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ABSTRACT
We analyze a fundamental class of multiobjective constrained prob-

lems where the objectives are spherical functions and the con-

straints are convex. As an application from the projection theorem

on closed convex sets, we prove that the constrained Pareto set cor-

responds to the orthogonal projection of the unconstrained Pareto

set onto the feasible region. We establish this fundamental geo-

metric property and illustrate its implications using visualizations

of Pareto sets and fronts under various constraint configurations.

Furthermore, we assess the performance of NSGA-II on these prob-

lems, examining its ability to approximate the constrained Pareto

set across different dimensions. Our findings highlight the impor-

tance of theoretically grounded and understood benchmark prob-

lems for assessing algorithmic behavior and contribute to a deeper

understanding of constrained multiobjective landscapes.
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1 INTRODUCTION
Many real-world optimization problems have multiple objectives

as well as constraints. It is therefore important to design algorithms

that can handle both. To achieve this, we need appropriate test prob-

lems that allow us to assess algorithm performance—specifically,

whether they converge to the set of optimal solutions, how quickly

they do so, and whether they respect the given constraints.
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Several test suites with constrained multiobjective problems

have been proposed in the past, see [11] for a recent review. To the

best of our knowledge, however, they all have constraints of one

of two types: either 1) constraints on the objective space with a

well identified impact only on the Pareto front, while the impact

on the Pareto set is typically unclear [11, for almost all mentioned

suites] or 2) very specific constraints in the search space that do

not affect the Pareto set [6, 12, 15, 18]. Moreover, a recent study

showed experimentally that the inspected real-world constrained

multiobjective problems do not possess constraints of the first type.

Consequently, selected constrained multiobjective optimizers per-

formed differently on the real-world problems than on the test

problems stemming from those suites [13].

In the case of single-objective optimization, on the contrary,

established benchmark suites are usually defined around prob-

lem properties observed in practice such as ill-conditioning, non-

separability, multi-modality, etc. [7]. Convex-quadratic functions

constitute an important class of single-objective functions that

model the landscape of the problem in the neighborhood of one

optimum including instances with ill-conditioned Hessian, a dif-

ficulty frequently encountered on real-world problems that any

well-designed algorithm should be able to address. Those functions

are well understood and constitute a very useful class of problems

for designing algorithms for non-linear and non-quadratic prob-

lems.

A similar approach to designing test functions in the uncon-

strained multiobjective case is to combine (simple) single-objective

functions and thus the difficulties of single-objective problems. Such

an approach is not new [9, 16] and has been used also when defining

the bbob-biobj test suite of the COCO platform [4, 7].

In this context, we argue that constrained multiobjective test

problems should be comprehensible, capturing the difficulties an al-

gorithm has to face when optimizing a real-world problem and with

ideally a well-identified and well understood Pareto set that enables

to diagnose and measure convergence. They should particularly

include both well-conditioned and ill-conditioned problems, as well

as simple linear constraints. Surprisingly, however, it seems that

even the simplest multiobjective problems that model the landscape

of a well-conditioned problem in the neighborhood of the optimum

with linear constraints are not yet sufficiently understood.

Consider indeed for instance the bi-objective problem involving

two spheres 𝑓1 : 𝑥 ↦→ 1

2
∥𝑥 − 𝑐1∥2

and 𝑓2 : 𝑥 ↦→ 1

2
∥𝑥 − 𝑐2∥2

for

𝑐1, 𝑐2 ∈ R𝑛 with 𝑐1 ≠ 𝑐2. Its Pareto set corresponds to the segment

between 𝑐1 and 𝑐2 and can thus be expressed as

PS
𝑢 = {𝑥𝑡 = 𝑡𝑐1 + (1 − 𝑡)𝑐2, 𝑡 ∈ [0, 1]}. (1)
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Figure 1: Examples of 2-sphere and 3-sphere multiobjec-
tive problems with two variables. The optima of the single-
objective functions are in 𝑐1, 𝑐2 and 𝑐3. The Pareto sets are
the segment [𝑐1, 𝑐2] in the left and middle plots and the con-
vex hull of {𝑐1, 𝑐2, 𝑐3} (i.e., the triangle with 𝑐1, 𝑐2 and 𝑐3 as
vertices) in the right plot. They are depicted in gray. Linear
constraints are depicted in blue and red. The feasible set cor-
responds to the white area and its boundary.

How does this Pareto set change when constraints are intro-

duced? Consider the simplest case of a single linear constraint (see

Figure 1, left). What form does the set of optimal solutions take in

this constrained scenario? What if we add a second constraint (see

Figure 1, middle)?

More generally, consider the𝑚-sphere problem with different

linear constraints (see Figure 1, right for 𝑚 = 3). How does the

Pareto set evolve in the presence of constraints? Interestingly, those

seemingly straightforward questions remain largely unexplored,

while they seem to be the most basic to have answered prior to

testing whether a new algorithm converges towards the solution

set of the problem it is optimizing.

In this context, we examine the𝑚-sphere problemwith𝑚 convex

inequality constraints and linear equality constraints. Building on

classical results from convex optimization, we prove that the Pareto

set of the constrained problem is the projection of the unconstrained

Pareto set onto the feasible set. We finish with an illustration of

how NSGA-II works on a specific case of these “simple” functions

(including the effect of the search space dimension in terms of the

achieved hypervolume indicator values).

The paper is further organized as follows: In Section 2, we present

the problem setting and main result. In Section 3, we present the

proof of ourmain result after introducing the differentmathematical

tools needed. In Section 4, as an application, we show how NSGA-

II approaches the Pareto optimal set on a simple multiobjective

problem with linear constraints.

Notations. In the entire paper, for 𝑥 ∈ R𝑛 , ∥𝑥 ∥ denotes its Eu-
clidean norm. Given two sets 𝐴 and 𝐵, 𝐴 ⊂ 𝐵 means that all ele-

ments of 𝐴 are included in 𝐵. Thus, 𝐴 and 𝐵 can also be equal.

2 PROBLEM SETTING AND MAIN RESULT
Given 𝑐1, . . . , 𝑐𝑚 ∈ R𝑛 , with 𝑐𝑖 ≠ 𝑐 𝑗 for 𝑖 ≠ 𝑗 , we consider the

multiobjective problem where each objective 𝑓𝑖 (𝑥) = 1

2
∥𝑥 − 𝑐𝑖 ∥2

is a sphere function with optimum located in 𝑐𝑖 . We additionally

assume 𝑝 inequality constraints 𝑔𝑖 that are convex and continuous
1

and 𝑞 linear equality constraints ℎ 𝑗 . More precisely, the problem

1
The functions 𝑔𝑖 can be defined on 𝐷𝑖 , a closed convex subset of R𝑛

. The continuity

is then assumed on 𝐷𝑖 .

reads as

minimize

(
𝑓1 (𝑥) = 1

2

∥𝑥 − 𝑐1∥2, . . . , 𝑓𝑚 (𝑥) = 1

2

∥𝑥 − 𝑐𝑚 ∥2

)
subject to 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑝

ℎ 𝑗 (𝑥) = (𝑎 𝑗 )⊤𝑥 + 𝑏 𝑗 = 0, 𝑗 = 1, . . . , 𝑞

(2)

where 𝑎 𝑗 ∈ R𝑛 are distinct vectors and 𝑏 𝑗 ∈ R. We include in

the above notation the possibility to set 𝑝 = 0 or 𝑞 = 0 (or both)

which correspond to the cases of no inequality constraints or no

equality constraints (or no constraints at all). As a particular case,

the inequality constraints 𝑔𝑖 can be linear.

