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Abstract

Multiobjective optimization problems occur frequently in practice where
multiple objectives have to be optimized simultaneously and the goal is to
find or approximate the set of Pareto-optimal solutions. Multiobjective evo-
lutionary algorithms (MOEAs) are one type of randomized search heuristics
that are well-suited for multiobjective optimization problems due to their
ability of computing a set of trade-off solutions in one run. However, cur-
rent state-of-the-art MOEAs are known to have difficulties if the number of
objectives is high, i.e., larger than 4. This thesis tackles such many-objective
optimization problems in terms of theoretical investigations to better un-
derstand why classical MOEAs have difficulties with many objectives. New
approaches and techniques are provided that enhance the search capabili-
ties of MOEAs for many-objective problems. Furthermore, we investigate
hypervolume-based MOEAs in more depth that have been proposed recently
especially for many-objective optimization scenarios.

In particular, we generally investigate the question of what happens if
objectives are added to a problem formulation—both with respect to the
Pareto dominance relation in general and with respect to the running time
of specific MOEAs. This includes the proposition of a general measure
to quantify the changes occurring in the Pareto dominance relation if the
objective set is changed. Based on this measure, we propose the term of
δ-non-conflicting objectives: if two objective sets are δ-non-conflicting with
each other, the two sets can be interchangeably optimized without changing
the resulting Pareto set approximation by an additional term of δ in each
objective, i.e., we make an error of at most δ.

Based on these theoretical foundations, objective reduction techniques
are developed that automatically reduce the number of objectives while the
Pareto dominance relation is preserved or only slightly changed. While re-
ducing the number of objectives, we distinguish between two problems. We
either predefine a maximal size of the sought objective subset or a max-
imal δ-error allowed and then ask for the objective subset of the original
objectives that meets these goals and which optimizes the above mentioned
δ-error and the size of the resulting objective set respectively. Both ex-
act algorithms and greedy heuristics are proposed and analyzed with re-
spect to their running time for each of the two problems. Furthermore,
the NP-hardness of both problems is proved. Besides objective reduction
by omitting objectives, we also consider the aggregation of objectives and
investigate what happens with respect to the Pareto dominance relation if
objectives are aggregated. Algorithms that aggregate objectives automati-
cally are proposed and compared to their objective omission counterparts.
The usefulness of the objective reduction algorithms for a decision maker
in an a posteriori scenario, i.e., after the search, is presented for several test
problems and a real-world application of radar waveform optimization.



In the last part of the thesis, we investigate several aspects of hyper-
volume-based MOEAs. The hypervolume indicator has become popular to
guide the search of MOEAs in the past years due to its properties of being
a refinement of the Pareto dominance relation. This allows for a better
guidance towards the Pareto-optimal solutions which is especially useful
if many objectives are to be optimized. However, the running time for
computing the hypervolume indicator exactly is exponential in the number
of objectives which results in the need for further research in this area to
provide more powerful and better applicable MOEAs if many objectives
are to be optimized. The first contribution of this thesis part is the first
rigorous running time analysis of a hypervolume-based MOEA showing that
the approach of optimizing the hypervolume with a (µ+1)-strategy can find
the set of Pareto-optimal solutions for a specific problem in a reasonable
time. To increase the applicability of hypervolume-based MOEAs to real-
world problems, two further studies are presented. First, we generalize the
hypervolume indicator to a weighted version and show how this generalized
indicator allows to incorporate user preferences into the search. Second, we
apply the developed objective reduction algorithms within a hypervolume-
based MOEA which is shown to reduce the running time needed for the
hypervolume calculation and which at the same time produces solutions of
higher quality.



Zusammenfassung

In der Praxis auftretende Optimierungsprobleme sind häufig Mehrzielpro-
bleme, bei denen mehrere Zielfunktionen gleichzeitig optimiert werden müs-
sen und üblicherweise die Menge der Pareto-optimalen Lösungen oder eine
Approximation dieser gesucht ist. Evolutionäre Algorithmen sind eine spe-
zielle Art von randomisierten Suchheuristiken, die für Mehrzielprobleme
gut geeignet sind, da sie die Möglichkeit bieten eine Menge von Kompro-
misslösungen in einem Programmlauf zu erzeugen.

Gängige evolutionäre Algorithmen für die Mehrzieloptimierung haben
jedoch Schwierigkeiten Mehrzielprobleme mit vielen, d. h. mehr als 4 Ziel-
funktionen zu lösen. Diese Arbeit beschäftigt sich mit solchen Problemen
mit vielen Zielfunktionen; theoretische Untersuchungen versuchen dabei
aufzuzeigen, warum klassische evolutionäre Mehrzielalgorithmen Schwierig-
keiten mit vielen Zielfunktionen haben. Es werden zudem neue Ansätze und
Techniken vorgestellt, die das Suchverhalten von evolutionären Mehrzielal-
gorithmen für Probleme mit vielen Zielfunktionen verbessern. Weiterhin
werden im Detail so genannte hypervolumenbasierte evolutionäre Mehr-
zielalgorithmen untersucht, die vor kurzem inbesondere für Mehrzielprob-
leme mit vielen Zielfunktionen vorgeschlagen wurden.

Im Folgenden beantworten wir unter anderem die Frage, wie sich die
so genannte Pareto-Dominanzrelation und die Laufzeit von evolutionären
Mehrzielalgorithmen verändern, wenn zusätzliche Zielfunktionen zu einer
Problemformulierung hinzugefügt werden. Diese Untersuchung beinhaltet
den Vorschlag eines generellen Masses um die auftretenden Änderungen der
Dominanzrelation zu quantifizieren, wenn sich die Menge der Zielfunktionen
ändert. Basierend auf diesem Mass entwickeln wir den Begriff von nicht
im δ-Konflikt stehenden Mengen von Zielfunktionen: stehen zwei Mengen
von Zielfunktionen nicht im δ-Konflikt zueinander, so kann die eine der
beiden Zielfunktionsmengen durch die andere ersetzt werden, ohne dass sich
die aus der Optimierung resultierende Paretomengenapproximation in jeder
Zielfunktion um einen additiven Term von δ ändert; in diesem Fall sagen
wir, wir machen einen δ-Fehler.

Basierend auf diesen theoretischen Untersuchungen werden Algorith-
men vorgestellt, die die Anzahl der Zielfunktionen automatisch reduzieren
ohne die zugrunde liegende Pareto-Dominanzrelation (stark) zu verändern.
Bei der Reduzierung einer Menge von Zielfunktionen unterscheiden wir
zwischen zwei Problemen. Entweder setzen wir eine gewünschte Maxi-
malgrösse der Menge fest oder definieren einen maximal erlaubten δ-Fehler
und fragen dann nach einer Teilmenge der gegebenen Zielfunktionen, die
die gegebenen Vorgaben erfüllt und den δ-Fehler beziehungsweise die resul-
tierende Mengengrösse optimiert. Für beide Probleme werden sowohl ein
exakter Algorithmus als auch Heuristiken vorgestellt und deren Laufzeiten



analysiert. Zudem beweisen wir für beide Probleme, dass sie zur Menge der
NP-harten Probleme gehören. Neben dem Weglassen von Zielfunktionen
berücksichtigen wir auch die Aggregation von Zielfunktionen und unter-
suchen, wie sich die Pareto-Dominanzrelation ändert, wenn Zielfunktionen
aggregiert werden. Algorithmen zur Reduzierung der Zielfunktionenanzahl
durch Aggregation werden ebenfalls vorgestellt und anschliessend mit den
vorgeschlagenen Verfahren, die Zielfunktionen weglassen, verglichen. Die
Nützlichkeit der vorgestellten Algorithmen zur Reduzierung der Zielfunk-
tionsanzahl während der Entscheidungsfindung, d. h. nach der Suche, wird
anhand verschiedener Testprobleme sowie der Optimierung von Wellenfor-
men für Flugzeugradare demonstriert.

Im letzten Teil der Arbeit untersuchen wir verschiedene Aspekte von
hypervolumenbasierten evolutionären Merhzielalgorithmen. Durch seine
Eigenschaft, eine Verfeinerung der Pareto-Dominanzrelation zu sein, wurde
der Hypervolumen-Indikator in den letzten Jahren vermehrt als Suchkri-
terium innerhalb von evolutionären Mehrzielalgorithmen eingesetzt. Vor
allem, wenn viele Zielfunktionen gleichzeitig optimiert werden sollen, in-
duziert die Optimierung des Hypervolumens neue Suchrichtungen in Rich-
tung besserer Kompromisslösungen, die durch die alleinige Optimierung der
Pareto-Dominanzrelation nicht gegeben sind. Allerdings steigt die Kom-
plexität der exakten Berechnung des Hypervolumen-Indikators exponentiell
mit der Anzahl der Zielfunktionen an, was die Entwicklung von schnelleren
und besser anwendbaren evolutionären Mehrzielalgorithmen für den Fall
von vielen Zielfunktionen erfordert. Der erste Beitrag dieses Teils der Ar-
beit ist die erste Laufzeitanalyse eines hypervolumenbasierten evolutionären
Mehrzielalgorithmus, die zeigt, dass der Ansatz, den Hypervolumen-Indika-
tor innerhalb einer (µ + 1)-Selektion zu optimieren, funktioniert und dass
die optimalen Kompromisslösungen innerhalb vernünftiger Zeit gefunden
beziehungsweise approximiert werden können. Um die Anwendbarkeit von
hypervolumenbasierten evolutionären Mehrzielalgorithmen in der Praxis zu
verbessern, werden zwei weitere Studien präsentiert. Zuerst verallgemeinern
wir die Definition des Hypervolumen-Indikators auf eine gewichtete Version
und zeigen auf, wie es der verallgemeinerte gewichtete Indikator erlaubt,
beliebige Benutzerpräferenzen in die Suche einzubeziehen. Danach wenden
wir die zuvor entwickelten Methoden zur Reduzierung der Zielfunktione-
nanzahl auf hypervolumenbasierte evolutionäre Mehrzielalgorithmen an um
die lange Berechnungszeit für den Hypervolumen-Indikator zu verringern,
was es erlaubt, Kompromisslösungen von höherer Qualität in derselben Zeit
zu erzeugen.
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1
Introduction

1.1 Motivation

Many problems in practice are multiobjective in nature with examples rang-
ing from nurse scheduling to aircraft construction (Qiu, 1997; Paechter et al.,
1998; Coello Coello and Hernández Aguirre, 2002; Fleming et al., 2005;
Hughes, 2007; Sülflow et al., 2007). Tackling a multiobjective optimization
problem involves the simultaneous consideration of multiple objectives that
are, in general, in conflict with each other as for example the objectives
price and quality while buying a certain product or the objectives risk and
profit if the personal stock portfolio is rearranged. In such a multiobjec-
tive optimization scenario, solving a multiobjective problem corresponds
to finding or approximating the set of so-called Pareto-optimal solutions,
i.e., solutions for which no other solution is better in all objectives. Fur-
thermore, a multiobjective optimization scenario always involves a (human)
decision maker that states which solution is the most preferable one among
the Pareto-optimal solutions or within an obtained set of solutions.

