Optimization for Machine Learning Lecture 5: Constraints, Discrete Optimization I

December 1, 2022 TC2 - Optimisation Université Paris-Saclay

Anne Auger and Dimo Brockhoff Inria Saclay – Ile-de-France

Course Overview

Date		Торіс
Thu, 3.11.2022	DB	Introduction
Thu, 10.11.2022	AA	Continuous Optimization I: differentiability, gradients, convexity, optimality conditions
Thu, 17.11.2022	AA	Continuous Optimization II: constrained optimization, gradient-based algorithms, stochastic gradient
Thu, 24.11.2022	AA	Continuous Optimization III: stochastic algorithms, derivative-free optimization written test / « contrôle continue »
Thu, 1.12.2022	DB	Constrained optimization, Discrete Optimization I: graph theory, greedy algorithms
Thu, 8.12.2022	DB	Discrete Optimization II: dynamic programming, branch&bound
Thu 15.12.2022	DB	Written exam
		classes from 13h30 – 16h45 (2 nd break at end)

Constrained Optimization

Small exercises on whiteboard

Equality Constraint

Objective:

Generalize the necessary condition of $\nabla f(x) = 0$ at the optima of f when f is in C^1 , i.e. is differentiable and its differential is continuous

Theorem:

Be $f: \mathbb{R}^n \to \mathbb{R}, g: \mathbb{R}^n \to \mathbb{R}$ in \mathcal{C}^1 . Let $a \in \mathbb{R}^n$ satisfy

$$\begin{cases} f(a) = \min \{ f(x) \mid x \in \mathbb{R}^n, g(x) = 0 \} \\ g(a) = 0 \end{cases}$$

i.e. *a* is optimum of the problem

If $\nabla g(a) \neq 0$, then there exists a constant $\lambda \in \mathbb{R}$ called *Lagrange multiplier*, such that

$$\nabla f(a) + \lambda \nabla g(a) = 0$$
 Euler – Lagrange equation

i.e. gradients of f and g in a are colinear

Geometrical Interpretation Using an Example

Exercise:

Consider the problem

min {
$$f(x, y) | (x, y) \in \mathbb{R}^2, g(x, y) = 0$$
 }

 $f(x, y) = y - x^2$ $g(x, y) = x^2 + y^2 - 1 = 0$

- 1) Plot the level sets of f, plot g = 0
- 2) Compute ∇f and ∇g
- 3) Find the solutions with $\nabla f + \lambda \nabla g = 0$

equation solving with 3 unknowns (x, y, λ)

4) Plot the solutions of 3) on top of the level set graph of 1)

Answer

Answer

• $(x_1, y_1, \lambda_1) = \left(0, 1, -\frac{1}{2}\right)$ [max global] = $\left(0, -1, \frac{1}{2}\right)$ [max local] = $\left(\sqrt{\frac{3}{4}}, -\frac{1}{2}, 1\right)$ [min global] = $\left(-\sqrt{\frac{3}{4}}, -\frac{1}{2}, 1\right)$ [min global]

Note:

Here we see clearly that the previous conditions are necessary conditions but not sufficient conditions.

Interpretation of Euler-Lagrange Equation

Intuitive way to retrieve the Euler-Lagrange equation:

- In a local minimum a of a constrained problem, the hypersurfaces (or level sets) f = f(a) and g = 0 are necessarily tangent (otherwise we could decrease f by moving along g = 0).
- Since the gradients ∇f(a) and ∇g(a) are orthogonal to the level sets f = f(a) and g = 0, it follows that ∇f(a) and ∇g(a) are colinear.

Generalization to More than One Constraint

Theorem

- Assume $f: \mathbb{R}^n \to \mathbb{R}$ and $g_k: \mathbb{R}^n \to \mathbb{R}$ $(1 \le k \le p)$ are \mathcal{C}^1 .
- Let *a* be such that $\begin{cases}
 f(a) = \min \{f(x) \mid x \in \mathbb{R}^n, \quad g_k(x) = 0, \\ g_k(a) = 0 \text{ for all } 1 \le k \le p
 \end{cases}$
- If (∇g_k(a))_{1≤k≤p} are linearly independent, then there exist p real constants (λ_k)_{1≤k≤p} such that

$$\nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0$$

Lagrange multiplier

again: a does not need to be global but local minimum

The Lagrangian

- Define the Lagrangian on $\mathbb{R}^n \times \mathbb{R}^p$ as $\mathcal{L}(x, \{\lambda_k\}) = f(x) + \sum_{k=1}^p \lambda_k g_k(x)$
- To find optimal solutions, we can solve the optimality system $\begin{cases}
 \text{Find } (x, \{\lambda_k\}) \in \mathbb{R}^n \times \mathbb{R}^p \text{ such that } \nabla f(x) + \sum_{k=1}^p \lambda_k \nabla g_k(x) = 0 \\
 g_k(x) = 0 \text{ for all } 1 \le k \le p
 \end{cases}$ $\Leftrightarrow \begin{cases}
 \text{Find } (x, \{\lambda_k\}) \in \mathbb{R}^n \times \mathbb{R}^p \text{ such that } \nabla_x \mathcal{L}(x, \{\lambda_k\}) = 0 \\
 \nabla_{\lambda_k} \mathcal{L}(x, \{\lambda_k\})(x) = 0 \text{ for all } 1 \le k \le p
 \end{cases}$

