
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 3, JUNE 2009 591

On the Effects of Adding Objectives
to Plateau Functions

Dimo Brockhoff, Tobias Friedrich, Nils Hebbinghaus,
Christian Klein, Frank Neumann, and Eckart Zitzler

Abstract— In this paper, we examine how adding objectives
to a given optimization problem affects the computational effort
required to generate the set of Pareto-optimal solutions. Exper-
imental studies show that additional objectives may change the
running time behavior of an algorithm drastically. Often it is
assumed that more objectives make a problem harder as the
number of different tradeoffs may increase with the problem
dimension. We show that additional objectives, however, may be
both beneficial and obstructive depending on the chosen objective.
Our results are obtained by rigorous running time analyses
that show the different effects of adding objectives to a well-
known plateau function. Additional experiments show that the
theoretically shown behavior can be observed for problems with
more than one objective.

Index Terms— Multiobjective optimization, running time
analysis, theory.

I. MOTIVATION

IN RECENT YEARS, the number of publications on evolu-
tionary multiobjective optimization has been rapidly grow-

ing; however, most of the studies investigate problems where
the number of considered objectives is low, i.e., between two
and four, while studies with many objectives are rare [5]. The
reason is that a large number of objectives leads to further
difficulties with respect to decision making, visualization, and
computation. Nevertheless, from a practical point of view it is
desirable with most applications to include as many objectives
as possible without the need to specify preferences among the
different criteria. An open question in this context is how the
inclusion of additional objectives affects the search efficiency
of an evolutionary algorithm to generate the set of Pareto-
optimal solutions.

There is some evidence in the literature that additional
objectives can make a problem harder. Winkler [31] proved

Manuscript received February 23, 2007; revised June 30, 2008 and Sep-
tember 17, 2008; accepted September 29, 2008. Current version published
June 10, 2009. D. Brockhoff has been supported by the Swiss National
Science Foundation under Grant 112079. T. Friedrich has been supported
by a postdoctoral fellowship from the German Academic Exchange Service
(DAAD).

D. Brockhoff and E. Zitzler are with the Computer Engineering and
Networks Laboratory, Elgenössiche Technische Hochschule Zurich, 8092
Zurich, Switzerland (e-mail: brockho@tik.ee.ethz.ch; zitzler@tik.ee.ethz.ch).

T. Friedrich is with the Algorithm Group at the International
Computer Science Institute, Berkeley, CA 94704, USA (e-mail:
Tobias@ICSI.Berkeley.edu).

N. Hebbinghaus, C. Klein, and F. Neumann are with the Depart-
ment 1: Algorithms and Complexity at Max-Planck-Institut für Informatik,
66123 Saarbrücken, Germany (e-mail: nils.hebbinghaus@mpi-inf.mpg.de;
christian.klein@mpi-inf.mpg.de; frank.neumann@mpi-inf.mpg.de).

Digital Object Identifier 10.1109/TEVC.2008.2009064

that the number of incomparable solutions increases if further
randomly generated objectives are added. Therefore, on the
one hand the Pareto-optimal front may become larger and,
on the other hand, the power of the dominance relation to
guide the search may diminish—these are the main arguments
that various researchers, e.g., [5], [7], [10], [11], [14], [27],
list in favor of the assumption that the search becomes
harder more objectives are involved. That, in fact, state-of-
the-art evolutionary algorithms like NSGA-II and SPEA2 have
problems to find a good approximation of the Pareto-optimal
front for selected test problems was empirically shown in
[30] and [27]. Furthermore, the investigations of Purshouse
and Fleming [27] show that the behavior of a multiobjective
evolutionary algorithm on a problem with few objectives
cannot be generalized to a larger number of objectives.

In a contrast, a few publications point out that reformu-
lating a problem in terms of more objective functions can
reduce the computational cost of the optimization process.
For example, Jensen [17] successfully used additional “helper-
objectives” to guide the search of evolutionary algorithms in
high-dimensional spaces. A similar approach was proposed by
Knowles et al. [18], where single-objective problems are “mul-
tiobjectivized,” i.e., decomposed into multiobjective problems
which are easier to solve than the original problems. Also the
idea of turning constraints of single-objective problems into
additional objectives has been shown to reduce optimization
cost until good solutions are found [21], although Runarsson
and Yao [28] pointed out that this is not effective on all kinds
of problems due to a wrong search bias. Besides these empir-
ically oriented studies, there are theoretical results supporting
the hypothesis that multiobjectivization can help. Scharnow
et al. [29] showed that the single source shortest path problem
is easier to solve for simple evolutionary algorithms (EAs)
when formulated as a bi-criterion problem; Neumann and
Wegener [25] proved for the minimum spanning tree problem
that a formulation with two objectives leads to a lower running
time complexity of simple EAs than the original single-
objective version.

This discussion indicates that a general statement on the
effect of increasing the number of objectives is not possible.
For some problems, with a higher number of objectives it is
more difficult to generate the Pareto-optimal front; for other
problems, it is easier. However, given the previous work, the
question arises whether one and the same problem can be
made both easier and harder depending on the added objective.
This paper answers this question both experimentally and

1051-8215/$25.00 © 2009 IEEE

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 29, 2009 at 10:21 from IEEE Xplore. Restrictions apply.

592 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 3, JUNE 2009

theoretically. Based on a simple multiobjective optimizer,
namely SEMO, which is known from various theoretical
analyses, we show:

1) by means of running time analyses that one and the same
problem can become both harder and easier to solve if
different objectives are added—in contrast to [29] and
[25] where the original objective is replaced by two other
objectives, we here consider the case that the original
objective remains in the objective set;

2) for two equally difficult single-objective functions that
the combination of the two yields a bi-criterion problem
that is easier to solve than either of the two single-
objective problems;

3) and experimentally that problems with more objectives
exist that can also be made both harder and easier, only
depending on the type of the added objective.

The main observation behind both the running time analyses
and the experimental studies is that problems may contain so-
called plateaus. A plateau is a part of the search space where
the problem does not indicate any search direction. As we will
show in the reminder of this paper, an additional objective
can remove or introduce those plateaus. Since an EA, be it a
single- or a multiobjective one, performs a random walk on
these plateaus as was shown for some of the well-known com-
binatorial optimization problems [13], [26], [32], the removal
or introduction of plateaus by adding objectives can change
the running time behavior of EAs drastically. Depending on
whether the additional objective introduces the right or a
deceptive search direction on a former plateau, or a good or
deceptive direction is eliminated by introducing a plateau, the
problem becomes harder or easier to solve for an EA.

This paper extends its conference version [2] in several
ways. On one hand, the analyses have been improved and
additional lower bounds on the running time behavior of
the considered multiobjective evolutionary algorithms are pre-
sented. The new lower bounds make the analyses tight, as all
of them match with the proven asymptotic upper bounds. On
the other hand, the effect of adding objectives is investigated
for problems with more than two objectives by carrying out
experimental studies.

The paper is organized as follows. First, we review basic
concepts such as relation graphs and objective conflicts and
discuss how additional objectives can affect the dominance
structure (Section II). In Section III, we detail the algorithms
considered in this paper and define the setting for the running
time analyses to follow. Section IV provides the proofs show-
ing that a simple plateau function can become either harder or
easier with an additional objective; Section V extends these
results and demonstrates that even the combination of two
equally difficult single-objective functions can yield an easier
bi-criterion problem. That an additional objective can even
make problems with more than one objective either harder or
easier is shown experimentally in Section VI. Conclusions are
presented in Section VII.

II. ADDING OBJECTIVES: FOUNDATIONS AND EFFECTS

Without loss of generality, we consider maximization prob-
lems with k objective functions fi : X → R, 1 ≤ i ≤ k, where

f1 f2 f3

f1 f2 f3

a 1
b 2
c 3

2
3
1

3
2
1

objectives

values
a

b

c

3

2

1

(a) (b)

Fig. 1. (a) Objective values and (b) corresponding parallel coordinates plot
for three solutions a, b, c ∈ X .

the vector function f := (f1, . . . , fk) maps each solution x ∈
X to an objective vector f (x) ∈ R

k . Furthermore, we assume
that the underlying dominance structure is given by the weak
Pareto-dominance relation which is defined as follows: �F ′ :=
{(x, y) ∈ X2 | ∀ fi ∈ F ′: fi (x) ≥ fi (y)}, where F ′ is a
set of objectives with F ′ ⊆ F :={ f1, . . . , fk}. We say x
weakly dominates y w. r. t. the objective set F ′ (x �F ′ y)
if (x, y) ∈�F ′ and distinguish between the following three
cases:

1) the solution pair x, y is called comparable if x weakly
dominates y and/or y weakly dominates x ;

2) two solutions x, y are incomparable if neither weakly
dominates the other one;

3) two solutions having the same objective vector are called
indifferent.