Depending on how the decision maker is involved, three main approaches
to multiobjective optimization can be identified. In a priori methods, the
decision maker is involved before the search and a usually single-objective
optimization aims at finding the best solution according to the decision
maker’s preferences. A posteriori approaches provide the decision maker
with a set of solutions and postpone the decision about which solution is
the best one after the search whereas in interactive approaches, the decision
maker is involved during the search and specifies her preferences depending
on the information gain while the solutions approach the set of Pareto-
optimal solutions. One way to tackle multiobjective optimization problems
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is to use algorithms from the classical field of multicriteria decision making
(MCDM). They usually aim at finding a single solution that fits the de-
cision maker’s preferences best. Many approaches in this field are known
and we refer to text books such as (Miettinen, 1999) or (Ehrgott, 2005) for
an extensive overview. On the other hand, evolutionary multiobjective opti-
mization (EMO) techniques (Deb, 2001; Coello Coello et al., 2007) mainly
aim at finding a good approximation of the set of Pareto-optimal solutions
in one run and postpone the decision making step after the search (Deb,
2001; Coello Coello et al., 2007) although recently, also interactive methods
have become of interest (Jaszkiewicz and Branke, 2008).

The most often used approach in EMO is to employ evolutionary algo-
rithms (EAs)1 for the search of good trade-offs between the objectives. Evo-
lutionary algorithms mimic evolutionary processes observed in nature and
they belong to the class of randomized search heuristics. A set of solutions,
the population, is evolved by successively applying mutation, recombination,
and selection on the population’s individuals yielding better and better solu-
tions in an iterative process. Since an EA evolves a population of solutions,
it allows to compute a set of solutions before a decision maker has to artic-
ulate her preferences. After the search, the decision maker can then use the
obtained solutions to decide which solution, according to her preferences,
is to be implemented. Deciding on a solution when information about the
trade-offs between objectives is known is usually much easier than specify-
ing the preferences before the optimization process—a necessary step when
tackling a multiobjective problem by the weighted aggregation method or
other classical scalarization techniques (cf. Miettinen, 1999). We will give
a more detailed introduction into the class of multiobjective evolutionary
algorithms (MOEAs) later on in this chapter.

Although multiobjective evolutionary algorithms have been successfully
applied to multiobjective problems, experimental studies have shown that
state-of-the-art MOEAs have difficulties if the number of objectives is high,
i.e., larger than 4 (Khare et al., 2003; Purshouse and Fleming, 2003b; Wag-
ner et al., 2007). Unfortunately, such many-objective problems with 5 or
more objectives occur frequently in practice (Qiu, 1997; Paechter et al.,
1998; Coello Coello and Hernández Aguirre, 2002; Fleming et al., 2005;
Hughes, 2007; Sülflow et al., 2007) and it is often even easier to specify
as many objectives as possible before the search instead of including the
decision maker in an early stage of the optimization process where most of
the time no knowledge about the problem is available and a decision which
objectives are the most important ones is not possible2. MCDM approaches

1Also other bio-inspired approaches such as particle swarm optimization fall into the

category of evolutionary multiobjective optimization. Within this thesis, however, we

focus on evolutionary algorithm based approaches.
2When designing a new product, for example, it is often easier to consider all possible
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can handle many-objective problems but on the other hand have the draw-
back that only single solutions rather than a set of solutions are created.
Since MOEAs have been shown to be able to efficiently produce a set of
solutions that show the trade-offs among the objectives for problems with
2 or 3 objectives, the question arises how existing multiobjective evolution-
ary algorithms can be enhanced to obtain also a set of “good” solutions
if the number of objectives is high. Work in terms of evolutionary many-
objective optimization is limited indicating that even the basic questions are
not solved yet, see for example the recent review of Ishibuchi et al. (2008).
This is the main reason why several studies presented in this thesis consider
a low number of objectives although the aim is to better understand and
improve evolutionary algorithms for many-objective optimization3.

One recent trend to tackle multiobjective problems with more than 2
or 3 objectives with MOEAs employs so-called indicator-based MOEAs—
in particular hypervolume indicator based MOEAs became very popular in
recent years. Instead of optimizing the objective functions with respect to
the Pareto dominance relation only, these algorithms employ the hyper-
volume indicator for guiding the search towards the set of Pareto-optimal
points. The hypervolume indicator is a set quality measure introduced for
performance assessment by Zitzler and Thiele (1998a) that assigns a set of
solutions a real value which has the property that whenever a solution set is
better than another one in terms of Pareto dominance, the hypervolume in-
dicator value of the former is higher than the one of the latter. Fortunately,
this property allows to guide the search towards better solutions in multi-
objective and especially many-objective problems and hypervolume-based
MOEAs have been shown to be better suited to multiobjective problems
than other state-of-the-art MOEAs if the number of objectives increases
(Wagner et al., 2007). However, the applicability of hypervolume indicator
based MOEAs is limited by the fact that the exact hypervolume indicator
calculation is exponential in the number of objectives (Beume and Rudolph,
2006; Bringmann and Friedrich, 2008)—one reason why also hypervolume-
based MOEAs were not applicable to multiobjective problems with more
than 5 objectives in the beginning of this thesis project4.

objective functions that possibly have an influence on the product instead of deciding

early in the development process which objectives to omit. The reason is that at this

early stage of the so-called design space exploration, almost no information is available

about whether, and if how much, a certain objective function has an impact on the set

of non-dominated solutions generated by an optimization method.
3Especially in the area of hypervolume-based search, discussed below, even the basic

principles behind the search process have not been fully understood for problems with a

few objectives which improved recently starting with the work of Auger et al. (2009c).
4The thesis project started in July 2005 when the author began his doctoral thesis

at ETH Zurich. In the following, we will always refer to this time around July 2005 if a

formulation like “in the beginning of this thesis project” is used.
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In the light of this discussion, several questions arise that affect both
decision making and search in many-objective optimization. Examples are

• Why have MOEAs difficulties with many-objective problems? In par-
ticular, what happens if objectives are added to a problem formulation
and how does the addition or omission of objectives affects the search
with multiobjective evolutionary algorithms?

• Which objectives are the most important? Are there some that are
redundant?

• Can the set of considered objectives be reduced without or only slightly
changing the problem to make both decision making and search easier?

• How can current techniques be enhanced to be able to tackle problems
with many objectives efficiently?

Section 1.4 presents the open questions with many-objective problems
in more detail. Before, we introduce the basic notations and terms for
multiobjective optimization (Sec. 1.2) and present a brief overview of the
multiobjective evolutionary algorithms field in Sec. 1.3. Section 1.5 presents
the key contributions of this thesis and Sec. 1.6 gives a brief outline of the
remaining chapters.

1.2 Multiobjective Optimization

Throughout this thesis, we consider a multiobjective optimization problem
as the problem to optimize a set of k objective functions F = {f1, . . . , fk},
i.e. without loss of generality minimizing5 the vector function

f : X → R
k

~x 7→ f(~x) = (f1(~x), . . . , fk(~x))

that maps solutions from the decision space X into the objective space R
k.

Note that the type of decision space is not defined here, i.e., both contin-
uous (e.g., X = R

n) and discrete search spaces (e.g., X = {0, 1}n) are
considered. We assume that the weak Pareto dominance relation is the un-
derlying preference structure according to which the optimization is to be
carried out. To this end, we define a solution ~x ∈ X to weakly dominate
another solution ~y ∈ X (~x �F ~y) if and only if ~x is not worse than ~y in all
objectives in F . Throughout the thesis, we consider the notation ~x �F ′ ~y

5Where it is necessary, we will also consider an equivalent maximization of the objec-

tives but, in general, assume minimization.
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in order to indicate that the weak Pareto dominance relation is used with
respect to a particular objective set F ′, often F ′ ⊆ F := {f1, f2, . . . , fk}:

~x �F ′ ~y :⇐⇒ ∀fi ∈ F ′ : fi(~x) ≤ fi(~y)

which coincides with the usual weak Pareto dominance relation �F if F ′ =
F . For better readability, we will sometimes only list the indices of the
objective functions instead of the function names themselves, e.g., �{1,2}

instead of �{f1,f2}. In addition, we will use the following standard terms:

(i) ~x dominates ~y if ~x �F ′ ~y and ~y 6�F ′ ~x

(ii) ~x and ~y are comparable if either ~x �F ′ ~y or ~y �F ′ ~x

(iii) ~x and ~y are incomparable if neither ~x �F ′ ~y nor ~y �F ′ ~x

(iv) ~x and ~y are indifferent if both ~x �F ′ ~y and ~y �F ′ ~x

(v) the Pareto(-optimal) set contains all so-called Pareto-optimal solu-
tions ~x that either weakly dominate or are incomparable to any other
solution ~y ∈ X

(vi) the Pareto(-optimal) front is the image of the Pareto set in the objec-
tive space.