This problem is illustrated in Figures 2, 3, 4, 5 and 6 for varying

numbers of constraints 𝑝 , types of constraints (linear or spherical),
and𝑚 = 2 and𝑚 = 3. The search space dimension is always 𝑛 = 2

for visualization purposes. On the left plot, we display the problem

in the search space and on the right plot in the objective space. In

all figures, the objective functions’ optima 𝑐𝑖 ∈ R𝑛 are displayed as

black crosses, the unconstrained Pareto set PS
𝑢
(formally described

above in (1) as the simplex between the 𝑐𝑖 ’s) is shown as (thin)

gray points (or as a gray area in Figure 5). The Pareto front of the

unconstrained problem is shown with the same gray color. In the

background of the search space plots, we see the level sets of the

objective functions as thin gray circles. The constraints are shown

as (dashed and colored) lines with the infeasible space in the same

color (but faded) which means the feasible set with respect to all

constraints, introduced as 𝐶 below in (3), is shown in white. The

Pareto sets and Pareto fronts are shown as thicker points, with

colors indicating on which constraint boundary the Pareto optimal

solutions lie (black points indicate that no constraint had an effect

on the solution).

The feasible set 𝐶 is defined as the set of vectors of the search

space R𝑛 that satisfy all constraints. It corresponds to the white

regions of the previously discussed plots (see also below formore de-

tailed explanations). It is equal to the intersection of the feasible sets

associated to each constraint. More precisely, consider 𝐶𝑖 = {𝑥 ∈
R𝑛, such that 𝑔𝑖 (𝑥) ≤ 0} and 𝐶 𝑗 = {𝑥 ∈ R𝑛, such that ℎ 𝑗 (𝑥) = 0},
the feasible set equals

𝐶 = {𝑥 ∈ R𝑛, 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑝, ℎ 𝑗 (𝑥) = 0, 𝑗 = 1, . . . 𝑞} (3)

=
⋂𝑝

𝑖=1

𝐶𝑖
⋂𝑞

𝑗=1

𝐶 𝑗 .

Remark that if 𝑝 = 0, then by convention

⋂𝑝

𝑖=1
𝐶𝑖 = R𝑛 , and sim-

ilarly if 𝑞 = 0,

⋂𝑞

𝑗=1
𝐶 𝑗 = R𝑛 . If the inequality constraints 𝑔𝑖 are

defined on a closed convex subset of R𝑛 denoted 𝐷𝑖 , then each

𝐶𝑖 = {𝑥 ∈ 𝐷𝑖 , such that 𝑔𝑖 (𝑥) ≤ 0} is a subset of 𝐷𝑖 .
Denoting 𝑓 (𝑥) = (𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥)), the vector valued function

associated to the above problems, we can rewrite the optimization

problem from (2) in a more compact way as

min𝑥∈𝐶 𝑓 (𝑥) . (4)

The feasible set 𝐶 for different instances of the double sphere prob-

lem with 𝑛 = 2 variables is displayed in Figure 2 for the case of one

linear inequality constraint, in Figure 3 for three different cases of

two linear inequality constraints, in Figure 4 in the case of four

linear inequality constraints, in Figure 5 for the 3-sphere problem

with one linear constraint and in Figure 6 for the double sphere

in the case of one linear and one spherical constraint. The feasible
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1Figure 2: Example problem with two variables, two spherical
objectives and a single linear constraint.

set corresponds in all cases to the white area (and boundary of the

white area) which is indeed the intersection of the feasible sets

associated to each constraint. We remark that this feasible set is

a convex set. This property actually holds as soon as 𝑔𝑖 are con-
vex and ℎ 𝑗 are linear. While this property is quite immediate, we

formalize it in a lemma for the sake of clarity.

Lemma 2.1. Assume a constrained problem with 𝑝 ≥ 0 inequality
constraints 𝑔𝑖 , 𝑖 = 1, . . . , 𝑝 that are convex and continuous and 𝑞 ≥ 0

linear equality constraints. Then the feasible set 𝐶 defined in (3) is
closed and convex.

Proof. Remark first that each 𝐶𝑖 = {𝑥 ∈ R𝑛, 𝑔𝑖 (𝑥) ≤ 0} is

a sublevel set of the constraint 𝑔𝑖 and since we assume that the

inequality constraints 𝑔𝑖 are convex, its sublevel sets are convex [3,
Section 3.1.6]. Thus, {𝐶𝑖 , 𝑖 = 1, . . . ,𝑚} are convex sets. In addition,

the equality constraints are linear, so 𝐶 𝑗 = {𝑥, ℎ 𝑗 (𝑥) = 0} is also a

convex set. Overall, the feasible set 𝐶 is convex as the intersection

of convex sets.

Each𝐶𝑖 is also closed as𝐶𝑖 = 𝑔−1

𝑖
(] −∞, 0]) is the inverse image

of the closed set ] −∞, 0] by a continuous mapping. Similarly,𝐶 𝑗 =
ℎ−1

𝑗
({0}) are also closed sets. Then 𝐶 is closed as an intersection

of closed sets. Overall, the set 𝐶 is closed and convex. □

A Pareto optimal solution is defined as a (feasible) solution that

cannot be improved along one objective without deteriorating at

least another:

Definition 2.2 ([10, Definition 11.3]). A vector 𝑥 is called an ef-

ficient solution or Pareto optimal solution of a problem (4) if it is

feasible, i.e., 𝑥 ∈ 𝐶 and if there is no 𝑥 ∈ 𝐶 such that 𝑓𝑖 (𝑥) ≤ 𝑓𝑖 (𝑥)
for all 𝑖 = 1, 2, . . . ,𝑚 and 𝑓 (𝑥) ≠ 𝑓 (𝑥).

When 𝐶 = R𝑛 , we retrieve the classical definition of a Pareto

optimal solution in the unconstrained case. We will refer to this set

of Pareto optimal solutions of the unconstrained problem as the

unconstrained Pareto set and denote it PS
𝑢
. We also introduce the

notion of weak Pareto optimality.