A solution x∗ ∈ X is called Pareto-optimal if every x ∈ X is
either indifferent to x∗ or does not weakly dominate x∗ w. r. t.
the set of all objectives. The set of all Pareto-optimal solutions
is called Pareto (optimal) set, its image in the objective space
is called Pareto front.

Given these basic terms, we will now illustrate on the basis
of a simple example what happens if objectives are added.
To this end, we recapitulate some concepts introduced in [3],
[4]. Assume the search space X consists of three solutions a,
b, and c and F consists of three objective functions f1, f2,
and f3. In Fig. 1, the objective functions are shown and the
solutions are depicted in a parallel coordinates plot. To see
what happens when merging, e.g., the objectives f1 and f2
into a bi-criterion problem, the visualization of the dominance
relations � f1 , � f2 , and � f1∪ f2 as relation graphs is useful. In
such a relation graph, each solution corresponds to a vertex
and a directed edge from vertex v to vertex w is drawn iff
v �F w. Fig. 2 shows the relation graphs for � f1 , � f2 ,
� f3 , and their corresponding combinations. With a single
objective only, the three solutions are pairwise comparable,
see Fig. 2(a)–(c). When merging f1 and f2 to a bi-criterion
problem, comparabilities disappear, Fig. 2(d). For example, the
edge between a and c is not present in the resulting relation
graph of �{ f1, f2}. Because f1(c) > f1(a), solution c weakly
dominates a with respect to f1 but c does not weakly dominate
a. With respect to f2, solution a weakly dominates c because
f2(a) > f2(c). When taking both f1 and f2 into account,
neither does a weakly dominate c nor does c weakly dominate
a by definition of �; the solution pair (a, c) is incomparable,
i.e., no edge between a and c is drawn in �{ f1, f2}. The same
holds for the solution pair (b, c).

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 29, 2009 at 10:21 from IEEE Xplore. Restrictions apply.

BROCKHOFF et al.: ON THE EFFECTS OF ADDING OBJECTIVES TO PLATEAU FUNCTIONS 593

a b

c

(a) relation graph of

a b

c

(b) relation graph of

a b

c

(c) relation graph of

a b

c

(d) relation graph of

a b

c

(e) relation graph of

a b

c

(f) relation graph of

=

{f1} {f2}

{f3}

{f2, f3} {f1, f3} {f1, f2, f3}

{f1, f2}

Fig. 2. Relation graphs for the three solutions a, b, and c and different
objective subsets.

What happens now if f3 is added to the bi-criterion problem,
described by f1 and f2? The comparable solutions a and
b become also incomparable because f3(a) > f3(b), but b
weakly dominates a with respect to { f1, f2}, i.e., f1(b) >
f1(a) and f2(b) > f2(a). The edge between a and b is also
removed in the relation graph of �{ f1, f2, f3}, Fig. 2(f).

We observe that additional objectives result in the disap-
pearing of edges in the relation graphs—new edges cannot
appear if objectives are added. On the one hand, if a solution
pair is comparable with respect to all objectives, i.e., an edge
is drawn, the two solutions are comparable with respect to any
subset of objectives and the edge is already included in the
relation graphs for all objective subsets. On the other hand,
if a solution x is better than a solution y with respect to the
objectives in F1, i.e., an edge in �F1 is only drawn from x to
y but not the other way round, and y is better than solution
x with respect to the objective set F2, i.e., (y, x)∈�F2 , but
(y, x) �∈ �F1 , the solution pair becomes incomparable with
respect to F1 ∪ F2; the edges between x and y disappear
in �F1∪F2 . Considering our example, the edges of the new
relation graphs can always be derived from the relation graphs
of the smaller objective sets: an edge is drawn iff the edge is
present in the relation graphs of both objective subsets; the
new edge set is the intersection of the previous edge sets.
This observation can be summarized as follows, see [3] for
details.

Let F ′ ⊆ F = { f1, . . . , fk} be a set of objective
functions. Then

⋂
i∈F ′ �i=�F ′ .

Based on this result, one can define two sets of objectives as
conflicting according to [4] if the relation graphs are different.

Let F1,F2 ⊆ F be two sets of objectives. F1 is
conflicting with F2 iff �F1 �=�F2 .

Note that the addition of an objective to a problem can,
therefore, affect the running time of a dominance relation-
based EA, e.g., simple evolutionary multiobjective optimized
(SEMO), only if the additional objective is conflicting with
the set of objectives, defining the original problem. As the
example in Figs. 1 and 2 shows, the addition of f2 to the
problem defined by f1 and f3 does not change the underlying
dominance relation and, therefore, does not change the running
time of evolutionary algorithms which consider the dominance
relation solely. Now, the question arises, how the addition of
a conflicting objective affects the complexity of a problem,
or more precisely, how an additional objective changes the
running time of an evolutionary algorithm.

Addressing the above-mentioned question, we sketch the
fundamental idea of this paper. When adding an objective fi

to an objective set F ′, there can be two situations:
1) comparable solutions can become incomparable;
2) an indifferent relation between solutions can become a

comparable one.
Of course, both cases can occur simultaneously, if an objective
is added.1 Surprisingly, in both cases, a problem can become
easier or harder to solve as is shown analytically in the
following sections.

Generally speaking, case 1) turns a region with given
search space direction into a plateau of incomparable solu-
tions, whereas case 2) turns a plateau of indifferent solutions
into a region where the weak Pareto dominance indicates a
direction. The different behavior of additional objectives in
both cases depends on the direction in which the weak Pareto
dominance points. In case 1), where comparable solutions
become incomparable, the comparability between solutions
can either lead to the Pareto front or be deceptive. The
addition of an objective will cause a new plateau of incom-
parable solutions, but in the latter case the incomparabil-
ity will help to solve the problem, whereas in the former
case the incomparability will make the problem harder. In
case 2), the problem can either become harder or easier
when changing the dominance structure from a plateau of
indifferent solutions into a region of comparable solutions.
Depending on whether the newly introduced comparability
will lead to the Pareto front or behave deceptively, the com-
putational effort to identify the Pareto optima may decrease
or increase.

III. ALGORITHMS

This section defines the setting for the running time analyses
to follow. As to the search space, we consider pseudo boolean
functions f : {0, 1}n → R

k , i.e., X = {0, 1}n . Concerning
the algorithms, we examine both a single-objective EA and
a multiobjective EA.

For single-objective optimization problems (where k = 1),
our analyses are based on the (1 + 1) EA (Algorithm 1)
which has been considered in theoretical investigations on
pseudo boolean functions [9] as well as some of the best
known combinatorial optimization problems [13], [26], [32].

1The other way around, an omission of an objective can make incomparable
solutions comparable and comparable solutions indifferent.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 29, 2009 at 10:21 from IEEE Xplore. Restrictions apply.

594 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 3, JUNE 2009

Algorithm 1 (1+1) EA
Choose x ∈ {0, 1}n uniformly at random
repeat

Create x ′ by flipping each bit of x with probability 1/n
if f (x ′) ≥ f (x) then set x := x ′

until stop

Algorithm 2 GLOBAL SEMO
Choose x ∈ {0, 1}n uniformly at random
Determine f (x)
P ← {x}
repeat

Choose x ∈ P uniformly at random
Create x ′ by flipping each bit of x with probability 1/n
Determine f (x ′)
if x ′ is not dominated by any other search point in P then
include x ′ into P and delete all solutions dominated by x ′
or with objective vector f (x ′) from P

until stop

The algorithm works with a population of size 1 together with
elitism selection and creates in each iteration one offspring by
flipping each bit with probability 1/n.

Analyzing single-objective randomized search heuristics
with respect to their running time behavior, we are inter-
ested in the number of constructed solutions until an optimal
one has been created for the first time. This is called the
running time or optimization time of the considered algo-
rithm. Often, the expectation of this value is considered and
called the expected optimization time or expected running
time.