Furthermore, we will use the set-notation for relations, i.e.,

�F ′= {(~x, ~y) ∈ A× A | ∀fi ∈ F ′ : fi(~x) ≤ fi(~y)}

where A ⊆ X is a particular set of solutions under consideration; it will be
clear from the context which set A is meant. We also generalize the Pareto
dominance relation to solution sets, i.e., we say a solution set A ⊆ X is
weakly dominating a solution set B ⊆ X with respect to F (A �F B) if

∀~b ∈ B : ∃~a ∈ A : ~a �F
~b .

Accordingly, A is dominating B with respect to F if

∀~b ∈ B : ∃~a ∈ A : ~a �F
~b ∧~b 6�F ~a .

Given a multiobjective optimization problem and the corresponding
weak dominance relation, we assume that the Pareto set is sought. In
other words, we would like to find all minimal elements of the relation �F

for a given set of k objectives. However, if the problem itself is hard to solve
and/or the Pareto set is too large to enumerate (e.g., if it is a continuous
set), we are satisfied with an approximation of the Pareto set that is close
to the Pareto set and as diverse as possible, cf. (Deb, 2001). Similarly, we
denote a solution set the objective vectors of which are an approximation of
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the Pareto front as Pareto front approximation. Note that the Pareto set is
always well-defined for finite search spaces X but also in the case of contin-
uous optimization, the existence of a non-empty Pareto set can be proven if
some assumptions on the problem are given, see for example (Henig, 1982)
or (Miettinen, 1999, p. 35). We do not go into the details here and assume
a non-empty Pareto set throughout the thesis.

As to decision making, we assume that the decision maker has to choose
her favorite solution in the end, i.e., the solution that fits her preferences
best. To this end, information gained during or after the search process
can be used to articulate preferences, e.g., in terms of aspiration levels or
(p)reference points, that themselves might steer the search towards inter-
esting regions of the search space in an interactive manner.

1.3 Multiobjective Evolutionary Algorithms

Evolutionary Algorithms mimic evolutionary processes and belong to the
class of problem-independent randomized search heuristics. Similar to their
single-objective counterparts, cf. for example (Eiben and Smith, 2003), mul-
tiobjective evolutionary algorithms maintain a set of solutions, the so-called
population. According to their biological counterparts, the solutions in the
population are called individuals which usually undergo mating selection,
recombination/crossover, mutation, and environmental selection in an iter-
ative loop of generations. The top left plot in Fig. 1 illustrates this cycle of
successive selection and variation of the individuals.

The main advantage of multiobjective evolutionary algorithms is the
generation of a set of solutions in a single run. In contrast, other approaches
to solve multiobjective optimization problems, such as the multiobjective
proximal bundle method (Miettinen, 1999), normal boundary intersection
(Das and Dennis, 1998), or other scalarization approaches (Miettinen, 1999;
Ehrgott, 2005), compute only one solution at a time. According to Oliveto
et al. (2007b), there are two more reasons why MOEAs—and evolution-
ary algorithms in general—are used: “often there are not enough resources
in terms of money, time, or knowledge [available] to construct a problem-
depending algorithm” and sometimes, “the function that needs to be opti-
mized may not be known”, e.g., if the objective function values can only be
obtained by a simulation of a given system. The last scenario is therefore
also known under the term of black-box optimization6.

6Note that the statement on the limited time to develop problem-dependent algo-

rithms cannot be directly transferred to problem types that are not of combinatorial

nature; however, also for continuous optimization problems, it is better if an algorithm

is problem-independent and, e.g., not tailored towards quadratical functions only. Fur-
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Figure 1: Comparison of different views of multiobjective evolutionary algo-

rithms: (top left) general view with recombination, mutation, and selection on

single solutions; (top right) the same algorithm as a hillclimber on solution sets,

the cycle of solution-based recombination, mutation, and selection can be seen as

a complex mutation operator on solution sets; (bottom) a full set-based algorithm

with set-based mutation, recombination, and selection.

Although the first evolutionary algorithms date back to the 1960s, it
took some time until the first evolutionary algorithm has been proposed for
solving multiobjective problems in the mid 1980s by Schaffer (1985). Since
then, many different MOEAs have been proposed. After a first generation
of Pareto dominance based MOEAs without elitism such as the Nondom-
inated Sorting Genetic Algorithm (NSGA) (Srinivas and Deb, 1994), the
Niched-Pareto Genetic Algorithm (NPGA) (Horn et al., 1994), and the
Multi-Objective Genetic Algorithm (MOGA) (Fonseca and Fleming, 1993),
the second generation of MOEAs entirely focus on elitism, a theoretical re-
quirement that is needed to provide convergence to the Pareto front, see
for example (Rudolph, 2001) or (Deb, 2001) for details. The most popular

thermore, we would like to mention that black-box optimization problems can also be

tackled by some classical derivative-free MCDM methods with the drawback that they

again mainly compute a single solution at a time.
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MOEAs of this second generation are the Non-Dominated Sorting Genetic
Algorithm II (NSGA-II) by Deb et al. (2002) and the Strength Pareto Evo-
lutionary Algorithm 2 (SPEA2) by Zitzler et al. (2002).

The main working principles of those MOEAs are depicted in the upper
left plot of Fig. 1. After an initialization step where the population is usu-
ally randomly drawn from the decision space, a generational loop produces
new solutions by evolutionary principles until a certain stopping criterion
terminates the algorithm—a certain number of generations or a predefined
period of time are the main stopping criteria used in practice. The popu-
lation evolves over the generations for most MOEAs in the same manner:
first, a mating selection step identifies the solutions that undergo recombi-
nation and mutation to produce new solutions. Recombination, sometimes
also called crossover, takes two or more solutions (or parents) and produces
one or more new solutions that preferable lie in the search space region be-
tween7 the parent solutions. Mutation, on the other hand, slightly changes
a solution where small changes should have a higher probability than large
changes. Where the mating selection in multiobjective evolutionary algo-
rithms most often is performed randomly, the main difference in the algo-
rithms is in the environmental selection step where it is decided how the
population of the next generation is generated from the old individuals and
the produced offspring.

In general, we distinguish between two main principles in the environ-
mental selection step. We denote an algorithm that takes both the µ parents
and the λ offspring into account and chooses the best µ ones for survival
according to an optimization criterion8 as an algorithm with plus selection;
such an EA is referred to as (µ + λ)-EA. If only the λ offspring are taken
into account, one uses the term comma selection ((µ, λ)-EA). Both NSGA-
II and SPEA2 are therefore plus-strategies which are also called elitist. For
details on the algorithms, we refer to the original publications (Deb et al.,
2002; Zitzler et al., 2002). Extensive introductions to MOEAs can be found
for example in (Deb, 2001) or (Coello Coello et al., 2007).

Recently, a new idea came up by Zitzler and Künzli (2004) and oth-
ers to incorporate user preferences explicitly into search. Instead of using
the Pareto dominance directly, the authors suggested to optimize a cer-
tain indicator function. Indicator-based MOEAs can, therefore, be seen as
a third generation of MOEAs with the Indicator-Based Evolutionary Al-
gorithm (IBEA) (Zitzler and Künzli, 2004), the S-metric Selection Evolu-
tionary Multiobjective Algorithm (SMS-EMOA) (Beume et al., 2007), and

7The meaning of the term “between” highly depends on the search space and the used

recombination operator.
8This optimization criterion is often called the individual’s fitness in the evolutionary

computation field. An example for such an optimization criterion, that is also used in

the last part of the thesis, is the individuals’ hypervolume indicator loss, cf. Sec. 4.1.2.
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f1

f2

Figure 2: Illustration of the hypervolume indicator for a solution set A ⊆ X

(dots) and a reference set R ∈ R
2 (crosses).

the multiobjective version of the Covariance Matrix Adaptation Evolution
Strategy (MO-CMA-ES) (Igel et al., 2007) as the most popular algorithms
in this category.

The most popular indicator function is the hypervolume indicator, first
proposed by Zitzler and Thiele (1998a) as the ‘size of the [objective] space
covered’. The hypervolume indicator, also known under the name S-metric,
has the property that whenever a set of solutions is dominating another set
the indicator value of the former set is higher than the one of the latter.
Therefore, the objective vectors of a solution set that maximizes the hyper-
volume indicator cover the Pareto front entirely (Fleischer, 2003).

Several equivalent definitions of the hypervolume indicator have been
proposed, cf. Sec. 4.1.1. Here, we define the hypervolume indicator in its
simplest form of (Emmerich et al., 2005; Bader and Zitzler, 2008): the
hypervolume indicator IH(A,R) of a solution set A is the Lebesgue measure
of the image of all solutions that are weakly dominated by the solution set
A and at the same time weakly dominate a certain reference set R ⊂ R

k:

IH(A,R) = λ
(

{~z ∈ R
k | ∃~a ∈ A : ∃~r ∈ R : f(~a) ≤ ~z ≤ ~r}

)

(1.1)

where λ(·) is the Lebesgue measure. Figure 2 illustrates the idea of the
hypervolume indicator for a 2-dimensional objective space.