Definition 2.3 ([10, Definition 11.5]). A vector 𝑥 is weakly efficient

or a weakly Pareto optimal solution of a problem (4), if it is feasible

and if there is no 𝑥 ∈ 𝐶 with 𝑓𝑖 (𝑥) < 𝑓𝑖 (𝑥) for all 𝑖 = 1, 2, . . . ,𝑚.

From the definition, we easily see that a Pareto optimal point is

also weakly Pareto optimal but the reverse is not true in general.

−4 −2 0 2 4

𝑥1

−4

−2

0

2

4

𝑥2

Search Space (𝑛 = 2)

𝑐1

𝑐2

Constraint 1
Constraint 2
Uncon. Pareto Set
Pareto Set

0 10 20 30 40 50

𝑓1

0

10

20

30

40

50

𝑓2

Nadir point

Objective Space (𝑚 = 2)
Uncon. Pareto Front
Pareto Front

1

−4 −2 0 2 4

𝑥1

−4

−2

0

2

4

𝑥2

Search Space (𝑛 = 2)

𝑐1

𝑐2

Constraint 1
Constraint 2
Uncon. Pareto Set
Pareto Set

0 10 20 30 40 50

𝑓1

0

10

20

30

40

50

𝑓2

Nadir point

Objective Space (𝑚 = 2)
Uncon. Pareto Front
Pareto Front

1

−4 −2 0 2 4

𝑥1

−4

−2

0

2

4

𝑥2

Search Space (𝑛 = 2)

𝑐1

𝑐2

Constraint 1
Constraint 2
Uncon. Pareto Set
Pareto Set

0 10 20 30 40 50

𝑓1

0

10

20

30

40

50

𝑓2

Nadir point

Objective Space (𝑚 = 2)
Uncon. Pareto Front
Pareto Front

1Figure 3: Three example problems with two variables, two
spherical objectives and two linear constraints.
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1Figure 4: Example problem with two variables, two spherical
objectives and four linear constraints.

In the case of two spherical objective functions, like in (2) with

𝑚 = 2 and no constraints, the unconstrained Pareto set corresponds

to the line segment between the single-objective optima 𝑐1 and 𝑐2
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1Figure 6: Example problem with two variables, two spherical
objectives and two constraints—one spherical (in red) and
one linear (in blue). In addition to the unconstrained and con-
strained Pareto sets, the projection of three (unconstrained)
Pareto optimal solutions (black crosses) onto the feasible
domain are shown by black arrows.

expressed formally in (1). This result is known, but we will provide

a formal proof in Proposition 3.7 (see Section 3.2). Similarly, we

will refer to the set of Pareto optimal solutions of the constrained

problem (2) as the constrained Pareto set and denote it PS.

It is intuitive that if a point of the unconstrained Pareto set

𝑥𝑡 for some 𝑡 ∈ [0, 1] is included in the feasible domain, then it

also belongs to the (constrained) Pareto set PS. The proof is also

immediate: let 𝑥𝑡 ∈ PS
𝑢 ∩𝐶; since by definition of PS

𝑢
we cannot

find better solutions 𝑥 ∈ R𝑛 such that 𝑓𝑖 (𝑥) ≤ 𝑓𝑖 (𝑥𝑡 ) and 𝑓 (𝑥) ≠
𝑓 (𝑥𝑡 ), then we can also not find any better solution in𝐶 ⊂ R𝑛 . This
property and the proof sketched above is not restricted to a convex

constraint, nor to the double sphere problem. We formalize it in the

following lemma for an abstract multiobjective problem.

Lemma 2.4. Consider a multiobjective problem 𝑓 = (𝑓1, . . . , 𝑓𝑚)
with inequality and equality constraints that define a feasible set 𝐶 .
Let PS

𝑢 and PS denote the unconstrained and constrained Pareto sets.
Then, Pareto optimal points for the unconstrained problem that are
feasible, belong to the Pareto set of the constrained problem. In other
words,

PS
𝑢 ∩𝐶 ⊂ PS.

𝑥1

Proj𝐴 (𝑥1)

𝑥2

Proj𝐴 (𝑥2)
𝑧

𝐴

Figure 7: Projection of 𝑥1 and 𝑥2 onto the closed convex set
𝐴. The projected points 𝑃𝐴 (𝑥𝑖 ) achieve the minimal distance
between 𝑥𝑖 and the set. The vector 𝑥𝑖 − 𝑃𝐴 (𝑥𝑖 ) is orthogonal
to the tangent to the set and forms an angle which is larger
than or equal to 90 degrees with any other vector 𝑧 − 𝑃𝐴 (𝑥𝑖 ),
where 𝑧 belongs to 𝐴.

Now that we know that the vectors of the unconstrained Pareto

set that are feasible belong to PS, we can ask the questions:

• What happens to the Pareto optimal points that are infeasi-

ble?

• What are the other Pareto optimal points?

We will answer these two questions and prove that the Pareto

set PS corresponds to the projection of the unconstrained Pareto

set PS
𝑢
onto the feasible set. Prior to stating our main result, we

explain what we intend by projection. Consider a vector 𝑥 ∈ R𝑛

and a set 𝐴 ⊂ R𝑛 assumed to be a closed convex set. We define the

projection with respect to the Euclidean norm of 𝑥 onto 𝐴 as the

unique point 𝑦 that achieves the minimal distance to any point in

the set 𝐴
∥𝑥 − 𝑦∥ = min

𝑧∈𝐴
∥𝑥 − 𝑧∥.

The existence and unicity of 𝑦 is a consequence of the projection

theorem stated in Theorem 3.4 (see Section 3.1). Given 𝑥 , the pro-
jection vector 𝑦 of 𝑥 onto 𝐴 is denoted

𝑦 = Proj𝐴 (𝑥).
The projection operator is illustrated in Figure 7. Remark that if

𝑥 ∈ 𝐴, then Proj𝐴 (𝑥) = 𝑥 .
Theorem 2.5. Consider the𝑚-objective spherical problem (2), with

convex constraints (𝑔𝑖 are convex and continuous and ℎ 𝑗 are linear).
Let 𝐶 be its associated feasible set defined in (3). Assume that 𝐶 is
non-empty, then the Pareto set is equal to the projection of PS

𝑢 onto
the (closed convex) feasible set 𝐶 :

PS = {Proj𝐶 (𝑥), 𝑥 ∈ PS
𝑢 } = (

PS
𝑢 ∩𝐶 )∪{Proj𝐶 (𝑥), 𝑥 ∈ PS

𝑢∩𝐶𝑐 }
where 𝐶𝑐 denotes the complementary set of 𝐶 .