We compare the (1+ 1) EA with its multiobjective coun-
terpart called Global SEMO (Algorithm 2) [12], [20], which
has been investigated in the context of different multiobjective
problems, e.g., spanning tree problems [23], [25]. Global
SEMO starts with an initial population P that consists of
one single randomly chosen individual. In each generation,
an individual x of P is chosen randomly to produce one child
x ′ by mutation. In the mutation step, each bit of x is flipped
with probability 1/n to produce the offspring x ′. After that,
x ′ is added to the population if it is not dominated by any
individual in P . If x ′ is added to P , all individuals of P that
are dominated by x ′ or have the same objective vector as x ′
are removed from P . In detail, Global SEMO is defined in the
Algorithm 2.

Analyzing multiobjective evolutionary algorithms with
respect to their running time behavior, we consider the number
of constructed solutions until for each Pareto-optimal objective
vector a solution has been included into the population and
call this the optimization time of the algorithm—the expected
optimization time refers to the expectation value of the opti-
mization time.

Let |x |1 denote the number of 1s and |x |0 denote the number
of 0s in a given bitstring x . We are also interested in variants
of the introduced algorithms using the following asymmetric
mutation operator proposed in [15].

Algorithm 3 ASYMMETRIC MUTATION OPERATOR

Create x ′ by flipping each bit xi of x with probability
1/(2|x |1) if xi = 1 and with probability 1/(2|x |0) otherwise

We denote by (1 + 1) EAasy and Global SEMOasy the
algorithms that differ from the (1+1) EA and Global SEMO
by using the mutation operator given in Algorithm 3.

IV. ADDING OBJECTIVES TO A PLATEAU

Our aim is to examine the effect of adding different objec-
tives to a well-known plateau function. Plateaus are regions
in the search space where all search points have the same
objective vectors. Consider a function f : {0, 1}n → R and
assume that the number of different objective values for that
function is V . Then there are at least 2n/V search points
with the same objective value. Often, the number of different
objective values for a given function is polynomially bounded.
This implies an exponential number of solutions with the
same objective value. Nevertheless, such functions where V
is polynomially bounded are easy to optimize for EAs if for
each nonoptimal solution there is a better Hamming neighbor,
which means that an improvement can be reached by flipping
a single bit of a nonoptimal solution. If this is not the case, the
search for a randomized search heuristic may become much
harder. In the extreme case, we end up with the function
NEEDLE where only one single solution has objective value 1
and the remaining ones get an objective value of 0 [16]. The
behavior of the (1+ 1) EA on plateaus of different structures
has been studied in [16] by a rigorous running time analysis.

The function PLATEAU1, which we examine in the follow-
ing, contains a set of n − 1 search points that form a plateau
having objective value n+1. We denote by SP1 :={1i 0n−i , 1 ≤
i < n} this set of search points and define PLATEAU1 as

PLATEAU1(x) :=
⎧⎨
⎩
|x |0 : x �∈ SP1
n + 1 : x ∈ SP1
n + 2 : x = 1n .

Note, that this function is similar to the function SPCn

already investigated in [16].
The relation graph of PLATEAU1 for n = 4 is shown in

Fig. 3. The search is directed to the all-zero string as long as
no search point with objective value at least n + 1 has been
produced. This has the effect for simple randomized search
heuristics such as the (1 + 1) EA that after having reached
the plateau the Hamming distance to the optimal search point
is large. Nevertheless, the structure of the plateau admits a
fair random walk. The following theorem shows an expected
optimization time of �(n3).

Theorem 1: The expected running time of the (1 + 1) EA
on PLATEAU1 is �(n3).

Proof: As the relative structure of PLATEAU1 and SPCn

(as defined in [16]) are identical besides the inclusion of 0n in
the plateau or not, we can reuse all ideas used in the proof of
[16] for the expected running time O(n3) of the (1 + 1) EA
on SPCn . Therefore, also on PLATEAU1 the expected running
time of the (1 + 1) EA can be bounded by O(n3). To the

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 29, 2009 at 10:21 from IEEE Xplore. Restrictions apply.

BROCKHOFF et al.: ON THE EFFECTS OF ADDING OBJECTIVES TO PLATEAU FUNCTIONS 595

1110

1111

1101

1100

1000

0000

1011 0111

1010 1001 0110 0101 0011

0100 0010 0001

Fig. 3. Relation graph for the objective function PLATEAU1 : {0, 1}4 → R.
Reflexive and transitive edges are omitted for clarity.

best of our knowledge, there is, up to now, no matching lower
bound in the literature.

We will now prove a lower bound of �(n3). In the ini-
tialization step of the (1 + 1) EA , a solution x ∈ {0, 1}n is
produced that fulfills |x |1 ≤ (2/3)n with probability 1− o(1)
by Chernoff bounds. As long as the current solution is not
in SP1 and not equal to 0n , the value |x |1 is nonincreasing.
Thus, the first individual x chosen by the (1 + 1) EA that is
in the set SP1 has the property |x |1 ≤ (2/3)n with probability
1 − o(1). Once the current search point is in the set SP1,
only children also from the set SP1 are accepted. Hence,
only the following mutations are allowed for an accepted
mutation step. The first components of x that are 0’s or the last
components of x that are 1’s can be flipped. The probability
to flip four or more components in an accepted step is at most∑n

i=4 2(1/n)i (n − 1/n)n−i = O(n−4). Thus, with probability
1 − o(1) no such mutation will be accepted in time �(n3).
The probability for a mutation step consisting of three flips to
be accepted is at most 2(1/n)3(n − 1/n)n−3 = O(n−3). With
probability 1 − o(1) there will be only a constant number of
such mutation steps in time �(n3). By the same arguments,
there are only O(n) accepted mutation steps with exactly two
flips and only O(n2) accepted mutation steps with exactly one
flipped bit in time �(n3). Therefore, in time �(n3) the two
and three-bit flip mutations can only decrease the Hamming
distance of the current search point x to the point 1n by at
most O(n1/2) with probability 1 − o(1), since the two bit
flip mutations and the three-bit flip mutations both perform a
random walk on the line SP1. Thus, the search point has to
cover a distance of order �(n) by one-bit flip mutations. This
takes �(n2) accepted one-bit flips with probability 1 − o(1)
using similar arguments as in [8]. Since the expected time for
an accepted one-bit flip is �(n), the time until the (1+1) EA
has reached the search point 1n is �(n3).

The analyses of variants of the (1 + 1) EA in [8], [13],
[24] point out that some of the well-known combinatorial
optimization problems such as maximum matching or Eulerian
cycle have natural objective functions where plateaus have

1110

1111

1101

1100

1000

0000

1011 0111

1010 1001 0110 0101 0011

0100 0010 0001

Fig. 4. Relation graph for the bi-criterion problem PLOM: {0, 1}4 → R
2.

Reflexive and transitive edges are omitted for clarity.

a similar structure as in PLATEAU1. Therefore, this function
plays a key role when considering the behavior of randomized
search heuristics on plateaus and understanding the effect of
adding objectives to that function may lead to more efficient
search heuristics by using additional objectives.

We investigate the effect of adding two of the simplest
nontrivial objective functions to the problem and consider the
behavior of Global SEMO on these functions.

Namely, we consider the bi-objective problems

PLOM(x) := (PLATEAU1(x), |x |1)
PLZM(x) := (PLATEAU1(x), |x |0)

and show that Global SEMO is faster (Theorem 2) on PLOM

and exponentially slower on PLZM (Theorem 4) compared to
the (1 + 1) EA on PLATEAU1. Note that the optimum of
PLATEAU1 is included in the Pareto-optimal sets of PLOM

and PLZM. In addition, the Pareto fronts of the bi-objective
problems PLOM and PLZM are of constant size 1, and
2, respectively. According to [18], multiobjectivization only
makes sense if the single-objective optimum is included in
the not too large Pareto front of the new problem which is
given for both PLOM and PLZM.

We now consider Global SEMO on the problem PLOM.
The first observation is that all x ∈ SP1 are comparable in
PLOM while they are indifferent in PLATEAU1. The second
objective |x |1 of PLOM also gives the Global SEMO the “right
direction” to move on the former plateau (n + 1, ·) up to the
only Pareto optimum 1n . This can be seen nicely in the relation
graph of PLOM in Fig. 4. The following theorem shows that
Global SEMO is indeed significantly faster on PLOM than
(1+ 1) EA on PLATEAU1.

Theorem 2: The expected optimization time of Global
SEMO on PLOM is �(n2 log n).

Proof: The single Pareto optimum of PLOM is 1n with
the corresponding objective vector (n + 2, n). The population
size is bounded by O(n) as each objective function attains at
most n + 3 different values. If the initial random x ∈ {0, 1}n
is in SP1, Global SEMO will walk along the objective vectors

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 29, 2009 at 10:21 from IEEE Xplore. Restrictions apply.