Recently, the concept of set-based MOEAs has been proposed, the basic
principle of which says that in order to solve a multiobjective optimization
problem, i.e., in order to find a set of solutions, a MOEA should rather
optimize sets of solutions instead of single solutions within one population
(Zitzler et al., 2008, 2009; Bader et al., 2009). In the light of this discus-
sion, standard MOEAs can be interpreted as hillclimbers for set problems,
cf. the upper right plot in Fig. 1: the variation and selection operators that
are performed on single solutions can be seen as a complicated mutation
operator on the entire set, i.e., the application of solution based recombi-
nation, mutation, and selection yields a new (mutated) set of solutions. A
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general set based algorithm would therefore use set based recombination,
set based mutation and set based selection as depicted in the bottom of
Fig. 1. Bader et al. (2009) discuss these different views in more detail and
also highlight the link to parallel MOEAs. Throughout this thesis, however,
we only investigate algorithms that can be seen as hillclimbers according to
Bader et al. (2009)—with only a few proposed MOEAs that do not fit into
this scheme.

Furthermore, we want to mention various simple MOEAs that have been
proposed mainly to be theoretically analyzed or to show certain general
properties of MOEAs. The most often used are the global Simple Evo-
lutionary Multiobjective Optimizer (SEMO) (Giel, 2003; Laumanns et al.,
2004b,a), the Fair Evolutionary Multiobjective Optimizer (FEMO), (Lau-
manns et al., 2004b,a), the Restricted Evolutionary Multiobjective Opti-
mizer (REMO) (Kumar and Banerjee, 2006), and the Simple Indicator-
Based Evolutionary Algorithm (SIBEA) (Zitzler et al., 2007). Whenever
we use one of these algorithms for a theoretical analyses in this thesis, we
will give a detailed description of the algorithms.

To conclude, many multiobjective evolutionary algorithms are known
from the literature and evolutionary multiobjective optimization has gained
more and more interest in the last decade. In the meantime, also a biannual
conference on evolutionary multiobjective optimization has been organized
(Zitzler et al., 2001; Fonseca et al., 2003; Coello Coello et al., 2005; Obayashi
et al., 2007) where especially the conference in 2007 pointed out the increas-
ing interest in many-objective problems which are tackled in this thesis.

1.4 Research Questions

Especially from a theoretical point-of-view, many research questions have
been open in the field of multiobjective evolutionary algorithms for many-
objective problems in the beginning of this thesis project. We group them
into three main categories regarding (i) the general effects of adding, omit-
ting, and aggregating objectives, (ii) decision making in many-objective
scenarios and (iii) many-objective search.

Effects of Adding, Omitting, and Aggregating Objectives

It is known from several empirical studies that current multiobjective evolu-
tionary algorithms such as NSGA-II and SPEA2 have difficulties to provide
solutions close to the Pareto front if the number of objectives is high (Khare
et al., 2003; Purshouse and Fleming, 2003b; Wagner et al., 2007). Devel-
oping new algorithms that are efficient and find good Pareto front approxi-
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mations also if the number of objectives is high is therefore one major goal
with many-objective optimization. However, this is only the second step
after one understands why and when algorithms like NSGA-II and SPEA2
have problems with many-objective problems.

To this end, it is crucial to investigate the properties of many-objective
problems in general if the number of objectives changes. The main question
here is how the dominance relation and, depending on this, the behavior
of a MOEA changes if objectives are added to or omitted from a problem
formulation.

At first sight, it seems to be unquestioned that the addition of objectives
in general adds further difficulties to a problem which was also stated by
various authors (Fonseca and Fleming, 1995; Horn, 1997; Deb, 2001; Coello
Coello et al., 2007; Fleming et al., 2005). However, a few publications are
known, where the opposite is shown for specific problems—either in ex-
perimental studies such as (Knowles et al., 2001) or (Jensen, 2004) or in
theoretical analyses (Scharnow et al., 2004; Neumann and Wegener, 2006).
The question that arises with respect to these inconsistent statements is
whether the change in difficulty depends on the problem itself or whether
one and the same problem can become harder and easier to solve, depend-
ing on the type of objective that is added. Furthermore, it needs to be
investigated why and when additional objectives can help or when they add
further difficulties to a problem.

In recent years, several publications have been published that are deal-
ing with the stated questions of how the Pareto dominance relation changes
if the set of objectives is altered, see for example (Gal and Leberling, 1977;
Gal and Hanne, 1999; Fliege, 2007; Mäkelä and Nikulin, 2008; Malinowska,
2008). However, all of them investigate the influence of additional objectives
on the Pareto set solely and within a scenario where the objective functions
are known explicitly. How the addition of objectives effects multiobjective
evolutionary algorithms in a black-box-scenario, where the objective func-
tions are not given explicitly but can only be sampled, still remained open
in the beginning of this thesis project.

Decision Making with Many Objectives

A decision maker who has to evaluate a set of solutions, e.g., as found by
a MOEA, is basically overstrained if many objectives have to be taken into
account. The difficulty of visualizing high-dimensional data and the huge
amount of information are two reasons for that.

Automatically providing a compact representation of the Pareto front
approximation under consideration while the dominance relation among the
solutions is preserved is one aspect of many-objective optimization scenar-
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ios that will have a high impact in practice but which received only little
attention so far. Other questions that a decision maker is interested in in
practice need to be tackled as well. Amongst others they include the ques-
tions which objectives are conflicting with each other; which objectives are
the most important ones, or which objectives are necessary and which ones
are redundant.

From the above questions, mainly the question of conflicting objectives
has been studied before this thesis project. However, it turns out that for
three formally stated conflict definitions (Deb, 2001; Purshouse and Flem-
ing, 2003a; Tan et al., 2005), an example can be given for which the dom-
inance relation does not change if an objective is omitted—although with
respect to all three conflict definitions, the original set of objectives is con-
flicting. This observation leads to the question of whether a conflict defini-
tion can be given that accounts for changes in the Pareto dominance relation
if and only if the objective set contains conflicting objectives. Furthermore,
a measure of how much the Pareto dominance relation is changed, i.e., a
definition of a degree of conflict would complete this study and might help
a decision maker to know how accurate a set of solutions is with respect to
all objectives if only a subset of them is considered.

Search Algorithms for Many-Objective Problems

The high number of objectives in many-objective problems causes problems
not only for decision making but also for the search itself. Since state-
of-the-art MOEAs like NSGA-II and SPEA2 have difficulties to optimize
the objective functions with respect to the Pareto dominance relation due
to many incomparable solutions, several studies proposed the usage of the
hypervolume indicator as a selection criterion (Huband et al., 2003; Beume
et al., 2007; Igel et al., 2007). Within these so-called hypervolume-based
MOEAs, the hypervolume indicator induces a search direction towards the
Pareto front where the incomparabilities in the dominance relation do not
allow for an efficient optimization.

However, also hypervolume indicator based MOEAs have a drawback if
the number of objectives is high: the best known algorithms to exactly com-
pute the hypervolume indicator are exponential in the number of objectives
(Beume and Rudolph, 2006). In the meantime, the #P-hardness of the hy-
pervolume computation has been shown (Bringmann and Friedrich, 2008)
which indicates that we cannot expect to find significantly faster (exact)
algorithms in the future. Hence, to apply hypervolume-based MOEAs to
problems with many objectives, the computation time needs to be reduced
in practice by applying new techniques. Two different approaches seemed
to be reasonable in the beginning of this thesis project. On the one hand,
Monte Carlo sampling could be used to estimate the hypervolume indicator
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values; this approach has been shown to be successful in the meantime in
several studies, e.g., (Bader et al., 2008; Bader and Zitzler, 2009; Auger
et al., 2009a). On the other hand, a decrease in the running time can also
be achieved by reducing the number of objectives automatically before the
hypervolume indicator is applied. With respect to the second approach,
the question remains whether the reduced objective set still allows for an
efficient search direction.

Regarding objective reduction approaches applied during search, not
many studies are known. Besides the classical scalarization techniques that
transform a many-objective problem into a single-objective one (see Miet-
tinen, 1999; Ehrgott, 2005, for an overview), that have for example been
used by Hughes (2003) in a multiobjective optimizer, only one objective
reduction approach was known when this thesis project started: Deb and
Saxena (2005) proposed to use principal component analysis (PCA, (see
Jolliffe, 2002)) to reduce the objectives in an iterative MOEA procedure
(published as Deb and Saxena, 2006). The same authors also published
variations of this approach later on that allow for a better detection of re-
dundant information that can be omitted in a later MOEA run (Saxena and
Deb, 2007, 2008). However, the approaches of Deb and Saxena do not aim
at preserving the Pareto dominance relation and are not able to report an
error measure if objectives are omitted.

One other aspect of hypervolume-based search remained open in the
beginning of this thesis project. Using the hypervolume indicator to guide
the search introduces a certain bias, i.e., certain solution sets are preferred
against others due to their higher hypervolume indicator value although the
Pareto dominance relation might state their incomparability. In the light
of this fact, two main questions can be identified. First, one should inves-
tigate the bias of the hypervolume indicator. In particular, the question
arises which (finite) set of µ points maximizes the hypervolume indicator—
in other words, what is the optimization goal in hypervolume-based search.
Second, the question remains open how user preferences can be incorpo-
rated into hypervolume-based search algorithms if the inherent bias of the
hypervolume is not desired by the decision maker.

Many different approaches of how user preferences can be modeled and
how they can be incorporated into multiobjective search algorithms are
known—Coello Coello (2000), Rachmawati and Srinivasan (2006), and Jasz-
kiewicz and Branke (2008) provide surveys of these approaches with an
emphasis on the incorporation into MOEAs. As the authors of the surveys
mention, the known methods are not applicable if many objectives are to be
optimized. Combining them with the hypervolume indicator and the above
mentioned ideas to make hypervolume-based algorithms efficient enough
for many-objective optimization would solve this problem. The approach
of including arbitrary user preferences into the search could furthermore
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be used within an interactive search scenario (Miettinen, 1999) in which a
decision maker articulates her preferences, e.g., towards desired reference
points, during search.