We illustrate the projections of the previous theoremwith respect

to the Euclidean norm onto a convex set in Figure 6 for the double-

sphere problem with one spherical convex constraint (points are

feasible w.r.t. this constraint if they are within or on the circle)

and one linear constraint. The unconstrained Pareto set PS
𝑢
is the

line segment between 𝑐1 and 𝑐2 depicted in gray. The feasible set 𝐶
corresponds to the white area plus its boundary. The constrained

Pareto set PS is composed of three parts respectively depicted with

thick lines in black, blue and red. The black part corresponds to the

530



On the Pareto Set and Front of Multiobjective Spherical Functions with Convex Constraints GECCO ’25, July 14–18, 2025, Malaga, Spain

𝑓1

𝑓2

Objective Space

𝑓 (𝑐1)

𝑓 (𝑐2)

𝑓 (𝑎)

𝑓 (𝐶)

𝑓 (𝐶) + R𝑚
+

𝑓 (𝑐2) + R𝑚
+

𝑓 (𝑎) + R𝑚
+

1Figure 8: An illustration of the feasible objective space 𝑓 (𝐶)
(hatched in blue), its extension towards 𝑓 (𝐶) +R2+ (light blue),
and the same extensions 𝑓 ({𝑎}) +R2+ and 𝑓 ({𝑐2}) +R2+ for two
single solutions 𝑎, 𝑐2 ∈ R𝑛 (in light gray).

points that belong to PS
𝑢
and are feasible. The blue part corresponds

to the projection of the unconstrained Pareto set being infeasible

due to the linear constraint to the feasible set. We illustrate in

particular the projection of 𝑐1 and another point using black arrows.

Lastly, the red part corresponds to the projection of the infeasible

unconstrained Pareto set to the feasible set where the infeasibility

comes from the spherical constraint.

3 PROOF OF THE MAIN RESULT
The proof of our main theorem (Theorem 2.5) is an application of

two classical results stemming from convex optimization. First, the

connection between the Pareto set and the optima of the linear

scalarization of the objectives. Second, the projection theorem onto

non-empty closed convex sets. In Section 3.1, we first review the

relevant definitions and theorems. We then provide some prelimi-

nary technical results in Section 3.2. Finally, we present the detailed

proof in Section 3.3.

3.1 Background
Given a multiobjective problem min𝑥∈𝐶 𝑓 (𝑥) for a non empty set

𝐶 we denote by 𝑓 (𝐶) + R𝑚+ [10, Page 299] the set

𝑓 (𝐶) + R𝑚+ := {𝑦 ∈ R𝑚, 𝑦𝑖 ≥ 𝑓𝑖 (𝑥) for some 𝑥 ∈ 𝐶 and

all 𝑖 ∈ {1, . . . ,𝑚}}. (5)

Figure 8 illustrates the sets 𝑓 (𝐶) and 𝑓 (𝐶) + R𝑚+ for the case of

𝑚 = 2 spherical objective functions and no constraints, as well as

for two exemplary solutions 𝑎, 𝑐2 ∈ R𝑛 , mapped to the objective

vectors 𝑓 ({𝑎}) and 𝑓 ({𝑐2}), the sets 𝑓 ({𝑎}) +R2+ and 𝑓 ({𝑐2}) +R2+
respectively.

If the functions 𝑓𝑖 are convex and the set𝐶 is convex, then the set

𝑓 (𝐶) + R𝑚+ is convex [3, Page 180]. We formalize this simple result

and provide a proof in the appendix for the sake of completeness.

Lemma 3.1. Assume that the objective functions 𝑓𝑖 , 𝑖 = 1, 2, . . . ,𝑚,
are convex and the set𝐶 is a convex subset of R𝑛 . Then the set 𝑓 (𝐶) +
R𝑚+ is a convex subset of R𝑚 .

We have introduced the notion of Pareto optimality and weak

Pareto optimality. While in general not all weakly Pareto optimal

points are Pareto optimal, in the case where the objectives 𝑓𝑖 are
strictly convex, weakly Pareto optimal points and Pareto optimal

points coincide as stated in the next lemma.

Lemma 3.2 ([1, Lemma 1.3]). If all objectives 𝑓𝑖 are continuous
and strictly convex, then a vector is Pareto optimal if and only if it is
weakly Pareto optimal.

Under the assumption that the set 𝑓 (𝐶) + R𝑚+ is convex, we

can connect the weakly Pareto optimal solutions of min𝑥∈𝐶 𝑓 (𝑥)
with the optima of the scalarized single-objective problems. More

precisely, the following result holds.

Theorem 3.3 ([10, Table 11.5, Page 302]). Consider a multiob-
jective problem min𝑥∈𝐶 𝑓 (𝑥) with 𝑓 = (𝑓1, . . . , 𝑓𝑚) and 𝐶 a non-
empty set. Assume 𝑓 (𝐶) + R𝑚+ is a convex set. A vector 𝑥 is a weakly
Pareto optimal solution of the multiobjective problem if and only
if there exist 𝑡1, . . . , 𝑡𝑚 ≥ 0 with at least one 𝑡𝑖 > 0 such that
𝑥 ∈ argmin𝑥∈𝐶

∑𝑚
𝑖=1

𝑡𝑖 𝑓𝑖 (𝑥).2

We now present another useful result, which corresponds to the

Hilbert projection theorem [8, Section 3.1], formulated here for the

finite dimensional search space R𝑛 that is relevant to our case and

illustrated in Figure 7.

Theorem 3.4. Consider a norm ∥ .∥ deriving from an inner product
⟨., .⟩ in R𝑛 and 𝐶 ⊂ R𝑛 a non-empty closed convex set. For every
𝑥 ∈ R𝑛 , there exists a unique 𝑦 ∈ 𝐶 such that

∥𝑥 − 𝑦∥ = inf

𝑧∈𝐶
∥𝑥 − 𝑧∥ .

The vector 𝑦 is called the projection of 𝑥 onto 𝐶 and denoted 𝑦 =
Proj𝐶 (𝑥). In addition, 𝑦 is equivalently characterized by

⟨𝑥 − 𝑦, 𝑧 − 𝑦⟩ ≤ 0 for all 𝑧 ∈ 𝐶. (6)

3.2 Preliminary results
We consider quadratic functions on R𝑛 defined as 𝑓 (𝑥) = 1

2
𝑥⊤𝐴𝑥 +

𝑏⊤𝑥 + 𝑐 with 𝐴 ⪰ 0, i.e. 𝐴 is symmetric positive, 𝑏 ∈ R𝑛 and

𝑐 ∈ R. It is a classical result that quadratic functions are convex if
𝐴 ⪰ 0 (in which case we talk about convex-quadratic functions) and

strictly convex if 𝐴 is additionally definite (i.e. 𝑥 = 0 if and only if

𝑥⊤𝐴𝑥 = 0). We denote𝐴 ≻ 0 when𝐴 is symmetric positive definite.

Given 𝐴 ≻ 0, it can be easily seen that the Hessian matrix of 𝑓 is
constant and equal to𝐴 = ∇2 𝑓 (𝑥) for all 𝑥 . We will use in the sequel

that a convex-quadratic function can be parametrized entirely by

its Hessian matrix and optimum. We formalize the result in the

next lemma. The proof is straightforward from standard calculus.