596 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 3, JUNE 2009

(n+1, ·) up to 1n in expected O(n2 log n) steps. This follows
from the Coupon Collector’s Problem [22] and the fact that
in each step the algorithm chooses with probability ≥ 1/n the
uppermost search point of SP1. If the initial solution is not in
SP1, Global SEMO produces solutions that tradeoff between
the number of 1s and 0s. In this case, we consider the number
of steps until a solution with objective vector (n + 1, ·) is
included or solution 1n is found. Since the population size
is bounded by O(n), the expected number of steps to go
from an x with |x |1 = k to an x ′ with |x ′|1 = k + 1
is O(n · n/(n − k)). Therefore, after O(n2 ∑n

k=1 1/k) =
O(n2 log n) steps, the single Pareto-optimal search point 1n

is found. For the proof of the lower bound we make a slight
modification to the Global SEMO model and argue afterwards
why this is admissible. We assume that every newly generated
child is accepted by Global SEMO . This is indeed the
case in the phase until Global SEMO has determined the
first solution x with PLATEAU1(x) > n. We will show that
with probability 1− o(1) the modified model is not different
from Global SEMO in the phase we are analyzing. Since the
initial individual is uniformly distributed in {0, 1}n and the
mutation step produces from a uniformly distributed parent a
uniformly distributed child, every element x having |x |1 = i
that is newly generated in our modified model is uniformly
distributed in {x ∈ {0, 1}n, |x |1 = i}. For every such element
x the probability that it is mutated to an element x ′ with
|x ′|1 = i and PLATEAU1(x ′) ≥ n is exactly 1/

(n
|x ′|1

)
. Thus,

the probability that every produced x ′ ∈ {0, 1}n with 3 ≤
|x ′|1 ≤ n − 3 in �(n2 log n) steps fulfills PLATEAU1(x ′) < n
is at least (

1− 1(n
3

)
)O(n2 log n)

= 1− o(1).

In other words, with probability 1 − o(1) our new model
behaves in �(n2 log n) steps exactly like Global SEMO and
produces no solution x ′ with PLATEAU1(x ′) > n as long as
every element x of the current population fulfills 3 ≤ |x |1 ≤
n − 3. For the lower bound proof it is enough to restrict
ourselves to this fraction of cases.

Let amin := minx∈P min{|x |0, |x |1}, where P denotes the
current population. So amin is the minimal number of 1s
respectively 0s of an individual in the current population. Until
the first individual x ∈ {0, 1}n with PLATEAU1(x) > n is
produced, the value amin is decreasing and the population size
is increasing. After the initialization, amin ≥ n/3 holds with
high probability (w. h. p.) using Chernoff bounds [22]. We
regard the phase where amin is in the range between n/3 and
n/4 and show that the population size after this phase is of
order �(n) with probability at least 1/2.

Let us consider only steps that decrease amin. We show that
the expected decrease of amin in all such steps in the phase
amin ∈ [n/4, n/3] is bounded by 2. To obtain from a step
that decreases amin by i a step that decreases amin by i + 1,
one of the remaining (at most n/3) 1s respectively 0s has
to be flipped. The probability for this extra flip is at most
(n/3)/n = 1/3. Thus, the expected decrease of amin in such
steps is at most 2 (geometric series). Therefore, the average
decrease of amin in the phase amin ∈ [n/4, n/3] is larger than 4

with probability less than 1/2. It follows that with probability
at least 1/2 the population size is �(n) when having obtained
for the first time a solution with at most n/4 1s respectively 0s.
With high probability, amin is greater or equal 2 n1/4 at this
time. In other words, we can assume that there are at least
2 n1/4 1s respectively 0s left in every element of the current
population of size �(n).

For every x in the current population, we define
a(x) := min{|x |0, |x |1}. Now we consider the time to reduce
amin from n1/4 to 3. The probability to produce from a
solution y with a(y) > amin + n1/4 an improving z is of
order O(n−n1/4

) and therefore such an event does not happen
within a polynomial number of steps with probability close
to 1. We call a step a k-step iff it creates a solution z with
|z|1 > |x |1 by flipping k of the remaining 0-bits respectively
the remaining 1-bits. The probability to flip k of these bits in
a single mutation step of a solution y with a(y) ≤ amin+n1/4

is upper bounded by ((amin + n1/4)/n)k = O(n−3k/4). Since
the probability that a y with amin ≤ |y|1 ≤ amin + n1/4 will
be chosen for the mutation from the current population is
of order O(n−3/4), the probability for a k-step mutating a y
from that region is O(n−3(k+1)/4). Hence, for k ≥ 2 this does
not happen within �(n2 log n) steps with probability 1− o(1)
using Markov’s inequality. This implies that with probability
1− o(1) a solution z with a(z) < amin can only be produced
by mutating the at most 2 elements of the population with
a–value amin. The expected time to reduce the current amin
to amin − 1 by one step under the condition that an x with
a(x) = amin has been chosen for mutation is n/amin . Thus,
the expected time to reduce the value amin from n1/4 to 3 is
of the order

�(n)

n1/4∑
r=4

n

r
= �(n2 log n).

This shows that the expected time until the first x ∈ {0, 1}n
with PLATEAU1(x) > n is determined by Global SEMO is
�(n2 log n), which completes the proof.

Using the asymmetric mutation operator, the function
PLATEAU1 becomes much harder. Jansen and Sudholt [15]
have shown that the probability that (1+ 1) EAasy optimizes
PLATEAU1 in 2O(n1/4) steps is bounded above by 2−�(n1/4). In
contrast to this, the search gets easier for Global SEMOasy on
PLOM.

Theorem 3: The expected optimization time of Global
SEMOasy on PLOM is �(n2).

Proof: First assume that the population contains an
element x ∈ {1i 0n−i , 1 ≤ i ≤ n}. For such an element x ,
Global SEMOasy behaves on PLOM like the (1+ 1) EAasy on
|x |1. According to [15], (1+1) EAasy needs an expected time
of O(n) to optimize |x |1. As the population size is at most
O(n), the optimum is reached after an expected number of
O(n2) steps.

Now assume that we start with an element x �∈ {1i 0n−i , 1 ≤
i ≤ n}. We will analyze the expected number of steps to reach
the optimum assuming that no element from {1i 0n−i , 1 ≤
i ≤ n} enters the population. Otherwise, we already know
that we need at most an additional number of O(n2) steps
in expectation to reach the optimum. To mutate an element x

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 29, 2009 at 10:21 from IEEE Xplore. Restrictions apply.

BROCKHOFF et al.: ON THE EFFECTS OF ADDING OBJECTIVES TO PLATEAU FUNCTIONS 597

towards the optimum, a mutation which flips no one-bit and
at least one zero-bit can be used. The probability that such a
mutation happens for a given x is

p(x) :=
(

1− 1

2|x |1
)|x |1 (

1−
(

1− 1

2|x |0
)|x |0)

.

Since
1

2
≤

(
1− 1

2k

)k

≤ e−1/2

we can bound this probability by p(x) ≥ ((1− e−1/2)/2).
As two elements x, y ∈ ({0, 1}n \ {1i 0n−i , 1 ≤ i ≤ n}) with
|x |0 �= |y|0 do not dominate each other, as soon as a mutation
creates an element with k 1s, the population will contain one
such element until the end of the algorithm. Hence, we need
an expected number of

O

(
n ·

n−1∑
i=0

2

1− e−1/2

)
= O(n2)

steps to reach the optimum, as a specific element of the
population is picked with probability �(1/n).

The proof of the lower bound largely follows the proof
of Theorem 2. Again we show that the population size is
linear after amin first leaves [n/4, n/3] by ensuring that the
expected decrease of amin is constant in this interval. For this,
observe that to obtain from a step that decreases amin by i
a step that decreases it by i + 1, one of the remaining 1s
(respectively 0s) has to be flipped. The probability for this
flip is at most (n/3)(1/2(n/4)) = 2/3, which then leads to a
constant expected decrease in each step. This in turn shows a
linear population size after this phase.

Hence, when amin leaves this interval, the population P is
w. h. p. of size |P| = �(n). Also w. h. p., we have amin ≥
n/5. Now consider the probability pi j to produce in the next
mutation step from x with |x |0 = i a solution x ′ with |x ′|0 = j
where i < j . Jansen and Sudholt [15] have shown that pi j ≤
2 j−i . Let x ∈ P be the solution with the largest number of
zeros. Denote by D = |x |0 the distance of x to 0n . Consider
a solution y ∈ P with |y|0 = |x |0 + k, where k ∈ [0, |x |1]. A
mutation step of y reduces D in expectation by at most

n∑
i=k+1

2−i (i − k) < 2−k
∞∑

i=1

2−i i = 2−k+1.

