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Goal: runtime analysis
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Quadratic utilities:
#FE can be o > |
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Analysis iRLS

e Unless PF reached:
up or right accepted,
down or left rejected,
.,.,:::;;i:;-.. no queries
“ e High prob. to start near 0 = 1
= O(n) moves to PF = O(n?) FE
e As soon as PF reached:
~~~~~~~~~ can only move on PF
= queries needed!
\ fliplast 1 — 0 or 0 — 1,
= need at most n improvements
= O(n?) FE,
at most O(2n) = O(n) queries
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Start n/2 n

Analysis iEA
e High prob. to start near 0 x 1
e Unless PF reached:
incomparable points possible
=- queries needed!
utility larger < accept!
can decrease LOTZ level!
drift function:
gla) = n— Lfilz) + 5 o))
at most g(z) < n 1-flips apart from PF
need less than n - O(n) = O(n?) FE
e As soon as PF reached:
either stay on PF or LOTZ level
decreased (see above)
e For #queries: less than constant
#gueries per improvement
(details: see paper)

> objective functions
n/2 n
Analysis iRLS
o f1 = #1
A 0t 1sthal fo = #1 in 1st half + #0 in 2nd half
1-0,|2nd-half ‘ | e Movements towards/along front
1->0,|1st-half \ jN] 01, 2nd-half

independent
e In both “ONEMAX” scenario
e Prob(improve towards front) = "2~
n/2 = O(nlogn) FE towards front
e Prob(improve along front) = 2~
= O(nlogn) FE along front
> e In total: O(nlogn) FE
e At most 7 queries along front
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Conclusions

e Many DM queries necessary even for simple problems
=- incorporation of DM model required to be practical
e Number of FE strongly depending on DM model
= DM model must be chosen carefully
e DM model can be
—provided completely/partially by DM
—learned online/offline
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First equation in the proof of Theorem 2 should be
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