1.5 Contributions

The main aim of this thesis is to provide both theoretical foundations about
many-objective optimization problems and new approaches to tackle them
in terms of hypervolume-based search. In the course of this thesis, several
contributions to the field of many-objective optimization have been made—
ranging from a general investigation about what happens if objectives are
added to or omitted from the problem formulation to the question how
preferences can be incorporated into the search.

Effects of Adding, Omitting, and Aggregating Objectives

Besides a general framework of objective conflicts and the definition of re-
dundant and minimum objective sets, the question how the Pareto domi-
nance relation is changing if objectives are added, removed, or aggregated
has been investigated in detail. Both theoretical and experimental investi-
gations gave insights into differences between problems with only one or a
few objectives and those with many.

Rigorous running time analyses of simple MOEAs have been performed
to theoretically investigate the effect of additional objectives on the opti-
mization process. In particular, it has been shown that the addition of
objectives can either increase or decrease the expected running time of a
simple MOEA depending on the added objective. Furthermore, we have
shown that even for two equally difficult single-objective problems mul-
tiobjective optimization can be beneficial, i.e., solving the two problems
simultaneously in a biobjective scenario is faster than optimizing them in
separated single-objective optimization runs.

Decision Making with Many Objectives

The main contribution with respect to assisting decision makers in many-
objective optimization scenarios is the development of a general objective
reduction framework to automatically reduce the number of objectives while
the Pareto dominance relation is preserved or only slightly changed.

To this end, the δ-error as a general error measure has been proposed to
quantify changes in the dominance structure and that is based on the gen-
eral investigations on the effects of additional objectives mentioned above.
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Using this error measure, two problem formulations are proposed. On the
one hand, we ask for an objective subset of given size resulting in the small-
est δ-error (k-EMOSS problem). On the other hand, we ask for the smallest
objective set yielding a predefined δ-error (δ-MOSS problem). The complex-
ity of both problems is analyzed and their NP-hardness is proven. Both
exact and heuristic objective reduction algorithms tackling these problems
have been proposed and analyzed. In addition, the approach of omitting ob-
jectives has been generalized to objective aggregation for which algorithms
have been proposed as well.

The usefulness of these new objective reduction techniques has been
shown in several applications. Various well-known test problems and a radar
waveform problem, proposed by Hughes (2007), have been used to show
the benefits of the new approach with respect to automatically deriving
relationships among objective sets and providing a reduced representation
of the high-dimensional outcomes of MOEAs in general.

Search Algorithms for Many-Objective Problems

The contributions to the development of efficient evolutionary algorithms
for many-objective problems especially with respect to hypervolume-based
algorithms are threefold.

First, a rigorous running time analysis of a hypervolume indicator based
MOEA has shown for the first time that the concept behind hypervolume-
based selection in MOEAs is working from a theoretical perspective. Sec-
ond, the hypervolume indicator has been generalized to a weighted case to
incorporate user preferences into the search within a many-objective sce-
nario. Different weights can be assigned to certain regions of the objective
space indicating the importance of these regions for the decision maker. Pre-
liminary experimental results show that a MOEA optimizing this weighted
hypervolume is attracted by regions with high weights and therefore can
be guided by the decision maker’s preferences9. Third, the incorporation
of the proposed objective reduction techniques into a hypervolume-based
algorithm showed the usefulness of the approach. Not only could the run-
ning time be reduced but also solutions of higher quality can be obtained
for problems with a high number of objectives.

9In the meantime, Auger et al. (2009a) showed that also in a many-objective scenario,

the proposed weighted hypervolume indicator can guide the search effectively if combined

with Monte Carlo sampling.
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1.6 Overview

The thesis is organized as follows. In the next chapter, we start with general
investigations on the effect of additional objectives, both from the perspec-
tive of the underlying dominance relation and with respect to the running
time of multiobjective evolutionary algorithms. Chapter 3 investigates the
problem of objective reduction by omitting objectives in detail. Based on a
generalized error measure, two different problem definitions are introduced,
their complexity is analyzed, and both exact and heuristic algorithms are
presented and applied to various problems. The chapter also considers the
more general problem of objective reduction by aggregating objectives and
presents corresponding algorithms to reduce the number of objectives. The
benefit of objective reduction as a tool for deriving statements about the re-
lationships between objectives is shown on the real world example of a radar
waveform optimization problem. Chapter 4 investigates hypervolume indi-
cator based search algorithms from three different perspectives. First, the
running time of a hypervolume-based algorithm is analyzed theoretically for
the first time. Second, the incorporation of user preferences into the search
is tackled by proposing a weighted version of the standard hypervolume
indicator. Third, the question how the objective reduction techniques from
Chapter 3 can be used to speed-up hypervolume-based search for many-
objective optimization is answered. In the end of this thesis, conclusions
are drawn and future research directions are pointed out in Chapter 5. A
list of acronyms and a list of symbols can be found in Appendix B and
Appendix C respectively.



2
Effects of Adding Objectives

Several multiobjective problems in practice contain many objectives, see
for example (Paechter et al., 1998; Gobbi et al., 1999; Coello Coello and
Hernández Aguirre, 2002; Rudenko et al., 2002). Furthermore, it is even
convenient in practice to add as many objectives as possible to a problem
formulation without the need to specify preferences among them1. On the
other hand, all existing multiobjective evolutionary algorithms in the be-
ginning of this thesis project were known to have difficulties to produce a
solution set close to the Pareto front if the number of objectives is larger
than 3 (Khare et al., 2003; Wagner et al., 2007; Purshouse and Fleming,
2007). Knowles and Corne (2007) showed under the assumption of a one-
to-one mapping between decision and objective space that for some prob-
lems, even a simple random search can outperform evolutionary algorithms
(in this case PESA-II (Corne et al., 2001)) if the number of objectives is
more than 5. Furthermore, the investigations of Purshouse and Fleming
(Purshouse and Fleming, 2007) show that the behavior of a multiobjective
evolutionary algorithm on a problem with few objectives cannot be gener-
alized to a higher number of objectives.

In the light of these facts, the two questions arise which properties of
many-objective problems cause the difficulties for multiobjective evolution-
ary algorithms and how we can deal with them to develop algorithms that
are efficient if the number of objectives is high.

1In such a case, the idea is to learn about the problem and which objectives are

interesting after a first optimization of all objectives. Later on, when information about

the objectives’ trade-offs is known, the decision which objectives to consider in the end

is supposed to be easier than defining preferences among the objectives beforehand.
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One explanation, various researchers list in favor of the assumption that,
in general, the search becomes harder the more objectives are involved is
the increase in the number of incomparable solutions (Fonseca and Fleming,
1995; Horn, 1997; Deb, 2001; Fleming et al., 2005; Purshouse and Fleming,
2007; Knowles and Corne, 2007; Coello Coello et al., 2007). Winkler (1985)
proved that the number of incomparable solutions increases if further ran-
domly generated objectives are added. Thereby, on the one hand the Pareto
front may become larger and on the other hand the power of the dominance
relation to guide the search may diminish.

In a contrast, a few publications point out that reformulating a problem
in terms of more objective functions can reduce the computational cost of
the optimization process. For example, Jensen (2004) successfully used ad-
ditional “helper-objectives” to guide the search of evolutionary algorithms
in high-dimensional spaces. A similar approach was proposed by Knowles
et al. (2001) where single-objective problems are “multiobjectivized”, i.e.,
decomposed into multiobjective problems which are easier to solve than the
original problems. Also the idea of turning constraints of single-objective
problems into additional objectives have been shown to reduce optimiza-
tion cost until good solutions are found (Mezura-Monets and Coello Coello,
2007) although Runarsson and Yao (2005) pointed out that this is not ef-
fective on all kinds of problems due to a wrong search bias. Furthermore,
the addition of an objective has been shown to be beneficial in terms of
reducing bloat in Genetic Programming, see for example (Bleuler et al.,
2001), (Ekárt and Németh, 2001), and (de Jong et al., 2001). Besides these
empirically oriented studies, there are theoretical results supporting the hy-
pothesis that multiobjectivization can help: Scharnow et al. (2004) showed
that the Single Source Shortest Path problem is easier to solve for simple
EAs when formulated as a multiobjective problem; Neumann and Wegener
(2006) proved for the Minimum Spanning Tree problem that a formulation
with two objectives leads to a lower running time complexity of simple EAs
than the original single-objective version. Recently, similar investigations
have been made for finding good approximations of the vertex cover problem
(Friedrich et al., 2007).

These contradicting opinions on what happens if the number of objec-
tives is increased do not allow for a general statement and the question
occurs whether the effect of an additional objective depends on the prob-
lem formulation itself or if one and the same problem can become both
harder and easier depending on the type of objective that is added. This
chapter investigates the effects of additional objectives from a theoretical
perspective. Thereby, the goal is twofold:

• On the one hand, we provide a basic investigation on how adding and
omitting objectives in a multiobjective problem scenario affects the
(weak) Pareto dominance relation between the solutions (Sec. 2.1).
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• On the other hand, we show how the addition of objectives affects the
running time of multiobjective evolutionary algorithms by means of
rigorous running time analyses (Sec. 2.2).

The results build the basis of new approaches to tackle many-objective
problems in terms of objective reduction as presented in the next chapter.

2.1 The Effects of Additional Objectives on

the Dominance Structure

Most multiobjective evolutionary algorithms are explicitly or implicitly us-
ing the (weak) Pareto dominance relation to guide the search. For example,
if non-dominated sorting (NSGA-II), dominance count (SPEA2), or the hy-
pervolume indicator (SMS-EMOA, MO-CMA-ES) are taken into account,
all mentioned algorithms favor a set of solutions against a second one if the
former dominates the latter. Understanding the effects of additional objec-
tives on the dominance structure therefore helps to understand how domi-
nance relation based multiobjective evolutionary algorithms are affected by
additional objectives.