Then the expected decrease of D in the next mutation step
is at most

1

|P|
n∑

k=0

2−k+1 <
2

|P|
∞∑

k=0

2−k = 4

|P|
as P contains at most one individual with k 0s for each
k. Since |P| = �(n) holds, the expected decrease of D in
each iteration is at most O(1/n). Hence, �(n2) iterations are
necessary to reduce the value of D by �(n) which completes
the proof.

It remains to examine the problem PLZM. An exponential
deceleration comes from the x ∈ SP1. These search points are
now comparable in PLZM, but this time the second objective
|x |0 of PLZM is leading Global SEMO and Global SEMOasy in

the opposite direction of the Pareto optimum 1n . The following
theorem shows the more than clear effect of adding the “wrong
objective.”

Theorem 4: The optimization times of Global SEMO and
Global SEMOasy on PLZM are e�(n) with probability 1 −
e−�(n).

Proof: The objective vectors (n + 2, 0), (n, n), and (n +
1, n − 1) with the corresponding search points 1n , 0n , and
10n−1 are the three Pareto optima of PLZM. We show that the
claimed lower bound holds for obtaining the search point 1n .
The initial search point consists with probability 1 − e−�(n)

of at most 2n/3 1s using Chernoff bounds. Accepted steps
increasing the number of 1s have to produce a solution of
SP1 ∪{1n}. The probability to reach 1n directly from a search
point x �∈ SP1 is upper bound by 2−n/3 for both algorithms as
all 0-bits have to be flipped. The other opportunity to obtain
the search point 1n is to produce it from a search point of
SP1. The first solution of SP1 found during the run of the
algorithm has with probability 1− e−�(n) at most 3n/4 1-bits
as the probability of flipping �(n) bits in a single mutation
step is e−�(n) for both algorithms. Afterwards, the number
of 1s can only be increased by producing the search point 1n

directly. As each individual in the population has at most 3n/4
1s with probability 1− e−�(n), the probability of obtaining 1n

is upper bounded by 2−n/4 for both algorithms. Hence, overall
the time to achieve the search point 1n is e�(n) with probability
1− e−�(n).

V. COPING WITH TWO PLATEAUS

In Section IV, the added objectives were easy to solve
individually for the (1 + 1) EA. The main reason for the
smaller running time of PLOMas compared to PLATEAU1
is that both functions have the same global optimum. The
question arises whether combining two objectives may result
in a faster optimization process than optimizing the different
objective functions separately. We show that the combination
of two equally complex problems yields an easier problem if
both functions are optimized as a bi-criterion problem.

We know from Theorem 1 that Global SEMO has
an expected running time of �(n3) on PLATEAU1. Let
SP2 :={0i 1n−i , 1 ≤ i < n}; then this result also holds for
the function

PLATEAU2(x) =
⎧⎨
⎩
|x |1 : x �∈ SP2
n + 1 : x ∈ SP2
n + 2 : x = 0n

due to the symmetry with PLATEAU1. We now consider the
multiobjective function

PLATEAUS = (PLATEAU1(x), PLATEAU2(x))

where Global SEMO has to cope with a plateau in each
objective and show that this is easier than solving the single-
objective problems separately.

Theorem 5: The expected optimization time of Global
SEMO on PLATEAUS is �(n2 log n).

Proof: The objective vectors (n + 2, n) and (n, n + 2)
with the corresponding search points 1n and 0n are Pareto-
optimal, as they are the optima of the two objective functions

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 29, 2009 at 10:21 from IEEE Xplore. Restrictions apply.

598 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 3, JUNE 2009

PLATEAU1and PLATEAU2. There does not exist an objective
vector (n+ 1, n+ 1) for the considered problem which shows
that the search points 1n and 0n are the only Pareto-optimal
ones.

The population size is always bounded by O(n) as each
objective function attains at most n + 3 different values. We
consider the number of steps until solutions with objective
vectors (n + 1, ·) and (·, n + 1) have been included into the
population and assume that the Pareto-optimal solutions with
objective vectors (n + 2, n) and (n, n + 2), respectively, have
not been obtained before. We investigate the case to obtain
(n + 1, ·). As long as such a solution has not been obtained,
we consider the solution x with the largest PLATEAU1 value
in the population. This is determined by the number of zeros
in x . Assume that |x |0 = k holds. Then, the probability to
produce from x a solution x ′ with a higher number of zeros is
at least (n−k)/(en). The probability of choosing x in the next
step is �(1/n). Hence, the number of zeros increases after an
expected number of O(n2/(n − k)) steps. Summing up over
the different values of k, the search point 0n with objective
vector (n, n + 2) has been obtained after O(n2 log n) steps if
no solution with objective vector (n+ 1, ·) has been produced
before. Flipping the first bit in 0n leads to a solution with
objective vector (n+1, ·) and can be obtained in an additional
phase of O(n2) steps. The expected time to obtain a solution
with objective vector (·, n+1) can be bounded by O(n2 log n)
using the same arguments.

After P includes solutions with objective vectors (n + 1, ·)
and (·, n + 1) or a subset of Pareto-optimal solutions dom-
inating these vectors, the population size is always bounded
by 2. We consider how to obtain the search point 1n . Let x
be the search point with objective vector (n + 1, k) in the
population. Flipping the bit xk+1 in x leads to a solution x ′
with objective vector (n + 1, k + 1). The population size is at
most 2 and the probability of flipping one single specific bit is
at least 1/(en), which implies that the expected waiting time
for such a step is O(n). The value of k will be increased at
most n − 1 times until the search point 1n has been included
into P . Hence, the expected time until this solution has been
obtained is O(n2). The same holds for including the search
point 0n using the same arguments. Altogether, the expected
optimization of Global SEMO on PLATEAUS is O(n2 log n).

The lower bound proof is analogous to the lower bound
proof of Theorem 2, since the functions PLATEAUS and
PLOMare the same on the set {0, 1}n \ ({0i 1n−i , 0 ≤ i ≤
n} ∪ {1i 0n−i , 0 ≤ i ≤ n}).

Jansen and Sudholt [15] have shown that the (1+ 1) EAasy

is totally inefficient on PLATEAU1. The same arguments hold
for PLATEAU2 as it differs from PLATEAU1only by exchanging
the roles of zeros and ones. Surprisingly, this does not hold for
Global SEMOasy and PLATEAUS. In the following, we show
that Global SEMOasy is quite efficient on PLATEAUS.

Theorem 6: The expected optimization time of Global
SEMOasy on PLATEAUS is �(n2).

Proof: As in the proof of Theorem 5, we first bound
the expected number of steps until the population includes
search points with objective vectors (n + 1, ·) and (·, n + 1)
and assume that the Pareto-optimal objective vectors (n+2, n)

respectively (n, n + 2) have not been obtained before. For
obtaining (n + 1, ·), consider the search point x with the
largest PLATEAU1value. Assume that it has |x |0 = k zeros.
The probability to obtain from x a solution with more zeros
can be bounded by (1 − e−1/2)/2, as shown in the proof of
Theorem 3. Summing this up for all values of k and using
the fact that the population size is always bounded by O(n),
a solution with objective vector (n + 1, ·) is obtained after an
expected number of O(n2) steps. By symmetry, the same holds
for obtaining a search point with objective vector (·, n + 1).

Now assume that two search points with objective vectors
(n + 1, ·) and (·, n + 1) are included in the population. Since
they dominate all other points, the population size is upper
bounded by 2 in this case. If the objective vector of the first
search point is (n + 1, k), it consists of k ones followed by
n − k zeros. Its objective vector can be improved by flipping
the (k + 1)th zero to one. The probability for this to happen
is

p(x) =
(

1− 1

2k

)k (
1

2(n − k)

)(
1− 1

2(n − k)

)n−k−1

which can be bounded by

p(x) ≥ 1

2

1

2(n − k)

(
1− 1

2(n − k)

)
1

2
= �

(
1

n

)
.

Hence, after an expected number of O(n2) steps the objec-
tive vector will reach (n+2, n). By symmetry, the same holds
for obtaining the search point with objective vector (n, n+2).

The lower bound proof can be done analogously to the lower
bound proof of Theorem 3, since the functions PLATEAUS

and PLOMare the same on the set {0, 1}n \ ({0i 1n−i , 0 ≤ i ≤
n} ∪ {1i 0n−i , 0 ≤ i ≤ n}).

