optimization III: stochastic algorithms, 

derivative-free optimization

written test / « contrôle continue »

Thu, 1.12.2022 DB Constrained optimization, Discrete Optimization I:

graph theory, greedy algorithms

Thu, 8.12.2022 DB Discrete Optimization II: dynamic programming, 

branch&bound

Thu 15.12.2022 DB Written exam

classes from 13h30 – 16h45 (2nd break at end)

Course Overview
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Constrained Optimization



4TC2: Optimization for Machine Learning, U. Paris-Saclay, Dec. 1, 2022© Anne Auger and Dimo Brockhoff, Inria 4

Small exercises on whiteboardSmall exercises on whiteboard
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Objective:

Generalize the necessary condition of 𝛻𝑓 𝑥 = 0 at the optima of f 

when 𝑓 is in 𝒞1, i.e. is differentiable and its differential is continuous

Theorem:

Be 𝑓:ℝ𝑛 → ℝ, 𝑔:ℝ𝑛 → ℝ in 𝒞1.

Let 𝑎 ∈ ℝ𝑛 satisfy

ቊ
𝑓 𝑎 = min 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔 𝑥 = 0}

𝑔 𝑎 = 0

i.e. 𝑎 is optimum of the problem

If 𝛻𝑔 𝑎 ≠ 0, then there exists a constant 𝜆 ∈ ℝ called Lagrange 

multiplier, such that

𝛻𝑓 𝑎 + 𝜆𝛻𝑔 𝑎 = 0 Euler − Lagrange equation

i.e. gradients of 𝑓 and 𝑔 in 𝑎 are colinear

Equality Constraint
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Geometrical Interpretation Using an Example

Exercise:

Consider the problem

min 𝑓 𝑥, 𝑦 𝑥, 𝑦 ∈ ℝ2, 𝑔 𝑥, 𝑦 = 0}

𝑓 𝑥, 𝑦 = 𝑦 − 𝑥2 𝑔 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 1 = 0

1) Plot the level sets of 𝑓, plot 𝑔 = 0
2) Compute 𝛻𝑓 and 𝛻𝑔
3) Find the solutions with 𝛻𝑓 + 𝜆𝛻𝑔 = 0

equation solving with 3 unknowns (𝑥, 𝑦, 𝜆)

4) Plot the solutions of 3) on top of the level set graph of 1)

Exercise:

Consider the problem

min 𝑓 𝑥, 𝑦 𝑥, 𝑦 ∈ ℝ2, 𝑔 𝑥, 𝑦 = 0}

𝑓 𝑥, 𝑦 = 𝑦 − 𝑥2 𝑔 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 1 = 0

1) Plot the level sets of 𝑓, plot 𝑔 = 0
2) Compute 𝛻𝑓 and 𝛻𝑔
3) Find the solutions with 𝛻𝑓 + 𝜆𝛻𝑔 = 0

equation solving with 3 unknowns (𝑥, 𝑦, 𝜆)

4) Plot the solutions of 3) on top of the level set graph of 1)
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▪ 𝑥1, 𝑦1, 𝜆1 = 0, 1, −
1

2
[max local]

▪ = 0,−1,
1

2
[max local]

▪ =
3

4
, −

1

2
, 1 [min global]

▪ = −
3

4
, −

1

2
, 1 [min global]

Note:

Here we see clearly that the previous conditions are necessary 

conditions but not sufficient conditions.

Answer
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▪ 𝑥1, 𝑦1, 𝜆1 = 0, 1, −
1

2
[max global]

▪ = 0,−1,
1

2
[max local]

▪ =
3

4
, −

1

2
, 1 [min global]

▪ = −
3

4
, −

1

2
, 1 [min global]

Note:

Here we see clearly that the previous conditions are necessary 

conditions but not sufficient conditions.