Inequality Constraint: Definitions

Let $\mathcal{U} = \{x \in \mathbb{R}^n \mid g_k(x) = 0 \text{ (for } k \in E), g_k(x) \le 0 \text{ (for } k \in I)\}.$

Definition:

The points in \mathbb{R}^n that satisfy the constraints are also called *feasible* points.

Definition:

Let $a \in U$, we say that the constraint $g_k(x) \le 0$ (for $k \in I$) is *active* in *a* if $g_k(a) = 0$.

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):

Let $f: \mathbb{R}^n \to \mathbb{R}, g_k: \mathbb{R}^n \to \mathbb{R}$, all \mathcal{C}^1 Furthermore, let $a \in \mathbb{R}^n$ satisfy $\begin{cases} f(a) = \min(f(x) \mid x \in \mathbb{R}^n, g_k(x) = 0 \text{ (for } k \in E), g_k(x) \leq 0 \text{ (for } k \in I) \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \leq 0 \text{ (for } k \in I) \end{cases} \text{ also works again for } a \text{ being a local minimum} \end{cases}$

Let I_a^0 be the set of constraints that are active in a. Assume that $(\nabla g_k(a))_{k \in E \cup I_a^0}$ are linearly independent.

Then there exist $(\lambda_k)_{1 \le k \le p}$ that satisfy

$$\begin{cases} \nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0\\ g_k(a) = 0 \text{ (for } k \in E)\\ g_k(a) \le 0 \text{ (for } k \in I)\\ \lambda_k \ge 0 \text{ (for } k \in I_a^0)\\ \lambda_k g_k(a) = 0 \text{ (for } k \in E \cup I) \end{cases}$$

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):

Let $f: \mathbb{R}^n \to \mathbb{R}, g_k: \mathbb{R}^n \to \mathbb{R}$, all \mathcal{C}^1 Furthermore, let $a \in \mathbb{R}^n$ satisfy $\begin{cases}
f(a) = \min(f(x) \mid x \in \mathbb{R}^n, g_k(x) = 0 \text{ (for } k \in E), g_k(x) \le 0 \text{ (for } k \in I) \\
g_k(a) = 0 \text{ (for } k \in E) \\
g_k(a) \le 0 \text{ (for } k \in I)
\end{cases}$

Let I_a^0 be the set of constraints that are active in *a*. Assume that $(\nabla g_k(a))_{k \in E \cup I_a^0}$ are linearly independent.

Then there exist $(\lambda_k)_{1 \le k \le p}$ that satisfy

$$\begin{cases} \nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0\\ g_k(a) = 0 \text{ (for } k \in E)\\ g_k(a) \leq 0 \text{ (for } k \in I)\\ \lambda_k \geq 0 \text{ (for } k \in I_a^0)\\ \lambda_k g_k(a) = 0 \text{ (for } k \in E \cup I) \end{cases} \text{ either active constraint}$$

Discrete Optimization

Context discrete optimization:

- discrete variables
- or optimization over discrete structures (e.g. graphs)
- search space often finite, but typically too large for enumeration
- → need for smart algorithms

Algorithms for discrete problems:

- typically problem-specific
- but some general concepts are repeatedly used:
 - greedy algorithms
 - [branch and bound]
 - dynamic programming
 - randomized search heuristics

Motivation for this Part:

get an idea of the most common algorithm design principles

before 2 excursions: the O-notation & graph theory

Excursion: The O-Notation

Motivation:

- we often want to characterize how quickly a function f(x) grows asymptotically
- e.g. when we say an algorithm takes quadratically many steps (in the input size) to find the optimum of a problem with n (binary) variables, it is most likely not exactly n², but maybe n²+1 or (n+1)²

Big-O Notation

should be known, here mainly restating the definition:

Definition 1 We write f(x) = O(g(x)) iff there exists a constant c > 0 and an $x_0 > 0$ such that $|f(x)| \le c \cdot g(x)$ holds for all $x > x_0$

we also view O(g(x)) as a set of functions growing at most as quick as g(x) and write $f(x) \in O(g(x))$

Big-O: Examples

- f(x) + c = O(f(x)) [if f(x) does not go to zero for x to infinity]
- $c \cdot f(x) = O(f(x))$
- $f(x) \cdot g(x) = O(f(x) \cdot g(x))$
- $3n^4 + n^2 7 = O(n^4)$

Intuition of the Big-O:

- if f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically) for f
 excluding constants and lower order terms
- With Big-O, you should have '≤' in mind
- An algorithm that solves a problem in polynomial time is "efficient"
- An algorithm that solves a problem in exponential time is not
- But be aware:

In practice, often the line between efficient and non-efficient lies around $n \log n$ or even n (or even $\log n$ in the big data context) and the constants **do** matter!!!