VI. EXPERIMENTAL STUDIES

In the previous sections, we investigated plateaus of indiffer-
ent solutions in single-objective problems and examined how
an additional objective changes the dominance relation on this
plateau and therefore influences the running time for simple
algorithms like the Global SEMO and the (1+ 1) EA.

With the following experimental study, we want to tackle
three questions that remain open after our theoretical investiga-
tions: 1) can the asymptotical results also be observed for small
instances; 2) can the effect of making a problem harder or
easier by adding an objective be reported for a multiobjective
problem instead of the single-objective PLATEAU1 and; 3) can
we observe the same behavior also on other types of plateaus,
e.g., sets of incomparable solutions?

In the following, we investigate experimentally for both
multiobjective problems and plateaus of incomparable solu-
tions whether the running time of Global SEMO can be
increased and decreased with an additional objective. First,
we investigate a bi-objective problem with the same plateau
SP1 that was considered above, whereas Section VI-B shows
that an addition of objectives can increase or decrease the
running time of Global SEMO also for other kinds of plateaus.
The general explanation of what happens remains the same
as in the previous sections: if plateaus are introduced by an
additional objective, the running time increases if a good

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 29, 2009 at 10:21 from IEEE Xplore. Restrictions apply.

BROCKHOFF et al.: ON THE EFFECTS OF ADDING OBJECTIVES TO PLATEAU FUNCTIONS 599

direction on the search points vanishes and decreases if a
deceptive direction vanishes; if plateaus are eliminated by
adding a direction to the corresponding search space region,
the new direction increases or decreases the running time
depending on whether the introduced direction is deceptive
or not.

A. Similar Plateaus With More Objectives

First, we investigate the influence of the addition of a third
objective to a bi-objective problem, based on the two functions

LEADINGONES(x) =
n∑

i=1

i∏
j=1

x j

and

TRAILINGZEROS(x) =
n∑

i=1

n∏
j=i

(1− x j)

which were first investigated in [19] as the problem LOTZ.
Here, we consider the slightly changed functions

f1(x) =
⎧⎨
⎩

LEADINGONES(x) if x �∈ SP1
n + 1 if x ∈ SP1
n + 2 if x = 1n

and

f2(x) =
⎧⎨
⎩

TRAILINGZEROS(x) if x �∈ SP1
n + 1 if x ∈ SP1
n + 2 if x = 1n

that are to be maximized at the same time leading to the
modified LOTZ problem (f1, f2) where SP1 = {1i 0n−i , 1 ≤
i < n} as defined above. Note, that f1(x) = f2(x) holds if
x ∈ SP1. In this case, we have to cope with the same plateau as
given by the function PLATEAU1. The only difference between
the bi-objective problem (f1, f2) and the function PLATEAU1
is given by the search points not on the plateau. Here, the
population of Global SEMO may grow due to a number of
incomparable solutions.

Starting with the modified LOTZ problem (f1, f2), we
investigate the effect of adding either the function |x |1 or
the function |x |0 to the problem. Adding |x |1 decreases the
running time of Global SEMO, whereas adding |x |0 increases
it. The effect is caused by the same principle observed in
Section IV. Right before finding the Pareto-optimal front,
Global SEMO has to overcome the plateau 1i 0n−i (1 ≤ i < n)
of indifferent solutions. If |x |1is added, this third objective
induces a direction to the optimum on this plateau; if |x |0 is
added, the generated direction on the plateau is deceptive.

Fig. 5 shows the box plots of the running times of 31
independent Global SEMO runs on all three problems for
different bitstring lengths (n ∈ {5, 10, 15, 20, 25, 30}).2 The

2The boxplots have been produced by the built-in boxplot command of
MATLAB showing the lower quartile, median, and upper quartile values. The
default maximum whisker length of 1.5 times the interquartile range has been
used. Data points lying beyond the ends of the whiskers are marked by a “+.”

5 10 15 20 25 30
100

101

102

103

104

105

ru
nt

im
e

[g
en

er
at

io
ns

]

number of decision variables

Global SEMO on modified LOTZ with additional third objective

Fig. 5. Comparison of the running times for Global SEMO if a third
objective is added to the modified LOTZ problem: original problem (solid
line) (f1, f2), (dashed line) (f1, f2, |x |1), and (dotted line) (f1, f2, |x |0).
Note, that the runs are aborted if no Pareto-optimal point has been found in
the first 100 000 generations. For clarity, the three boxplots corresponding to a
specific number of decision variables have been slightly shifted horizontally.

nonparametric Kruskal–Wallis test with the extension to mul-
tiple comparisons3 has been performed to support the above-
stated hypotheses that Global SEMO needs more time for
optimizing (f1, f2, |x |0) than for (f1, f2) and that Global
SEMO needs less time for optimizing (f1, f2, |x |1) than for
the original problem (f1, f2). The null hypothesis of equal
distributions was rejected at the significance level of 0.01
for all considered decision space sizes supporting the visual
illustration of Fig. 5. Note that the runs were aborted if
no Pareto-optimal search point has been found in the first
100 000 generations. This and the large variance of the single
runs explain the unexpected decrease of the median between
the original problem with 25 and the one with 30 decision
variables.

B. Different Kinds of Plateaus

In addition to plateaus of indifferent solutions which occur
frequently in single-objective problems, multiobjective prob-
lems may exhibit plateaus of incomparable solutions as well.
In this section, we investigate the running time changes of
Global SEMO for both kinds of plateaus if an objective is
added.

1) Plateaus of Indifferent Solutions: The basis bi-objective
problem we use for the investigation of plateaus of indifferent
solutions is the original LOTZ of [19]. All solutions with
the same number of leading 1s and trailing 0s are mapped
to the same objective function values yielding a plateau of
indifferent solutions. In the following, we will refer to the
decision variables that neither belong to the leading 1s nor
to the trailing 0s of a solution x as the middle block xM .
In addition, |x | denotes the length of the bitstring x . Adding

3As implemented in the PISA performance assessment toolbox [1] and
described in [6, p.290].

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 29, 2009 at 10:21 from IEEE Xplore. Restrictions apply.

600 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 3, JUNE 2009

25 50 75 100 125 150
101

102

103

104

105

ru
nt

im
e

[g
en

er
at

io
ns

]

number of decision variables

making indifferent solutions comparable

Fig. 6. How a problem can become either easier or harder if indifferent
solutions are made comparable, i.e., if a plateau is removed by an additional
objective. Here, the boxplots for the running times until the first Pareto-optimal
point is reached are shown. Note, that the runs are aborted if no Pareto-optimal
point has been found in the first 100 000 generations. For clarity, the three
boxplots corresponding to a specific number of decision variables have been
slightly shifted horizontally.

objectives that take into account only the bits in the middle
blocks of solutions will give a direction to these plateaus of
indifferent solutions. Depending on whether this direction is
deceptive or not, the running times of Global SEMO on the
corresponding three-objective problem will be higher or lower
than for the original bi-objective problem.

Minimizing the objective g(i) in addition to LOTZ =
(g1, g2) (as defined in Fig. 8) increases the running time due to
its deceptive behavior. On the one hand, the number of leading
1s and trailing 0s has to be maximized to reach the Pareto-
optimal front; on the other hand, the additional objective g(i)

rewards a higher number of leading 0s in the middle block
as well as a higher number of trailing 1s. This forces Global
SEMO to flip more or less all bits in the middle block at
least once instead of benefiting from already correctly set
bits, i.e., the running time increases. In contrast, the additional
minimization of objective g(i i) = |xM |1, or in other words the
maximization of zeros in the middle block, will flip bits of the
middle block to zeros also if they do not contribute directly
to the maximization of g1 and g2. However, with the middle
block’s bits that are already set to zero, Global SEMO is able
to perform big jumps in the objective function value of g2 in
future steps, i.e., the running time decreases.