Lemma 3.5. Consider a convex-quadratic function 𝑓 (𝑥) = 1

2
𝑥⊤𝐴𝑥+

𝑏⊤𝑥 + 𝑐 with 𝐴 ≻ 0 a symmetric definite positive matrix, 𝑎 ∈ R𝑛 and
𝑏 ∈ R. Then 𝑓 can be written in factorized form as

𝑓 (𝑥) = 1

2

(𝑥 − 𝑥∗)⊤𝐴(𝑥 − 𝑥∗) + 𝑐 − 1

2

𝑏⊤𝐴−1𝑏

where 𝑥∗ is the minimizer of 𝑓 which is given as 𝑥∗ = −𝐴−1𝑏. It is
thus entirely determined by its Hessian matrix 𝐴 and optimum.
2
The same reference [10, Table 11.5, Page 302] connects Pareto optimal points to the

optima of scalarized functions in the following way: If 𝑥 is a Pareto optimal solution

of the multiobjective problem, then there exist 𝑡1, . . . , 𝑡𝑚 ≥ 0 with at least one 𝑡𝑖 > 0

such that 𝑥 ∈ argmin𝑥 ∈𝐶
∑𝑚

𝑖=1
𝑡𝑖 𝑓𝑖 (𝑥 ) . Conversely, let 𝑡1, . . . , 𝑡𝑚 > 0 be𝑚 strictly

positive scalars, and let 𝑥 ∈ argmin𝑥 ∈𝐶
∑𝑚

𝑖=1
𝑡𝑖 𝑓𝑖 (𝑥 ) , then 𝑥 is Pareto optimal for

the multiobjective problem.

531



GECCO ’25, July 14–18, 2025, Malaga, Spain Anne Auger, Dimo Brockhoff, Jordan N. Cork, and Tea Tušar

Conversely, every function 1

2
(𝑥 − 𝑥★)⊤𝐵(𝑥 − 𝑥★) with 𝐵 ⪰ 0 is

convex-quadratic with developed form 𝑓 (𝑥) = 1

2
𝑥⊤𝐵𝑥 − (𝐵𝑥★)⊤𝑥 +

1

2
𝑥★𝐵𝑥★.

We show next that a convex combination of convex-quadratic

functions is convex-quadratic and identify its Hessian and optimum.

Lemma 3.6. Consider𝑚 strictly convex quadratic functions 𝑓𝑖 (𝑥) =
1

2
(𝑥 − 𝑐𝑖 )⊤𝐻𝑖 (𝑥 − 𝑐𝑖 ) with 𝐻𝑖 ≻ 0. Let 𝑡1, . . . , 𝑡𝑚 ≥ 0 and

∑
𝑖 𝑡𝑖 = 1

and consider the convex-combination of the 𝑚 objectives F𝑡 (𝑥) =
𝑡1 𝑓1 (𝑥) + . . . + 𝑡𝑚 𝑓𝑚 (𝑥). Then 𝑥 ↦→ F𝑡 (𝑥) is also strictly convex-
quadratic function with Hessian matrix 𝐻𝑡 = 𝑡1𝐻1 + . . . + 𝑡𝑚𝐻𝑚 and
optimum 𝑐𝑡 = 𝐻−1

𝑡 (∑𝑖 𝑡𝑖𝐻𝑖𝑐𝑖 ), i.e.
F𝑡 (𝑥) =

𝑚∑︁
𝑖=1

𝑡𝑖 𝑓𝑖 (𝑥) = 1

2

(𝑥 − 𝑐𝑡 )⊤𝐻𝑡 (𝑥 − 𝑐𝑡 ).

Proof. Given 𝑡1, . . . , 𝑡𝑚 ≥ 0 and

∑
𝑖 𝑡𝑖 = 1, developing 𝑥 ↦→∑

𝑡𝑖 𝑓𝑖 (𝑥), we find that the function is composed of quadratic terms

in the coordinates of 𝑥 , linear terms and constant terms, thus it is

a quadratic function with quadratic term equal to
1

2
𝑥⊤𝐻𝑡𝑥 . This

identifies that the Hessian matrix of F𝑡 equals 𝐻𝑡 .
Since 𝐻𝑖 ≻ 0 and 𝑡𝑖 ≥ 0 with at least one 𝑡𝑖 strictly positive,

then

∑
𝑡𝑖𝐻𝑖 ≻ 0. Since 𝐻𝑡 ≻ 0, 𝑥 ↦→ ∑

𝑡𝑖 𝑓𝑖 (𝑥) is strictly con-

vex quadratic. To determine the optimum of the convex quadratic

function and thus its factorized form (see Lemma 3.5), we can com-

pute the gradient of F𝑡 (𝑥) =
∑
𝑡𝑖 𝑓𝑖 (𝑥). By linearity, ∇F𝑡 (𝑥) =∑

𝑖 𝑡𝑖∇𝑓𝑖 (𝑥) =
∑
𝑖 𝑡𝑖𝐻𝑖 (𝑥 − 𝑐𝑖 ). Hence the optimum 𝑐𝑡 of F𝑡 satis-

fies ∇F𝑡 (𝑐𝑡 ) = 0, i.e.

∑
𝑖 𝑡𝑖𝐻𝑖 (𝑐𝑡 − 𝑐𝑖 ) = 0, i.e. 𝐻𝑡𝑐𝑡 =

∑
𝑡𝑖𝐻𝑖𝑐𝑖 , i.e.

𝑐𝑡 = 𝐻−1

𝑡 (∑𝑖 𝑡𝑖𝐻𝑖𝑐𝑖 ). □

We formalize and prove in the next proposition that the Pareto

set of the unconstrained𝑚-sphere problem is the convex hull of

the centers of the spheres. This result is known, however, the proof

of our main result follows similar steps. We, therefore, provide a

detailed proof.

Proposition 3.7. Consider the𝑚 objective sphere problem (𝑓1 (𝑥) =
1

2
∥𝑥 −𝑐1∥2, . . . , 𝑓𝑚 (𝑥) = 1

2
∥𝑥 −𝑐𝑚 ∥2) where the centers 𝑐𝑖 are in R𝑛 .

The Pareto set of this unconstrained problem is composed of the optima
of the scalarized (single)-objective functions

∑
𝑡𝑖 𝑓𝑖 (𝑥) for 𝑡𝑖 ≥ 0 and∑

𝑖 𝑡𝑖 = 1. Each such function 𝑥 ↦→ ∑
𝑡𝑖 𝑓𝑖 (𝑥) is also a sphere function

with the optimum being the corresponding convex combination of the
sphere centers. Formally, the Pareto set is composed of the optima of{

𝑥 ↦→
∑︁

𝑡𝑖 𝑓𝑖 (𝑥) = 1

2

∥𝑥 − 𝑐𝑡 ∥2, 𝑡𝑖 ≥ 0 and
∑︁
𝑖

𝑡𝑖 = 1

}
where given (𝑡1, . . . , 𝑡𝑚) with∑ 𝑡𝑖 = 1 we denote 𝑐𝑡 :=

∑
𝑖 𝑡𝑖𝑐𝑖 . Hence,

the Pareto set is the convex hull of the sphere centers 𝑐1, . . . , 𝑐𝑚 , i.e.