To illustrate how the weak Pareto dominance relation is modified when
objectives are removed from or added to a problem, its representation in
terms of a relation graph is useful. The relation graph for the weak Pareto
dominance relation is given by the tuple (A,�F ′) for a solution set A and
an objective set F ′. It contains for each solution a corresponding node and
for each solution pair ~x, ~y ∈ A ⊆ X an edge from the node associated with
~x to the node associated with ~y if and only if ~x weakly dominates ~y with
respect to F ′.

Example 1. Consider the multiobjective scenario depicted in Fig. 3 by
a parallel coordinates plot2. There are four objectives f1, f2, f3, and f4,
and four solutions ~a (solid line), ~b (dashed), ~c (dotted), and ~d (dashed-
dotted) which are pairwisely incomparable with respect to the objective set
F = {f1, f2, f3, f4}. The relation graphs for all possible relations �F ′⊆F

that are associated with specific objective subsets are shown in Fig. 4. As
the solutions are pairwisely incomparable, the relation graph of �{f1,f2,f3,f4}

contains only the reflexive edges (Fig. 4(o)).

Now, how does adding an objective affect the overall relation graph?
Starting with a single-objective problem, the weak Pareto dominance rela-

2cf. (Purshouse and Fleming, 2003a)
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f1 f2 f3 f4

~a 5.0 4.5 2.0 1.0
~b 2.5 1.0 1.0 7.0

~c 2.0 3.0 4.0 8.0
~d 1.0 4.0 3.0 6.0
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Figure 3: Objective function values (left) and parallel coordinates plot (right)

for the given example with four solutions and four objectives; all objectives have

to be minimized.

tion �{fi} always forms a total preorder3, i.e., all solution pairs are compara-
ble, cf. Fig. 4(a-d). With an additional objective, the relation between any
two solutions ~x, ~y ∈ X can be changed in two ways: (i) ~x and ~y have been
comparable, but not indifferent, and now become incomparable because ~x
is better regarding the first objective and ~y regarding the second (or vice
versa), or (ii) ~x and ~y have been indifferent, but now one solution domi-
nates the other one because it is better regarding the additional objective.
The same holds if an objective is added to a multiobjective problem. Re-
garding the relation graph, that means that an additional objective either
leaves the edges between two nodes unchanged or removes exactly one edge;
overall, adding objectives can only remove edges from the relation graph.
Contrariwise, if one or several objectives are omitted, edges are added to
the relation graph: incomparable solutions may become comparable, and a
solution dominated by another one may become indifferent to it.

Example 2. Consider the solution pair ~a,~b in Fig. 3. When taking only
objective f1 into account as a single-objective minimization problem, solu-
tion ~b is preferred to solution ~a, i.e., ~b weakly dominates ~a, see Fig. 4(a). If

objective f2 is added, ~b still weakly dominates ~a since solution ~b has smaller
objective values than ~a in both objectives f1 and f2 (Fig. 4(b) and (e)). In

the case of adding objective f4, the two solutions ~a and ~b become incompa-
rable due to the fact that ~a weakly dominates ~b with respect to f4. The edge
between ~a and ~b in the corresponding relation graph disappears, see Fig. 4(l).

3A relation that is reflexive, transitive and total is called total preorder; if it is also

antisymmetric, it is called a total order. Note, that the weak Pareto dominance relations

for single objectives are usually only total preorders and not total orders, since solutions

with the same objective value can exist, i.e., the antisymmetry of �{fi} cannot be guar-

anteed. For the definition of preorders and the background of order theory in general,

we refer to extensive text books such as (Schröder, 2003) or (Harzheim, 2005).
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Figure 4: Relation graphs for the solutions depicted in Fig. 3.

Since a solution ~x weakly dominates another solution ~y with respect to
an objective set if and only if ~x weakly dominates ~y with respect to every
single objective, an edge can only be contained in the relation graph for �F

if for every subset F ′ ⊆ F the corresponding relation graph contains the
edge. This can be formalized in the following theorem.

Theorem 1. If F = {f1, . . . , fk} is a set of k objective functions then
�F =

⋂

1≤i≤k �{fi}.

Proof. Let ~x, ~y ∈ X. Then ~x �F ~y ⇐⇒ ∀i ∈ {1, . . . , k} : fi(~x) ≤ fi(~y) ⇐⇒
∀i ∈ {1, . . . , k} : ~x �{fi} ~y ⇐⇒ (~x, ~y) ∈ ⋂1≤i≤k �{fi}.

Contrary to these results about adding objectives, Handl et al. (2008)
recently investigated how the decomposition of a single objective into dif-
ferent objective functions changes the dominance structure. Here, a single
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objective function is said to be decomposed into k new objectives if for each
solution in the decision space, the sum of the new objective values equals the
original single-objective function value. The observations by Handl et al.
(2008) point out that with the decomposition of an objective into several
ones, the Pareto dominance relation can change in less different ways than
when adding a new objective: whenever a solution dominates another solu-
tion with respect to the decomposed objectives (without being indifferent),
the same relation already holds for the original objective (the “gradient
cannot be reversed”); in other words, the only possible change is that in-
different solutions can become incomparable. The possibility of introducing
a direction by decomposing the single objective is not given (a “gradient
cannot be introduced”).

2.2 The Effect of Additional Objectives on

Multiobjective Evolutionary Algorithms

After investigating the influences of adding or omitting objectives on the
dominance structure, the question remains, how these changes in the prob-
lem definition affect the running time of evolutionary algorithms.

Rigorous running time analyses of evolutionary algorithms on single-
objective problems have been carried out extensively in the last decade
(Jansen and Wegener, 2001; He and Yao, 2002; Droste et al., 2002; Beyer
et al., 2002; Giel and Wegener, 2003, and many more) since the early con-
vergence results, e.g., by Rudolph (1994). For a detailed overview of recent
theoretical studies on single-objective evolutionary algorithms, we refer to
the review of Oliveto et al. (2007b). Also investigations of the expected run-
ning time of multiobjective evolutionary algorithms have been performed,
amongst others (Giel, 2003; Laumanns et al., 2004b,a; Horoba and Neu-
mann, 2008; Friedrich et al., 2008). Some of these running time analyses
have shown that a decomposition of a single-objective problem into two or
more objectives is beneficial for simple MOEAs. Scharnow et al. (2004),
for example, have shown that the single source shortest path problem is
easier to solve in a multiobjective formulation than in the single-objective
version. The same holds for the minimum spanning tree (Neumann and
Wegener, 2006) or the vertex cover problem (Friedrich et al., 2007). A more
general investigation about what can happen if a single-objective problem is
decomposed into two objectives has been carried out by Handl et al. (2008)
recently. On the basis of four different problems, the authors show in this
study that the decomposition of a single objective into two objectives can
both reduce and increase the expected running time of simple evolutionary
algorithms—dependent on the decomposition.
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However, the question of how a multiobjective evolutionary algorithm
is affected if a new objective is added and the single objective is kept in
the new formulation remains open. Furthermore, no examples are known
whether one and the same problem can become harder and easier depending
on the chosen objective. It is also not obvious whether two equally difficult
problems can be simultaneously solved in a shorter time if they are combined
to one problem.

All three questions will be addressed in the following by means of rig-
orous running time analyses and supplementary experimental results. Sec-
tion 2.2.2 presents a problem for which simple evolutionary algorithms can
become both slower and faster if different objectives are added to the prob-
lem. In contrast to (Scharnow et al., 2004), (Neumann and Wegener, 2006),
(Friedrich et al., 2007), and (Handl et al., 2008), where the original objective
is replaced by two other objectives, we here consider the case that the origi-
nal objective remains in the objective set. The algorithms considered in the
analyses are presented in Sec. 2.2.1. Section 2.2.3 shows that two equally
difficult single-objective problems can be solved faster if they are combined
to a multiobjective problem and Sec. 2.2.4 experimentally underpins the
theoretical results, shown before, for the case of biobjective problems that
become 3-objective problems by adding a third objective.

The main observation behind both the running time analyses and the ex-
perimental studies is that problems may contain so-called plateaus (Jansen
and Wegener, 2001). A plateau is a part of the search space where the prob-
lem does not indicate any search direction. More precisely, the definition
of a plateau involves a neighborhood function: whenever in a set of neigh-
bored solutions, the objective functions do not indicate a search direction—
because all solutions are either pairwisely incomparable or indifferent—the
solution set is called a plateau.

As we will show in the reminder of this chapter, an additional objective
can remove or introduce those plateaus. Since an evolutionary algorithm,
be it a single- or a multiobjective one, performs a random walk on these
plateaus as it was shown for some of the well-known combinatorial opti-
mization problems (Giel and Wegener, 2003; Neumann and Wegener, 2004;
Witt, 2005)4, the removal or introduction of plateaus by adding objectives
can change the running time behavior of evolutionary algorithms drasti-
cally. Depending on whether the additional objective introduces the right
or a deceptive search direction on a former plateau, or a good or decep-
tive direction is eliminated by introducing a plateau, the problem becomes
harder or easier to solve for an evolutionary algorithm. By good and decep-
tive search direction we mean that the Pareto dominance relation is giving

4Although this fact was only reported for combinatorial optimization problems, also

continuous MOEAs might perform a random walk on plateaus. Furthermore, there is no

obvious reason why non-combinatorial problems cannot contain plateaus as well.
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Algorithm 1 (1+1)EA

Choose ~x ∈ {0, 1}n uniformly at random

repeat

Create ~x′ by flipping each bit of ~x with probability 1/n

if f(~x′) ≥ f(~x) then set ~x := ~x′

until stop

the evolutionary algorithm the correct or wrong information about where
to expect better solutions: the introduced search direction is called “cor-
rect” or “good” if following the indicated direction will reduce the distance
towards the Pareto set (in terms of a distance measure such as Hamming
distance); if following the indicated direction will drive the MOEA away
from the Pareto set, the search direction is called deceptive.