To support the above-mentioned hypothesis that the addition
of g(i) increases and the addition of g(i i) decreases the
running time of Global SEMO in comparison with the orig-
inal problem (g1, g2), 31 independent runs of Global SEMO
were performed for different numbers of decision variables
(n ∈ {25, 50, 75, 100, 125, 150}). Note that we measured the
number of generations until the first Pareto-optimal point has
been found by Global SEMO instead of the normal running
time. The reason for that is the already high number of
generations that are needed to find the first Pareto-optimal

25 50 75 100 125 150
102

103

104

105

ru
nt

im
e

[g
en

er
at

io
ns

]

number of decision variables

making indifferent solutions comparable

Fig. 7. How a problem can become either easier or harder if comparable
solutions are made incomparable, i.e., if a plateau is introduced by an
additional objective. Here, the boxplots for the running times until the first
Pareto-optimal point is reached are shown. Note that the runs are aborted
if no Pareto-optimal point has been found in the first 100 000 generations.
For clarity, the three boxplots corresponding to a specific number of decision
variables have been slightly shifted horizontally.

point which forced us to restrict the number of generations to
100 000: if Global SEMO did not find any Pareto-optimal point
within the first 100 000 generations, we stopped the run and
noted 100 000 as the run’s optimization time. Fig. 6 shows the
corresponding box plots. The nonparametric Kruskal–Wallis
test for multiple comparisons of [6] again rejects the null
hypothesis of equal distributions for all comparisons at a sig-
nificance level of 0.01 except for the comparison between the
running times for (g1, g2, g(i)) and (g1, g2) with 25 decision
variables where the p-value is approximately 0.033.

2) Plateaus of Incomparable Solutions: It remains to show
that also for problems with plateaus of incomparable solutions,
the addition of objectives can change the running time of an
EA in both ways. To this end, the problem (h1, h2) as defined
in Fig. 8 is investigated. The objective space of (h1, h2) can be
illustrated as the objective space of the original LOTZ problem
where the levels 2, 3, 6, 7, 10, 11, and so forth are mirrored at
the origin and then translated. Fig. 9 illustrates this problem
exemplary for a small number of decision variables.

The change of the original LOTZ problem to (h1, h2) turns
around the Pareto dominance relation between the mirrored
levels: where the Pareto dominance relation is indicating the
direction to the optimum in LOTZ, the new search space
direction is deceptive. Global SEMO has to jump out of the
newly introduced local optima by at least a two-bit flip. This
is where a third objective can help. By making the solutions
within the region with deceptive Pareto dominance relation
incomparable, Global SEMO is able to perform a random
walk on newly introduced plateaus of incomparable solutions.
If on the other hand, solutions where the Pareto dominance
relation points in direction to the Pareto-optimal front are
made incomparable, Global SEMO needs more time to find
the Pareto-optimal front than for the original problem (h1, h2).

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 29, 2009 at 10:21 from IEEE Xplore. Restrictions apply.

BROCKHOFF et al.: ON THE EFFECTS OF ADDING OBJECTIVES TO PLATEAU FUNCTIONS 601

base function g [19]
max
max

g1(x) =
g2(x) =

LEADINGONES(x)
TRAILINGZEROS(x)

slower with min g(i)(x) = |xM | − LEADINGZEROS(xM)− TRAILINGONES(xM)

faster with min g(i i)(x) =|xM |1

base function h

max

max

h1(x) =

h2(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

LEADINGONES(x)
iff 0 ≡ (n − |xM |) mod 4
or 1 ≡ (n − |xM |) mod 4

−LEADINGONES(x)− n ·
⌊⌊

n−|xM |
2

⌋
2

⌋
else⎧⎪⎪⎪⎨

⎪⎪⎪⎩
TRAILINGZEROS(x)

iff 0 ≡ (n − |xM |) mod 4
or 1 ≡ (n − |xM |) mod 4

−TRAILINGZEROS(x)− n ·
⌊⌊

n−|xM |
2

⌋
2

⌋
else

slower with min h(i)(x) = n
2 − | n2 − |xM ||

faster with min h(i i)(x) =|xM |
Fig. 8. Definitions of the functions illustrating the changes of running time with respect to making indifferent solutions comparable [problems (g1, g2, g(·))]
and making comparable solutions incomparable [problems (h1, h2, h(·))].

111111000******1 111****0

111**000
11**0000

1111**00

11111**1

| xM | = 3

111***00
h1

h2

| xM | = 0

|

| xM | = 4
| xM | = 5

| xM | = 2

| xM | = 5
| xM | = 6

Fig. 9. Illustration of the objective space for the modified LOTZ problem
(h1, h2) and n = 8 decision variables. For some objective vectors, the
corresponding solutions in decision space are indicated, where a “*” denotes
either a “1” or a “0” on the corresponding bit string position.

The objectives h(i) and h(i i) defined in Fig. 8 are introducing
these incomparabilities either on the mirrored levels of LOTZ

only (h(i i)) or in both the first and third quadrant (h(i)). The
expected behavior is that the addition of h(i) will increase and
the addition of h(i i) will decrease the running time of Global
SEMO in comparison to the bi-objective problem.

Fig. 7 shows the boxplots of 31 independent Global
SEMO runs for different numbers of decision variables (n ∈
{25, 50, 75, 100, 125, 150}). As before, we count the number
of generations until the first Pareto-optimal point is found
or count 100 000 if no Pareto-optimal point is found within
the first 100 000 generations. The visual inspection of the
boxplots in Fig. 7 indicates that Global SEMO has a higher
average running time on (h1, h2, h(i)) and a lower average

running time on (h1, h2, h(i i)), which is supported by the same
Kruskal–Wallis test as mentioned before at a significance level
of 0.01 for all tested decision space sizes.

VII. CONCLUSION

We have investigated the question of how additional objec-
tives affect 1) the structure, i.e., the dominance relation, of
a given optimization problem and 2) the search behavior of
evolutionary algorithms applied to this problem. Motivated by
previous studies on the relationship between single-objective
and multiobjective versions of particular problems ([25], [29]),
we have shown that one and the same problem can be made
both easier and more difficult solely by adding different
objectives, i.e., without changing the search space or one of the
existing objectives. In particular, we have provided rigorous
running time analyses in order to prove that in the extreme
case the effect of adding objectives can make the difference
between a polynomial and an exponential running time.

The changes in the running times are due to changes in
the dominance structure: whenever a new objective interferes
with the existing ones, plateaus of indifferent or incomparable
solutions may emerge or vanish, respectively, and may be
enlarged or reduced. Therefore, useful or misleading informa-
tion may be implanted or removed. So, additional objectives
can decrease the complexity of a problem, although in general
this effect is less likely if more objectives are involved as
indicated in [17] and [31].

The presented results have different implications. On the
one hand, they can help with the design and the classification
of multiobjective benchmark problems according to different
categories of hardness. On the other hand, they indicate that
domain knowledge may not only be incorporated in terms of
problem-specific algorithmic components, but also in the form
of additional objective functions. Finally, the insights may be
lead to general guidelines on problem transformations from M
to N objectives.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 29, 2009 at 10:21 from IEEE Xplore. Restrictions apply.

602 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 3, JUNE 2009

REFERENCES

[1] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “Pisa A platform and
programming language independent interface for search algorithms,” in
Proc. 2nd Int. Conf. Evol. Multi-Criterion Optimization (EMO), LNCS
vol. 2632. New York: Springer-Verlag, 2003, pp. 494–508.

[2] D. Brockhoff, T. Friedrich, N. Hebbinghaus, C. Klein, F. Neumann, and
E. Zitzler, “Do additional objectives make a problem harder?” in Proc.
9th Annu. Conf. Genetic Evol. Comput. (GECCO), New York: ACM,
2007, pp. 765–772.

[3] D. Brockhoff and E. Zitzler, “Are all objectives necessary? On dimen-
sionality reduction in evolutionary multiobjective optimization,” in Proc.
9th Int. Conf. Parallel Problem Solving From Nature (PPSN), LNCS
vol. 4193. New York: Springer-Verlag, 2006, pp. 533–542.

[4] D. Brockhoff and E. Zitzler, “Dimensionality reduction in multiobjective
optimization: The minimum objective subset problem,” in Proc. Oper-
ations Res. 2006, New York: Springer-Verlag, pp. 423–429.

[5] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen,
Evolutionary Algorithms for Solving Multiobjective Problems (Genetic
and Evolutionary Comput.) New York: Kluwer Academic, 2002.

[6] W. J. Conover, Practical Nonparametric Statistics. 3rd ed. New York:
Wiley, 1999.

[7] K. Deb, Multiobjective Optimization Using Evolutionary Algorithms.
New York: Wiley, 2001.

[8] B. Doerr, N. Hebbinghaus, and F. Neumann, “Speeding up evolutionary
algorithms through asymmetric mutation operators,” Evol. Comput.,
vol. 15, no. 4, pp. 401–410, Nov. 2007.

[9] S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1 + 1)
evolutionary algorithm,” Theoretical Comput, Sci., vol. 276, no. 1–2,
pp. 51–81, Apr. 2002.