PS
𝑢 =

{
𝑡1𝑐1 + . . . + 𝑡𝑚𝑐𝑚, 𝑡𝑖 ≥ 0,

∑︁
𝑡𝑖 = 1

}
.

Proof. Let 𝑥 ∈ PS
𝑢
be a Pareto optimal solution which is

also weakly Pareto optimal. Since 𝑓𝑖 are convex, and R𝑛 is con-

vex, by Lemma 3.1, 𝑓 (R𝑛) + R𝑚+ is convex and the assumption of

Theorem 3.3 is satisfied. We therefore know that 𝑥 is the min-

imizer of 𝑥 ∈ R𝑛 ↦→ 𝑡 ′
𝑖
𝑓𝑖 (𝑥) for 𝑡 ′

𝑖
≥ 0 with at least one 𝑡 ′

𝑖
strictly positive. Since

∑
𝑖 𝑡

′
𝑖

> 0 and the minimizer of a func-

tion is unchanged, if we scale the function by a positive factor,

𝑥 is also a minimizer of 𝑥 ∈ R𝑛 ↦→ ∑
𝑖 𝑡

′
𝑖
/(∑𝑗 𝑡

′
𝑗
) 𝑓𝑖 (𝑥). Denote

𝑡𝑖 = 𝑡 ′
𝑖
/(∑𝑗 𝑡

′
𝑗
) ∈ [0, 1], remark that

∑
𝑡𝑖 = 1 such that 𝑥 is the

minimizer of 𝑥 → ∑
𝑡𝑖 𝑓𝑖 (𝑥). According to Lemma 3.6, plugging

𝐻𝑖 = 𝐼𝑑 , then
∑
𝑡𝑖 𝑓𝑖 (𝑥) = 1

2
∥𝑥 − 𝑐𝑡 ∥2

where 𝑐𝑡 =
∑
𝑡𝑖𝑐𝑖 . We have

thus proven that PS
𝑢 ⊂ {𝑡1𝑐1 + . . . + 𝑡𝑚𝑐𝑚, 𝑡𝑖 ≥ 0,

∑
𝑡𝑖 = 1}.

Conversely consider the minimizer of the convex combination of

𝑓𝑖 , 𝑥 ↦→ ∑
𝑡𝑖 𝑓𝑖 (𝑥) for 𝑡𝑖 ≥ 0with

∑
𝑡𝑖 = 1. According to Theorem 3.3,

this minimizer is weakly Pareto optimal. By strict convexity of the

objectives 𝑓𝑖 we know that a weakly Pareto optimal point is Pareto

optimal and thus, {𝑡1𝑐1 + . . . + 𝑡𝑚𝑐𝑚, 𝑡𝑖 ≥ 0,
∑
𝑡𝑖 = 1} ⊂ PS

𝑢
.

□

3.3 Proof of Theorem 2.5
According to Lemma 2.1, the feasible set 𝐶 is closed and convex. In

addition, we assume it is non-empty and thus satisfies the assump-

tion needed for the projection Theorem 3.4.

Each objective function 𝑓𝑖 is convex (even strictly convex) and

thus, according to Lemma 3.1, since𝐶 is convex, 𝑓 (𝐶)+R2+ is convex.
Thus, according to Theorem 3.3, 𝑥 is weakly Pareto optimal for (2) if

and only if there exist 𝑡 ′
1
≥ 0, . . . , 𝑡 ′𝑚 ≥ 0 and at least one non-zero

𝑡 ′
𝑖
such that 𝑥 ∈ argmin𝑥∈𝐶𝑡 ′1 𝑓1 (𝑥) + . . . + 𝑡 ′𝑚 𝑓𝑚 (𝑥).
Dividing by

∑
𝑖 𝑡

′
𝑖
and calling 𝑡𝑖 = 𝑡 ′𝑖 /

∑
𝑖 𝑡

′
𝑖
, we have that 𝑡𝑖 ≥ 0

and

∑
𝑖 𝑡𝑖 = 1 as well as

𝑥 ∈ argmin𝑥∈𝐶
∑︁
𝑖

𝑡𝑖 𝑓𝑖 (𝑥) = argmin𝑥∈𝐶
1

2

∥𝑥 − 𝑐𝑡 ∥2

= argmin𝑥∈𝐶 ∥𝑥 − 𝑐𝑡 ∥2 = argmin𝑥∈𝐶 ∥𝑐𝑡 − 𝑥 ∥
(7)

with 𝑐𝑡 =
∑
𝑡𝑖𝑐𝑖 where we have used Lemma 3.6 to identify that∑

𝑡𝑖 𝑓𝑖 (𝑥) = 1

2
∥𝑥 − 𝑐𝑡 ∥2

.

Scrutinizing (7), we see that 𝑥 corresponds to the unique pro-

jection of 𝑐𝑡 onto the closed non-empty convex set 𝐶 . In addition,

we have proven in Proposition 3.7 that 𝑐𝑡 =
∑
𝑡𝑖𝑐𝑖 with 𝑡𝑖 ≥ 0 are

Pareto optimal for the unconstrained problem.

Overall, we have shown that 𝑥 is weakly Pareto optimal, if and

only if it is the unique projection of a vector 𝑐𝑡 =
∑
𝑡𝑖𝑐𝑖 with

𝑡𝑖 ≥ 0 and

∑
𝑡𝑖 = 1 of the unconstrained Pareto set. Hence, since 𝑓𝑖

are strictly convex and weakly Pareto optimal points and Pareto

optimal points coincide, we have PS = {Proj𝐶 (𝑥), 𝑥 =
∑
𝑡𝑖𝑐𝑖 , 𝑡𝑖 ≥

0 and

∑
𝑡𝑖 = 1}.

Overall, we have shown that PS = {Proj𝐶 (𝑥), 𝑥 ∈ PS
𝑢 }. Using

Lemma 2.4, we can decompose PS as

PS =
(
PS
𝑢 ∩𝐶 ) ∪ {Proj𝐶 (𝑥), 𝑥 ∈ PS

𝑢 ∩𝐶𝑐 }.