Excursion: The O-Notation

Further definitions to generalize from ' \leq ' to ' \geq ' and '=':

•
$$f(x) = \Omega(g(x))$$
 if $g(x) = O(f(x))$

• $f(x) = \Theta(g(x))$ if f(x) = O(g(x)) and g(x) = O(f(x))

Note: extensions to '<' and '>' exist as well, but are not needed here.

Example:

- Algo A solves problem P in time O(n)
- Algo B solves problem P in time O(n²)
- which one is faster?

only proving upper bounds to compare algorithms is not sufficient!

Excursion: The O-Notation

Further definitions to generalize from ' \leq ' to ' \geq ' and '=':

- $f(x) = \Omega(g(x))$ if g(x) = O(f(x))
- $f(x) = \Theta(g(x))$ if f(x) = O(g(x)) and g(x) = O(f(x))

Note: extensions to '<' and '>' exist as well, but are not needed here.

Example:

- Algo A solves problem P in time O(n)
- Algo B solves problem P in time $O(n^2)$ $\Omega(n^2)$
- which one is faster?

only proving upper bounds to compare algorithms is not sufficient!

- Please order the following functions in terms of their asymptotic behavior (from smallest to largest):
 - exp(n²)
 - log n
 - In n / In In n
 - n
 - n log n
 - exp(n)
 - In n!

Pick one pair of runtimes and give a formal proof for the relation.

Exercise O-Notation (Solution)

Correct ordering:

 $\frac{\ln(n)}{\ln(\ln(n))} = O(\log n) \qquad \log n = O(n) \qquad n = O(n \log n)$

n log n = $\Theta(\ln(n!))$ ln(n!)= $O(e^n)$ $e^n = O(e^{n^2})$

but for example $e^{n^2} \neq O(e^n)$

One exemplary proof: $\frac{\ln(n)}{\ln(\ln(n))} = O(\log n):$

•
$$\left|\frac{\ln(n)}{\ln(\ln(n))}\right| = \frac{\log(n)}{\log(e)\ln(\ln(n))} \leq \frac{3\log(n)}{\ln(\ln(n))} \leq 3\log(n)$$

for $n > 1$ for $n > 15$

Exercise O-Notation (Solution)

One additional proof: In n! = O(n log n)

• Stirling's approximation: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ or even $\sqrt{2\pi}n^{n+1/2}e^{-n} \le n! \le en^{n+\frac{1}{2}}e^{-n}$

•
$$\ln n! \leq \ln(en^{n+\frac{1}{2}}e^{-n}) = 1 + \left(n + \frac{1}{2}\right)\ln n - n$$

 $\leq \left(n + \frac{1}{2}\right)\ln n \leq 2n\ln n = 2n\frac{\log n}{\log e} = c \cdot n\log n$
okay for $c = 2/\log e$ and all $n \in \mathbb{N}$

n ln n = O(ln n!) proven in a similar vein

Excursion: Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

Graphs

Definition 1 An undirected graph G is a tupel G = (V, E) of edges $e = \{u, v\} \in E$ over the vertex set V (i.e., $u, v \in V$).

- vertices = nodes
- edges = lines
- Note: edges cover two *unordered* vertices (*undirected* graph)
 - if they are *ordered*, we call G a *directed* graph

Graphs: Basic Definitions

- G is called *empty* if E empty
- u and v are *end vertices* of an edge {u,v}
- Edges are *adjacent* if they share an end vertex
- Vertices u and v are *adjacent* if {u,v} is in E

Walks, Paths, and Circuits

Definition 1 A walk in a graph G = (V, E) is a sequence

$$v_{i_0}, e_{i_1} = (v_{i_0}, v_{i_1}), v_{i_1}, e_{i_2} = (v_{i_1}, v_{i_2}), \dots, e_{i_k}, v_{i_k},$$

alternating vertices and adjacent edges of G.

A walk is

- closed if first and last node coincide
- a trail if each edge traversed at most once
- a path if each vertex is visited at most once

a closed path is called a *circuit* or *cycle*