2.2.1 Global SEMO and Other Simple Algorithms

Many multiobjective evolutionary algorithms are known from the litera-
ture, cf. Sec. 1.3. However, for theoretical running time analyses, only very
simple algorithms have been considered so far due to the complex analyses
necessary for practical but more complicated algorithms. Also here, we con-
sider only simple algorithms that are well-known from various theoretical
studies but at the same time contain the basic concepts of other more com-
plicated Pareto dominance based algorithms which allows us to rigorously
analyze their running time behavior and to study the changes if additional
objectives are considered.

As to the decision space, we consider the set of binary strings of length
n, i.e., X = {0, 1}n. The objective space will either be spanned by one
or by more discrete objectives, i.e., the objective space is N

k with varying
k. Concerning the algorithms, we therefore examine both single-objective
(k = 1) and multiobjective (k > 1) evolutionary algorithms. Note, that
we—in contrast to the previous section—consider maximization problems
here to comply with the original publications (Brockhoff et al., 2007a, 2009).

For single-objective optimization problems, our analyses are based on
the (1+1)EA (Algorithm 1) which has been considered in many theoretical
investigations on simple test functions, see, e.g., (Droste et al., 2002), as
well as on some of the best-known combinatorial optimization problems
(amongst others Giel and Wegener, 2003; Neumann and Wegener, 2004;
Witt, 2005; Oliveto et al., 2007a; Neumann, 2008). The algorithm works
with a population of size 1 together with elitism-selection and creates in
each iteration one offspring by flipping each bit with probability 1/n. Note
that for the theoretical running time analyses to follow, we assume that
the algorithm is never stopped; instead, we are interested in the number of
objective function calls until an optimal solution is found for the first time.
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Algorithm 2 Global SEMO

Choose ~x ∈ {0, 1}n uniformly at random

Determine f(~x)

P ← {~x}
repeat

Choose ~x ∈ P uniformly at random

Create ~x′ by flipping each bit of ~x with probability 1/n

Determine f(~x′)

if ~x′ is not dominated by any other search point in P then

include ~x′ into P and delete all solutions dominated by ~x′ or with

objective vector f(~x′) from P

until stop

To this end, we define the number of constructed solutions until an
optimal one has been created for the first time as the running time or
optimization time of such a single-objective algorithm. Since the algorithms
we investigate are of stochastic nature, the running time is a discrete random
variable. Often, and also in this study, the expected running or optimization
time is sought, i.e., the expectation of the number of objective function
evaluations until the first optimal solution is found.

In the studies to follow, we compare the single-objective (1+1)EA with
its multiobjective counterpart called Global SEMO (Global Simple Evolu-
tionary Multiobjective Optimizer; Algorithm 2) (Laumanns et al., 2002b;
Giel, 2003) which has been investigated in the context of different multiob-
jective problems, e.g., spanning tree problems (Neumann, 2004; Neumann
and Wegener, 2006), vertex cover (Friedrich et al., 2007), or minimum cut
and multicut problems (Neumann et al., 2008; Neumann and Reichel, 2008).
Global SEMO starts with an initial population P that consists of one sin-
gle individual that is chosen uniformly at random in the decision space.
In each generation, an individual ~x is chosen uniformly at random from P
to produce one child ~x′ by mutation. In the mutation step, each bit of ~x
is flipped with probability 1/n to produce the offspring ~x′. After that, ~x′

is added to the population if it is not dominated by any individual in P .
If ~x′ is added to P all individuals of P that are dominated by ~x′ or have
the same objective vector as ~x′ are removed from P . As for the (1+1)EA,
Global SEMO never stops and we are interested in the number of objective
function computations until for each objective vector in the Pareto front
a solution is found that maps to this vector. Global SEMO is detailed in
Algorithm 2.

With respect to multiobjective problems, we define the running time or
optimization time of a multiobjective evolutionary algorithm as the number
of constructed solutions until for each point of the Pareto front a solution
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that maps to this point in objective space has been included into the pop-
ulation. The expectation of this random variable is again called expected
running time or expected optimization time.

In addition to the above introduced algorithms (1+1)EA and Global
SEMO, we consider variants that use a different mutation operator. This
asymmetric mutation operator has been proposed by Jansen and Sudholt
(2005) in order to have a simple mutation operator that preserves the num-
ber of bits that are set to one. Jansen and Sudholt (2005) argue that in
many combinatorial optimization problems that are tackled by evolutionary
algorithms, the number of bits that are set to one is either very high or very
low for optimal solutions5. The normal mutation operator that flips each
bit with probability 1/n always tends to produce offspring with an equal
number of ones and zeros—the probability to generate an offspring with
the same number of ones is low, especially if the parent solution has only
a few bits set to one. This observation leads to the assumption that the
new asymmetric mutation operator might reduce the running time of evolu-
tionary algorithms on some combinatorial optimization problems—that the
usage of asymmetric mutation can drastically decrease the running time of
simple evolutionary algorithms on simple test functions has been proven
theoretically in the work of Jansen and Sudholt (2005).

To define the asymmetric mutation operator, let us denote the number
of ones in a given bitstring ~x by |~x|1 and the number of zeros in this string
by |~x|0. The asymmetric mutation operator of Jansen and Sudholt (2005)
flips each bit of the parent solution ~x dependent on its value. If the bit
is set to 1, it is flipped to 0 with a probability that is anti-proportional
to the number of one bits in the bitstring of ~x, more precisely, with a
probability of 1/(2|~x|1). Contrariwise, the same holds for a flip from a 0 to
a 1 while zeros and ones are interchanged. Algorithm 3 shows the pseudo
code of this asymmetric operator. We denote the algorithms that differ
from the (1+1)EA and Global SEMO by using the mutation operator given
in Algorithm 3 by (1+1)EAasy and Global SEMOasy respectively.

Algorithm 3 Asymmetric Mutation Operator

Create ~x′ by flipping each bit xi of ~x with probability 1/(2|~x|1) if xi = 1

and with probability 1/(2|~x|0) otherwise

5One example, given in the work of Jansen and Sudholt (2005) is the minimum span-

ning tree problem in an edge selection representation where all minimum spanning trees

have exactly n− 1 of the often Θ(n2) bits set to 1.
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2.2.2 Adding Objectives to a Plateau

The basis for all running time analyses to follow has been given already in
Sec. 2.1: the addition of an objective can only make

(i) comparable solutions incomparable and

(ii) an indifferent relation between solutions a comparable one.

Of course, both cases can occur simultaneously if an objective is added.
Surprisingly, in both cases, a problem can become easier or harder to solve
as is shown analytically in the following. Generally speaking, case (i) turns
a region, where the weak Pareto dominance relation indicates a direction,
into a plateau of incomparable solutions, whereas case (ii) turns a plateau
of indifferent solutions into a region where a direction is given by the weak
Pareto dominance relation. The different behavior of additional objectives
in both cases depends on the direction in which the weak Pareto dominance
points. In case (i), where comparable solutions become incomparable, the
comparability between solutions can either lead to the Pareto front or be
deceptive. The addition of an objective will cause a new plateau of in-
comparable solutions but in the latter case, the incomparability will help to
solve the problem, whereas in the former case the incomparability will make
the problem harder. In case (ii), the problem can either become harder or
easier when changing the dominance structure from a plateau of indifferent
solutions into a region of comparable solutions. Depending on whether the
newly introduced relations between solutions will lead to the Pareto front or
behave deceptively, the computational effort to identify the Pareto optima
may decrease or increase.

The running time analyses presented in this section mainly investigate
the second type of change in the dominance relation on the basis of a simple
plateau function. The problem formulation Plateau1 : {0, 1}n → N con-
tains a set of n−1 search points that form a plateau, i.e., these search points
have the same objective value of n + 1. We denote by SP1 := {1i0n−i, 1 ≤
i < n} this set of search points and define Plateau1 as

Plateau1(~x) :=











|~x|0 : ~x 6∈ SP1

n + 1 : ~x ∈ SP1

n + 2 : ~x = 1n.

Note, that this function is similar to the function spcn already investigated
by Jansen and Wegener (2001). The only difference is that the all-zero
string 0n belongs to the plateau of indifferent solutions in spcn but not in
Plateau1. The differences in the absolute objective function values be-
tween the two problem definitions do not influence the dominance structure
between the solutions.
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Figure 5: Relation graph for the objective function Plateau1 : {0, 1}4 → N.

Reflexive and transitive edges are omitted for clarity.

The relation graph of Plateau1 for n = 4 is shown in Fig. 5. The
search is directed to the all zero-string as long as no search point with
objective value at least n + 1 has been produced. This has the effect for
simple randomized search heuristics such as the (1+1)EA that after having
reached the plateau the Hamming distance to the optimal search point 1n

is large. Nevertheless, the structure of the plateau admits a fair random
walk. The following theorem shows an expected optimization time of Θ(n3)
for the (1+1)EA.

Theorem 2. The expected running time of the (1+1)EA on Plateau1 is
Θ(n3).

Proof. As the relative structure of Plateau1 and spcn (as defined in
(Jansen and Wegener, 2001)) are identical besides the inclusion of 0n in the
plateau or not, we can reuse all ideas used in the proof of Jansen and We-
gener (2001) for the expected running time O(n3) of the (1+1)EA on spcn.
Therefore, also on Plateau1 the expected running time of the (1+1)EA
can be bounded by O(n3).