Answer
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Intuitive way to retrieve the Euler-Lagrange equation:

▪ In a local minimum 𝑎 of a constrained problem, the 

hypersurfaces (or level sets) 𝑓 = 𝑓(𝑎) and 𝑔 = 0 are necessarily

tangent (otherwise we could decrease 𝑓 by moving along 𝑔 = 0).

▪ Since the gradients 𝛻𝑓 𝑎 and 𝛻𝑔(𝑎) are orthogonal to the level

sets 𝑓 = 𝑓(𝑎) and 𝑔 = 0, it follows that 𝛻𝑓(𝑎) and 𝛻𝑔(𝑎) are 

colinear.

Interpretation of Euler-Lagrange Equation
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Theorem

▪ Assume 𝑓:ℝ𝑛 → ℝ and 𝑔𝑘: ℝ
𝑛 → ℝ (1 ≤ 𝑘 ≤ 𝑝) are 𝒞1.

▪ Let 𝑎 be such that

ቊ
𝑓 𝑎 = min 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔𝑘 𝑥 = 0, 1 ≤ 𝑘 ≤ 𝑝}

𝑔𝑘 𝑎 = 0 for all 1 ≤ 𝑘 ≤ 𝑝

▪ If 𝛻𝑔𝑘 𝑎
1≤𝑘≤𝑝

are linearly independent, then there exist 𝑝 real 

constants 𝜆𝑘 1≤𝑘≤𝑝 such that

𝛻𝑓 𝑎 + ෍

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑎 = 0

again: 𝑎 does not need to be global but local minimum

Generalization to More than One Constraint

Lagrange multiplier
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▪ Define the Lagrangian on ℝ𝑛 × ℝ𝑝 as

ℒ 𝑥, 𝜆𝑘 = 𝑓 𝑥 + ෍

𝑘=1

𝑝

𝜆𝑘𝑔𝑘(𝑥)

▪ To find optimal solutions, we can solve the optimality system

Find 𝑥, 𝜆𝑘 ∈ ℝ𝑛 × ℝ𝑝 such that 𝛻𝑓 𝑥 +෍

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑥 = 0

𝑔𝑘 𝑥 = 0 for all 1 ≤ 𝑘 ≤ 𝑝

⟺ ൝
Find 𝑥, 𝜆𝑘 ∈ ℝ𝑛 × ℝ𝑝 such that 𝛻𝑥ℒ 𝑥, {𝜆𝑘} = 0

𝛻𝜆𝑘ℒ 𝑥, {𝜆𝑘} 𝑥 = 0 for all 1 ≤ 𝑘 ≤ 𝑝

The Lagrangian
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Let 𝒰 = 𝑥 ∈ ℝ𝑛 𝑔𝑘 𝑥 = 0 for 𝑘 ∈ 𝐸 , 𝑔𝑘(𝑥) ≤ 0 (for 𝑘 ∈ 𝐼)}.

Definition:

The points in ℝ𝑛 that satisfy the constraints are also called feasible

points.

Definition:

Let 𝑎 ∈ 𝒰, we say that the constraint 𝑔𝑘 𝑥 ≤ 0 (for 𝑘 ∈ 𝐼) is active

in 𝑎 if 𝑔𝑘 𝑎 = 0.

Inequality Constraint: Definitions
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Theorem (Karush-Kuhn-Tucker, KKT):

Let 𝑓:ℝ𝑛 → ℝ, 𝑔𝑘: ℝ
𝑛 → ℝ, all 𝒞1

Furthermore, let 𝑎 ∈ ℝ𝑛 satisfy

൞

𝑓 𝑎 = min 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔𝑘(𝑥) = 0 for 𝑘 ∈ 𝐸 , 𝑔𝑘 𝑥 ≤ 0 (for 𝑘 ∈ I)

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

Let 𝐼𝑎
0 be the set of constraints that are active in 𝑎. Assume that

𝛻𝑔𝑘 𝑎
𝑘 ∈ 𝐸 ∪ 𝐼𝑎

0 are linearly independent.