4 A BENCHMARKING PERSPECTIVE
When assessing the performance of multiobjective algorithms, we

typically report quality indicator values over time. Many of these

indicators inherently depend on the Pareto set and/or front of

the benchmarked problem or their approximations. Even when

this is not the case, knowing the Pareto set and front allows us to

display relative performance to the (approximated) optimal quality

indicator value, which is valuable when assessing the absolute

performance of an algorithm. It provides insights into questions

such as: “How close to the actual optimum can we optimize?” and

“How fast does the algorithm approximate the optimum with a

given precision?”
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Figure 9: NSGA-II performance on problems with two spherical objectives, two linear constraints and 2, 3, 5, 10, 20 or 40
variables with respect to the hypervolume difference to the optimal hypervolume over time, measured as the number of
function evaluations divided by dimension 𝑛 (left). The other three plots show the projections of all non-dominated solutions
found by NSGA-II in the entire run onto the 𝑥1-𝑥2 plane (green dots) for three chosen number of variables: 2, 5, and 20.

4.1 Computing the Pareto Set and Front
In the case of the 𝑚-objective sphere function with linear con-

straints, since the Pareto set corresponds to the set of solutions of

the scalarized problem 𝑥 → ∑
𝑡𝑖 𝑓𝑖 (𝑥) for 𝑡𝑖 ≥ 0 with

∑
𝑡𝑖 = 1 with

linear constraints, we can compute the Pareto sets numerically by

fixing 𝑡𝑖 ≥ 0 with

∑
𝑡𝑖 = 1 and using the KKT conditions on the

single-objective constraint problem. Since Slaters’s qualification

condition holds, the KKT conditions are both necessary and suffi-

cient for optimality. The stationary condition reduces to a set of

linear equations.

4.2 Example Performance of NSGA-II
To demonstrate how the knowledge of the Pareto set can be ex-

ploited to examine the performance of amultiobjective evolutionary

algorithm on the investigated problems, we choose a family of prob-

lems with two spherical objectives and two linear constraints, and

the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [5].

The problems in this experiment are parameterized as follows:

• The centers of the two spherical objectives are located at

points 𝑐1 = (−4, . . . ,−4) and 𝑐2 = (4, . . . , 4).
• Each of the two constraint planes is defined by a point on the

plane 𝑃 and the normal vector𝑛with 𝑃1 = (0, . . . , 0) and𝑛1 =
(5,−1, 0, . . . , 0) for the first constraint, and 𝑃2 = (−2, . . . ,−2)
and 𝑛2 = (−1,−4, 0, . . . , 0) for the second constraint. For

visualization purposes, the constraint planes are chosen so

that they are always perpendicular to the 𝑥1-𝑥2 plane (their

normal vector coordinates in dimensions larger than two are

always zero).

We instantiate this problem in six different dimensions, 2, 3, 5,

10, 20, and 40. We use the implementation of NSGA-II from the

pymoo Python library [2] with the population size of 100 and the

limit of 10
4𝑛 function evaluations. Remaining parameters are kept

at their default values. The results of single runs of NSGA-II are

shown in Figure 9. The left-most plot displays the hypervolume

indicator
3
difference between a fixed-size approximation of the true

3
The hypervolume indicator uses the nadir point as the reference point and is normal-

ized so that the ideal point corresponds to (0, 0) and the nadir point to (1, 1) .

Pareto front
4
and the best-so-far solutions found by NSGA-II over

time (in terms of number of function evaluations, normalized by

problem dimension). The other three plots show the projections

of all non-dominated solutions found by NSGA-II (within a single

run) onto the first two variables when the problem dimension 𝑛
equals 2, 5 and 20, respectively.

We observe that NSGA-II finds solutions along the constrained

Pareto set, which become better and better (in hypervolume) over

time. We also observe that the NSGA-II performance is, as expected,

degrading with increasing dimension: both the hypervolume dif-

ferences as well as the visually seen distances to the Pareto set

are larger for higher dimensions. However, the degradation is less

apparent in the objective space (not pictured). The knowledge of

the constrained Pareto set further allows to distinguish different

behaviors of NSGA-II along it: while on the outer parts of the Pareto

set, the solutions found by NSGA-II are restricted to one side of the

Pareto set due to the constraints, the absence of constraint bound-

aries near the inner part of the Pareto set results in solutions found

on both sides.

5 CONCLUSION
In this paper, we analyzed the𝑚-sphere multiobjective problem

with convex constraints. We proved the simple result that the (con-

strained) Pareto set corresponds to the orthogonal projection of the

(well-identified) unconstrained Pareto set onto the feasible set. We

visualized this Pareto set in the search space and objective space in

different scenarios: with two and three objectives, with different

numbers of linear constraints plus a spherical one. We illustrated

how NSGA-II approximates this Pareto set when varying the prob-

lem dimension for the case of two constraints. This work is an

illustration of how theory, when addressing the right questions,

can help understand fundamental properties and accompany the

construction of test problems. Our theoretical insight has direct

practical implications for benchmarking: the analytical/numerical

knowledge of the Pareto set and Pareto front of the investigated

4
To obtain the Pareto front approximation, 10

6
equidistant points from the uncon-

strained Pareto set were first projected onto the feasible space and then evaluated.
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problems enables the analysis of optimization algorithms’ conver-

gence towards the true optimum. It also allows the use of quality

indicators that would not be applicable if the Pareto set and Pareto

front were unknown. Furthermore, it highlights the important role

of visualization in gaining insights and supporting algorithm de-

sign.
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A ADDITIONAL PROOFS
Proof of Lemma 3.1

Proof. Let 𝑦 and 𝑦 be element of 𝑓 (𝐶) + R𝑚+ . Let 𝜆 ∈ [0, 1], we
will prove that 𝜆𝑦 + (1 − 𝜆)𝑦 belongs to 𝑓 (𝐶) +R𝑚+ . This will prove

the convexity of 𝑓 (𝐶) +R𝑚+ . Since 𝑦 ∈ 𝑓 (𝐶) +R𝑚+ , there exist 𝑠 ∈ 𝐶
and 𝑧 ∈ R𝑚+ such that 𝑦 = 𝑓 (𝑠) + 𝑧. Similarly, there exist 𝑠 ∈ 𝑆 and
𝑧 ∈ R𝑚+ such that 𝑦 = 𝑓 (𝑠) + 𝑧. Then 𝜆𝑦 + (1 − 𝜆)𝑦 = 𝜆𝑓 (𝑠) + (1 −
𝜆) 𝑓 (𝑠)+𝜆𝑧+(1−𝜆)𝑧. The coordinate 𝑖 of the vector 𝜆𝑓 (𝑠)+(1−𝜆) 𝑓 (𝑠)
equals 𝜆𝑓𝑖 (𝑠) + (1 − 𝜆) 𝑓𝑖 (𝑠). By convexity of 𝑓𝑖 , it is larger or equal
to 𝑓𝑖 (𝜆𝑠 + (1− 𝜆)𝑠). Hence each coordinate of 𝜆𝑓 (𝑠) + (1− 𝜆) 𝑓 (𝑠) is
larger or equal to the coordinates of 𝑓 (𝜆𝑠 + (1 − 𝜆)𝑠). Hence, there
exists 𝑧 ∈ R𝑚+ such that 𝜆𝑓 (𝑠)+ (1−𝜆) 𝑓 (𝑠) = 𝑓 (𝜆𝑠+(1−𝜆)𝑠)+𝑧 (the
coordinate 𝑖 of 𝑧 equal 𝜆𝑓𝑖 (𝑠) + (1 − 𝜆) 𝑓𝑖 (𝑠) − 𝑓𝑖 (𝜆𝑠 + (1 − 𝜆)𝑠) ≥ 0).