[10] P. J. Fleming, R. C. Purshouse, and R. J. Lygoe, “Many-objective
optimization: An engineering design perspective,” in Proc. 3rd Int.
Conf. Evol. Multi-Criterion Optimization, LNCS vol. 3410. New York:
Springer-Verlag, 2005, pp. 14–32.

[11] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algo-
rithms in multiobjective optimization,” Evol. Comput., vol. 3, no. 1,
pp. 1–16, 1995.

[12] O. Giel, “Expected runtimes of a simple multiobjective evolutionary
algorithm,” in Proc. 2003 IEEE Congr. Evol. Comput. (CEC), Piscat-
away, NJ: IEEE Press, pp. 1918–1925.

[13] O. Giel and I. Wegener, “Evolutionary algorithms and the maximum
matching problem,” in Proc. 20th Annu. Symp. Theoretical Aspects
Comput. Sci. (STACS), LNCS vol. 2607. New York: Springer-Verlag,
2003, pp. 415–426.

[14] J. Horn, “Multicriterion decision making,” in Handbook Evol. Comput.,
Oxford, U.K. Oxford Univ. Press, 1997.

[15] T. Jansen and D. Sudholt, “Design and analysis of an asymmetric
mutation operator,” in Proc. 2005 IEEE Congr. Evol. Comput. (CEC),
Piscataway, NJ: IEEE Press, pp. 190–197.

[16] T. Jansen and I. Wegener, “Evolutionary algorithms How to cope with
plateaus of constant fitness and when to reject strings of the same
fitness,” IEEE Trans. Evol. Comput., vol. 5, no. 6, pp. 589–599, Dec.
2001.

[17] M. T. Jensen, “Helper-objectives: Using multiobjective evolutionary
algorithms for single-objective optimisation,” J. Math. Modelling and
Algorithms, vol. 3, no. 4, pp. 323–347, 2004.

[18] J. D. Knowles, R. A. Watson, and D. W. Corne, “Reducing local optima
in single-objective problems by multiobjectivization,” in Proc. 1st Int.
Conf. Evol. Multi-Criterion Optimization, LNCS vol. 1993. New York:
Springer-Verlag, 2001, pp. 269–283.

[19] M. Laumanns, L. Thiele, and E. Zitzler, “Running time analysis of evo-
lutionary algorithms on a simplified multiobjective knapsack problem,”
Natural Computing, vol. 3, no. 1, pp. 37–51, Mar. 2004.

[20] M. Laumanns, L. Thiele, E. Zitzler, E. Welzl, and K. Deb, “Running
time analysis of multiobjective evolutionary algorithms on a simple
discrete optimization problem,” in Proc. 7th Int. Conf. Parallel Problem
Solving from Nature, LNCS vol. 2439. New York: Springer-Verlag,
2002, pp. 44–53.

[21] E. Mezura-Montes and C. A. Coello Coello, “Constrained optimization
via multiobjective evolutionary algorithms,” in Multiobjective Problem
Solving from Nature: From Concepts to Applications, Berlin, Germany:
Springer-Verlag, 2007.

[22] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge,
U.K.: Cambridge Univ. Press, 1995.

[23] F. Neumann, “Expected runtimes of a simple evolutionary algorithm for
the multiobjective minimum spanning tree problem,” Eur. J. Oper. Res.,
vol. 181, no. 3, pp. 1620–1629, 2007.

[24] F. Neumann, “Expected runtimes of evolutionary algorithms for the
Eulerian cycle problem,” Comput. Operations Res., vol. 35, no. 9,
pp. 2750–2759, Sep. 2008.

[25] F. Neumann and I. Wegener, “Minimum spanning trees made easier via
multiobjective optimization,” Natural Computing, vol. 5, no. 3, pp. 305–
319, Sep. 2006.

[26] F. Neumann and I. Wegener, “Randomized local search, evolutionary
algorithms, and the minimum spanning tree problem,” Theoretical
Comput. Sci., vol. 378, no. 1, pp. 32–40, Jun. 2007.

[27] R. C. Purshouse and P. J. Fleming, “On the evolutionary optimization of
many conflicting objectives,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 770–784, Dec. 2007.

[28] T. P. Runarsson and X. Yao, “Search biases in constrained evolutionary
optimization,” IEEE Trans. Syst., Man, Cybern., Part C: Applicat. and
Rev., vol. 35, no. 2, pp. 233–243, May 2005.

[29] J. Scharnow, K. Tinnefeld, and I. Wegener, “The analysis of evolutionary
algorithms on sorting and shortest paths problems,” J. Math. Modelling
and Algorithms, vol. 3, no. 4, pp. 349–366, 2004.

[30] T. Wagner, N. Beume, and B. Naujoks, “Pareto-, aggregation-, and
indicator-based methods in many-objective optimization,” in Proc. 4th
Int. Conf. Evol. Multi-Criterion Optimization (EMO), LNCS vol. 4403.
New York: Springer-Verlag, 2007, pp. 742–756.

[31] P. Winkler, “Random orders,” Order, vol. 1, no. 4, pp. 317–331, Dec.
1985.

[32] C. Witt, “Worst-case and average-case approximations by simple ran-
domized search heuristics,” in Proc. 22nd Annu. Symp. Theoretical
Aspects Comput. Sci. (STACS), LNCS vol. 3404. New York: Springer-
Verlag, 2005, pp. 44–56.

Dimo Brockhoff received the Diploma in computer
science from the University of Dortmund, Germany,
in 2005. He has been working toward a Ph.D. degree
under Prof. Zitzler and with the Computer Engineer-
ing and Networks Laboratory, Elgenössiche Technis-
che Hochschule Zurich, Zurich, Switzerland.

His research interests are evolutionary computa-
tion and, in particular, multiobjective optimization.

Tobias Friedrich received the M.Sc. degree in
computer science from the University of Sheffield,
U.K. in 2003, the Diploma in mathematics from
the University of Jena, Germany, in 2005, and the
Ph.D. degree in computer science from the Saarland
University, Germany, in 2007.

Since 2008, he is with the Algorithm Group
at the International Computer Science Institute,
Berkeley, CA. The central topics of his work are
randomized methods in mathematics and computer
science and randomized algorithms (both classical

and evolutionary).

Nils Hebbinghaus received the Diploma and the
Ph.D. degree in mathematics from the University of
Kiel in 2002 and 2005, respectively.

From October 2005 to September 2007, he was
working as a Postdoctoral Fellow with Depart-
ment 1: Algorithms and Complexity at Max-Planck-
Institut für Informatik, Saarbrücken, Germany. Since
October 2007, he has been a Consultant for math-
ematical finance. His research interests are mainly
in the field of discrete mathematics. Since October
2007, he has been working as a consultant for

mathematical finance.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 29, 2009 at 10:21 from IEEE Xplore. Restrictions apply.

BROCKHOFF et al.: ON THE EFFECTS OF ADDING OBJECTIVES TO PLATEAU FUNCTIONS 603

Christian Klein received the Diploma in computer
science from the Saarland University in Saarbrücken,
Germany in 2004.

Since 2004, he has been a Ph.D. student with the
Department 1: Algorithms and Complexity at Max-
Planck-Institut für Informatik, Saarbrücken, Ger-
many. His research interests include randomized
algorithms and computational geometry.

Frank Neumann received the Diploma and
the Ph.D. degrees in computer science from the
University of Kiel in 2002 and 2006, respectively.

Since November 2006, he has been a Researcher
of the Department 1: Algorithms and Complexity
Group at the Max-Planck-Institut für Informatik
in Saarbrücken, Germany. In his work, he
considers theoretical aspects of bio-inspired
computation methods, in particular for problems
from combinatorial optimization.

Eckart Zitzler received the Diploma in computer
science from the University of Dortmund, Ger-
many, and the Doctor of Technical Sciences from
Elgenössiche Technische Hochschule (ETH) Zurich,
Switzerland.

Since 2003, he has been Assistant Professor for
Systems Optimization at the Computer Engineering
and Networks Laboratory at the Department of Infor-
mation Technology and Electrical Engineering, ETH
Zurich, Switzerland. His research focuses on bio-
inspired computation, multiobjective optimization,

computational biology, and computer engineering applications.
Prof. Zitzler was General Co-Chairman of the first three international

conferences on evolutionary multicriterion optimization (EMO 2001, EMO
2003, and EMO 2005).

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 29, 2009 at 10:21 from IEEE Xplore. Restrictions apply.