Then there exist 𝜆𝑘 1≤𝑘≤𝑝 that satisfy

𝛻𝑓 𝑎 +෍

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑎 = 0

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

𝜆𝑘 ≥ 0 (for 𝑘 ∈ 𝐼𝑎
0)

𝜆𝑘𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸 ∪ 𝐼)

Inequality Constraint: Karush-Kuhn-Tucker Theorem

also works again for 𝑎
being a local minimum
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Theorem (Karush-Kuhn-Tucker, KKT):

Let 𝑓:ℝ𝑛 → ℝ, 𝑔𝑘: ℝ
𝑛 → ℝ, all 𝒞1

Furthermore, let 𝑎 ∈ ℝ𝑛 satisfy

൞

𝑓 𝑎 = min 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔𝑘(𝑥) = 0 for 𝑘 ∈ 𝐸 , 𝑔𝑘 𝑥 ≤ 0 (for 𝑘 ∈ I)

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

Let 𝐼𝑎
0 be the set of constraints that are active in 𝑎. Assume that

𝛻𝑔𝑘 𝑎
𝑘 ∈ 𝐸 ∪ 𝐼𝑎

0 are linearly independent.

Then there exist 𝜆𝑘 1≤𝑘≤𝑝 that satisfy

𝛻𝑓 𝑎 +෍

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑎 = 0

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

𝜆𝑘 ≥ 0 (for 𝑘 ∈ 𝐼𝑎
0)

𝜆𝑘𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸 ∪ 𝐼)

Inequality Constraint: Karush-Kuhn-Tucker Theorem

either active constraint

or 𝜆𝑘 = 0
either active constraint

or 𝜆𝑘 = 0
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Discrete Optimization
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Context discrete optimization:

▪ discrete variables

▪ or optimization over discrete structures (e.g. graphs)

▪ search space often finite, but typically too large for enumeration

▪ → need for smart algorithms

Algorithms for discrete problems:

▪ typically problem-specific

▪ but some general concepts are repeatedly used:

▪ greedy algorithms

▪ [branch and bound]

▪ dynamic programming

▪ randomized search heuristics

Motivation for this Part:

▪ get an idea of the most common algorithm design principles

Discrete Optimization

before 2 excursions:

the O-notation

& graph theory

before 2 excursions:

the O-notation

& graph theory
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Excursion: The O-Notation
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Motivation:

▪ we often want to characterize how quickly a function f(x) grows 

asymptotically

▪ e.g. when we say an algorithm takes quadratically many steps 

(in the input size) to find the optimum of a problem with n 

(binary) variables, it is most likely not exactly n2, but maybe n2+1 

or (n+1)2

Big-O Notation

should be known, here mainly restating the definition:

Definition 1 We write 𝑓(𝑥) = 𝑂(𝑔(𝑥)) iff there exists a constant 
𝑐 > 0 and an 𝑥0 > 0 such that 𝑓 𝑥 ≤ 𝑐 ⋅ 𝑔(𝑥) holds for all 𝑥 > 𝑥0

we also view O(g(x)) as a set of functions growing at most as 

quick as g(x) and write f(x)O(g(x))

Excursion: The O-Notation
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▪ f(x) + c = O(f(x))    [if f(x) does not go to zero for x to infinity]

▪ c·f(x) = O(f(x))

▪ f(x) · g(x) = O(f(x) · g(x)) 

▪ 3n4 + n2 – 7 = O(n4)

Intuition of the Big-O:

▪ if f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically) 

for f                                     excluding constants and lower order terms

▪ With Big-O, you should have ‘≤’ in mind

▪ An algorithm that solves a problem in polynomial time is "efficient"

▪ An algorithm that solves a problem in exponential time is not

▪ But be aware:

In practice, often the line between efficient and non-efficient lies 

around 𝑛 log 𝑛 or even 𝑛 (or even log 𝑛 in the big data context) and 

the constants do matter!!!