Since 𝑆 is convex, 𝜆𝑠 + (1 − 𝜆)𝑠 belongs to 𝑆 and thus

𝜆𝑓 (𝑠) + (1 − 𝜆) 𝑓 (𝑠) = 𝑓 (𝑠) + 𝑧.
We have thus shown that 𝜆𝑦 + (1 − 𝜆)𝑦 = 𝑓 (𝑠) + 𝑧 + 𝜆𝑧 + (1 − 𝜆)𝑧.
Since 𝑧, 𝑧, 𝑧 belong to R𝑚+ , then 𝑧 + 𝜆𝑧 + (1 − 𝜆)𝑧 belong to R𝑚+ (we

add non-negative coordinates, so we preserve the non-negativity).

Hence 𝜆𝑦 + (1 − 𝜆)𝑦 ∈ 𝑓 (𝐶) + R𝑚+ . □

B ADDITIONAL MATERIAL
We include some interesting complementary definitions and results,

although not needed for the proof of the main result. We recall the

definition of Pareto critical points in the case where the objectives

𝑓𝑖 are differentiable
5
.

Definition B.1. A vector 𝑥 ∈ R𝑛 is Pareto critical if and only if

max𝑖=1,...,𝑚 ∇𝑓𝑖 (𝑥)⊤𝑣 ≥ 0 for all 𝑣 ∈ R𝑛 .

It follows directly from this definition, that a solution 𝑥 ∈ R𝑛

is non-critical if there exists a direction 𝑣 ∈ R𝑛 such that for all

𝑖 = 1, . . . ,𝑚 we have ∇𝑓𝑖 (𝑥)𝑣 < 0 (in other words that we can follow

the descent direction 𝑣 towards better values in all objectives).

5
By differentiable we assume differentiable in the sense of Frechet, while we only

need directional derivatives (which exist for convex functions) to define Pareto critical

points (see [17]).

𝐾

𝑢1

𝑢1 + 𝑁𝐾 (𝑢1)
𝐾

𝑢2

𝑢2 + 𝑁𝐾 (𝑢2)

Figure 10: Normal cones at 𝑢1 and 𝑢2 to a convex set 𝐾 .

When the objectives are strictly convex, then Pareto critical

points are also Pareto optimal.

Lemma B.2 ([17]). Consider an unconstrained multiobjective prob-
lem where the objectives 𝑓𝑖 are differentiable. If every objective 𝑓𝑖 is
strictly convex, then every Pareto critical point is also Pareto optimal.

The definition of Pareto critical points can be generalized to

constrained multiobjective problems using the notion of a normal

cone to a convex set that we recall below.

Definition B.3 (Normal cone [14, Page 15]). Consider 𝐾 a non-

empty closed convex set. The normal cone to 𝐾 at 𝑢 ∈ 𝐾 is defined

as 𝑁𝐾 (𝑢) = {𝑣 ∈ R𝑛, 𝑣⊤ (𝑧 − 𝑢) ≤ 0 for all 𝑧 ∈ 𝐾}.
The notion of normal cone is illustrated in Figure 10. Critical

points of a constrained multiobjective problem are defined for dif-

ferentiable convex objectives as follows.

Definition B.4 ([1, Definition 1.2]). Given a closed convex feasi-

ble set 𝐶 , we say that 𝑥 ∈ 𝐶 is Pareto critical for the constrained

multiobjective problem min𝑥∈𝐶 𝑓 (𝑥) where 𝑓 is convex and differ-

entiable, if there exist 𝑡1, . . . , 𝑡𝑚 ≥ 0 with

∑
𝑡𝑖 = 1 such that

−
∑︁

𝑡𝑖∇𝑓𝑖 (𝑥) ∈ 𝑁𝐶 (𝑥) .
The previous definition can be extended to non-differentiable

functions, via the notion of subdifferential (see [1]).

Similarly to Lemma B.2, when the objectives are strictly convex,

Pareto optimal points and Pareto critical points coincide.

Lemma B.5 ([1, Lemma 1.3]). If all objectives 𝑓𝑖 are strictly convex
and differentiable and the feasible set 𝐶 is a closed convex non-empty
set, then there is equivalence between Pareto optimal points, Pareto
critical points and weakly Pareto optimal points.

Lemma B.6. Consider a point of the unconstrained Pareto set 𝑥 =∑
𝑡𝑖𝑐𝑖 with 𝑡𝑖 ≥ 0,

∑
𝑡𝑖 = 1. Consider 𝑦 = Proj𝐶 (𝑥) the unique

projection of 𝑥 onto the feasible set 𝐶 . Then −∑
𝑡𝑖∇𝑓𝑖 (𝑦) ∈ 𝑁𝐶 (𝑦) .

In other words, 𝑦 is Pareto critical in the sense of Definition B.4 for
the constrained problem.

Proof. Let 𝑥 =
∑
𝑡𝑖𝑐𝑖 with 𝑡𝑖 ≥ 0,

∑
𝑡𝑖 = 1 Let 𝑦 = Proj𝐶 (𝑥).

By definition of the normal cone in 𝑦, −∑
𝑡𝑖∇𝑓𝑖 (𝑦) ∈ 𝑁𝐶 (𝑦) if

⟨−∑
𝑡𝑖∇𝑓𝑖 (𝑦), 𝑧 − 𝑦⟩ ≤ for all 𝑧 ∈ 𝐶 . This is thus the property that

we need to prove. By the characterization of the projection given

in Theorem 3.4, for all 𝑧 ∈ 𝐶
⟨𝑥 − 𝑦, 𝑧 − 𝑦⟩ ≤ 0. (8)

Yet, since ∇𝑓𝑖 (𝑦) = 𝑦 − 𝑐𝑖 , then −∑
𝑡𝑖∇𝑓𝑖 (𝑦) = −∑

𝑡𝑖 (𝑦 − 𝑐𝑖 ) =
−𝑦 + 𝑥 since

∑
𝑡𝑖 = 1 and

∑
𝑡𝑖𝑐𝑖 = 𝑥 . Therefore, (8) is equivalent to

⟨−∑
𝑡𝑖∇𝑓𝑖 (𝑦), 𝑧 − 𝑦⟩ ≤ 0, and thus −∑

𝑡𝑖∇𝑓𝑖 (𝑦) ∈ 𝑁𝐶 (𝑦). □
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