Big-O: Examples
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Further definitions to generalize from ‘≤’ to ‘≥‘ and ‘=‘:

▪ f(x) = Ω(g(x)) if g(x) = O(f(x))

▪ f(x) = Θ(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x))

Note: extensions to ‘<‘ and ‘>’ exist as well, but are not needed here.

Example:

▪ Algo A solves problem P in time O(n)

▪ Algo B solves problem P in time O(n2)

▪ which one is faster?

Excursion: The O-Notation

only proving upper

bounds to compare

algorithms is not sufficient!

only proving upper

bounds to compare

algorithms is not sufficient!
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Further definitions to generalize from ‘≤’ to ‘≥‘ and ‘=‘:

▪ f(x) = Ω(g(x)) if g(x) = O(f(x))

▪ f(x) = Θ(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x))

Note: extensions to ‘<‘ and ‘>’ exist as well, but are not needed here.

Example:

▪ Algo A solves problem P in time O(n)

▪ Algo B solves problem P in time O(n2)  Ω(n2) 

▪ which one is faster?

Excursion: The O-Notation

only proving upper

bounds to compare

algorithms is not sufficient!

only proving upper

bounds to compare

algorithms is not sufficient!
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 Please order the following functions in terms of their asymptotic 

behavior (from smallest to largest):

▪ exp(n2)

▪ log n

▪ ln n / ln ln n

▪ n

▪ n log n

▪ exp(n)

▪ ln n!

 Pick one pair of runtimes and give a formal proof for the relation.

Exercise O-Notation
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Correct ordering:

= O(log n)           log n = O(n)            n = O(n log n)

n log n = Θ(ln(n!))          ln(n!)= O(en)            en = O(en^2)

but for example en^2  ≠ O(en)

One exemplary proof:

= O(log n):

▪
ln(𝑛)

ln(ln 𝑛 )
=

log(𝑛)

log 𝑒 ln(ln 𝑛 )
≤

3 log 𝑛

ln ln 𝑛
≤ 3log(𝑛)

Exercise O-Notation (Solution)

))ln(ln(

n)ln(

n

))ln(ln(

n)ln(

n

for 𝑛 > 15for 𝑛 > 1
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One additional proof: ln n! = O(n log n)

▪ Stirling’s approximation:          𝑛!~ 2𝜋𝑛
𝑛

𝑒

𝑛
or even

2𝜋𝑛𝑛+1/2𝑒−𝑛 ≤ 𝑛! ≤ 𝑒𝑛𝑛+
1
2𝑒−𝑛

▪ ln 𝑛! ≤ ln(𝑒𝑛𝑛+
1

2𝑒−𝑛) = 1 + 𝑛 +
1

2
ln 𝑛 − 𝑛

≤ 𝑛 +
1

2
ln 𝑛 ≤ 2𝑛 ln 𝑛 = 2𝑛

log 𝑛

log 𝑒
= 𝑐 ∙ 𝑛 log 𝑛

okay for 𝑐 = 2/ log 𝑒 and all 𝑛 ∈ ℕ

▪ n ln n = O(ln n!) proven in a similar vein

Exercise O-Notation (Solution)
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Excursion:

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]
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▪ vertices = nodes

▪ edges = lines

▪ Note: edges cover two unordered vertices (undirected graph)

▪ if they are ordered, we call G a directed graph

Graphs
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▪ G is called empty if E empty

▪ u and v are end vertices of an edge {u,v}

▪ Edges are adjacent if they share an end vertex

▪ Vertices u and v are adjacent if {u,v} is in E

Graphs: Basic Definitions

a loop



28TC2: Optimization for Machine Learning, U. Paris-Saclay, Dec. 1, 2022© Anne Auger and Dimo Brockhoff, Inria 28

A walk is

▪ closed if first and last node coincide

▪ a trail if each edge traversed at most once

▪ a path if each vertex is visited at most once

a closed path is called a circuit or cycle

Walks, Paths, and Circuits