We will now prove a lower bound of Ω(n3). In the initialization step of
the (1+1)EA, a solution ~x ∈ {0, 1}n is produced that fulfills |~x|1 ≤ 2

3
n with

probability 1 − o(1) which can be shown by applying Chernoff bounds, cf.
(Motwani and Raghavan, 1995). As long as the current solution is not in
SP1 and not equal to 1n, the value |~x|1 is non-increasing. Thus, the first
individual ~x chosen by the (1+1)EA that is in the set SP1 has the property
|~x|1 ≤ 2

3
n with probability 1− o(1). Once the current search point is in the

set SP1, only children also from the set SP1 are accepted. Hence, only the
following mutations are allowed for an accepted mutation step. The first
bits of ~x that are 0’s or the last bits of ~x that are 1’s can be flipped. The
probability to flip 4 or more of these bits in an accepted step is at most
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∑n
i=4 2( 1

n
)i(n−1

n
)n−i = O(n−4). Thus, with probability 1 − o(1) no such

mutation will be accepted in time Θ(n3). The probability for a mutation
step consisting of 3 flips that is accepted is at most 2( 1

n
)3(n−1

n
)n−3 = O(n−3).

With probability 1 − o(1) there will be only a constant number of such
mutation steps in time Θ(n3). By the same arguments, there are only O(n)
accepted mutation steps with exactly two flips and only O(n2) accepted
mutation steps with exactly one flipped bit in time Θ(n3). Therefore, in time
Θ(n3) the two and three bit flip mutations can only decrease the Hamming
distance of the current search point ~x to the point 1n by at most O(n

1
2 ) with

probability 1− o(1), since the two bit flip mutations and the three bit flip
mutations both perform a random walk on the line SP1. Thus, the search
point has to cover a distance of order Θ(n) by one-bit flip mutations. This
takes Θ(n2) accepted one-bit flips with probability 1 − o(1) using similar
arguments as in (Doerr et al., 2006). Since the expected time for an accepted
one-bit flip is Θ(n), the time until the (1+1)EA has reached the search point
1n is Ω(n3).

The analyses of variants of the (1+1)EA in (Giel and Wegener, 2003;
Doerr et al., 2006; Neumann, 2008) point out that some of the well-known
combinatorial optimization problems such as maximum matching or Eule-
rian cycle have natural objective functions introducing plateaus of a similar
structure as in Plateau1. This observation shows that the investigation
of the simple Plateau1 function and how the addition of objectives influ-
ences the running time of simple evolutionary algorithms play a key role
for understanding the affects of additional objective on other combinatorial
optimization problems. A better understanding of the effects of additional
objectives to a problem may also lead to more efficient search heuristics if
objectives are added.

In the following, we investigate the effect of adding two of the simplest
non-trivial objective functions to the problem Plateau1 and consider the
behavior of Global SEMO on these functions. More precisely, we consider
the maximization of the biobjective problems

Plom(~x) := (Plateau1(~x), |~x|1)
Plzm(~x) := (Plateau1(~x), |~x|0)

and show that Global SEMO is faster (cf. Theorem 3) on Plom and expo-
nentially slower on Plzm (cf. Theorem 5) than the (1+1)EA on Plateau1.
Note that according to Knowles et al. (2001), two main properties have to
be fulfilled if additional objectives or the decomposition into several new
objectives should be beneficial in terms of multiobjectivization for discrete
problems: (i) the single-objective optimum should be included in the new
Pareto set6 and (ii) the Pareto front of the new problem should be as small

6This property is always fulfilled if objectives are only added and the original ones

are kept.



30 Chapter 2. Effects of Adding Objectives

as possible. Otherwise, the optimization algorithm cannot find the optimum
of the original problem in reasonable time when optimizing the reformulated
problem. Both the inclusion of the single-objective optimum within the new
Pareto front and the small size of the resulting front is given for the two
problems Plom and Plzm7. We would also like to mention that the fo-
cus in the following lies on the investigation of the search behavior on the
plateau SP1. The fact that the problems Plom and Plzm only have one
or two Pareto-optimal solutions is not a restriction. Problems with larger
Pareto sets can be constructed for which the same differences in running
time can be shown if different objectives are added. As mentioned above,
problems where the addition of objectives can reduce the running time of
evolutionary algorithms are known in practice (Jensen, 2004; Greiner et al.,
2007) and the reason for the study to follow is to understand the reasons
for such a change in running time.

We now consider how Global SEMO optimizes problem Plom. The
first observation is that all ~x ∈ SP1 are comparable in Plom while they
are indifferent in Plateau1. The second objective |~x|1 of Plom gives the
Global SEMO the “right direction” to move on the former plateau (n+1, ·)
up to the only Pareto optimum 1n. Furthermore, all solution pairs that
are not in SP1 are either indifferent or incomparable which, in addition,
does not indicate the “wrong” direction for the algorithm. This can be seen
nicely in the relation graph of Plom in Fig. 6. Both observations are the
reason why Global SEMO is optimizing Plom significantly faster than the
(1+1)EA optimizes Plateau1 which is proven in the following theorem.

Theorem 3. The expected optimization time of Global SEMO on Plom is
Θ(n2 log n).

Proof. The single Pareto optimum of Plom is 1n with the corresponding
objective vector (n + 2, n). The population size is bounded by O(n) as
each objective function maps to at most n + 3 different values. If the
initial random search point ~x ∈ {0, 1}n is in SP1, Global SEMO will walk
along the objective vectors (n + 1, ·) up to 1n in expected O(n2 log n) steps.
This follows from the Coupon Collector’s Problem (Motwani and Raghavan,
1995) and the fact that in each step the algorithm chooses with probability
≥ 1/n the uppermost search point of SP1. If the initial solution is not in
SP1, Global SEMO produces solutions that trade off between the number

7Note further that for both problems Plom and Plzm, the second objective changes

the relation between solutions in comparison to the single-objective problem Plateau1

and therefore changes the runtime behavior of evolutionary algorithms that take the

weak Pareto dominance relation into account. This property of the additional objectives

is not reflected by previous definitions of conflict between objectives as, e.g., in (Deb,

2001) and Tan et al. (2005), but is covered by the definition of conflict proposed later

on. See Chapter 3 for details on the different conflict definitions.
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Figure 6: Relation graph for the biobjective problem Plom : {0, 1}4 → N
2.

Reflexive and transitive edges are omitted for clarity.

of ones and zeros due to the incomparability of the solutions outside SP1.
In this case, we consider the number of steps until a solution with objective
vector (n + 1, ·) is included or solution 1n is found. Since the population
size is bounded by O(n), the expected number of steps to go from an ~x with
|~x|1 = k to an ~x′ with |~x′|1 = k + 1 is O(n · n/(n − k)). Therefore, after
O(n2

∑n
k=1 1/k) = O(n2 log n) steps, the single Pareto-optimal search point

1n is found even if the path SP1 is never reached.

For the proof of the lower bound we consider a slight modification of
the Global SEMO model and argue afterwards why this is admissible. We
assume that every newly generated child is accepted by Global SEMO. This
is indeed the case in the phase until Global SEMO has determined the first
solution ~x with Plateau1(x) > n because a new search point outside SP1

is either incomparable or indifferent to all solutions in the population. We
will show that with probability 1− o(1) the modified model is not different
from Global SEMO in the phase we are analyzing later on. Since the initial
individual is uniformly distributed in {0, 1}n and the mutation step produces
from a uniformly distributed parent a uniformly distributed child, every
element ~x having |~x|1 = i that is newly generated in our modified model
is uniformly distributed in {~x ∈ {0, 1}n, |~x|1 = i}. For every such element
~x the probability that it is mutated to an element ~x′ with |~x′|1 = i and
Plateau1(~x

′) ≥ n is exactly 1/
(

n
|~x′|1

)

. Thus, the probability that every

produced ~x′ ∈ {0, 1}n with 3 ≤ |~x′|1 ≤ n − 3 in Θ(n2 log n) steps fulfills
Plateau1(~x

′) < n is at least
(

1− 1
(

n
3

)

)O(n2 log n)

= 1− o(1) .

In other words, with probability 1− o(1) our model behaves in Θ(n2 log n)
steps exactly like Global SEMO and produces no solution ~x′ for which
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Plateau1(~x
′) > n as long as every element ~x of the current population

fulfills 3 ≤ |~x|1 ≤ n− 3. For the lower bound proof it is enough to restrict
ourselves to this fraction of cases.

Let amin := min~x∈P min{|~x|0, |~x|1} be the minimal number of ones re-
spectively zeros of an individual in the current population P . Until the
first individual ~x ∈ {0, 1}n with Plateau1(~x) > n is produced, the value
amin is decreasing and the population size is increasing. More informally,
the population spreads over the plateau X \ {SP1 ∪ {1n}} of incomparable
and indifferent solutions. After the initialization, amin ≥ n

3
holds with high

probability using Chernoff bounds. We regard the phase where amin is in
the range between n

3
and n

4
and show that the population size after this

phase is of order Θ(n) with probability at least 1/2.

To this end, let us consider only steps that decrease amin. We show
that the expected decrease of amin in all such steps in the phase where
n
4
≤ amin ≤ n

3
is bounded above by 2. To obtain from a step that decreases

amin by i a step that decreases amin by i + 1 one of the remaining (at most
n
3
) ones respectively zeros has to be flipped. The probability for this extra

flip is at most n
3
/n = 1

3
. Thus, the expected decrease of amin in such steps is

at most 2 (geometric series). Therefore, the average decrease of amin in the
phase where n

4
≤ amin ≤ n

3
is larger than 4 with probability less than 1/2. It

follows that with probability at least 1/2 the population size is Θ(n) when
having obtained for the first time a solution with at most n

4
ones respectively

zeros. With high probability, amin is greater or equal 2n1/4 at this time. In
other words, we can assume that there are at least 2n1/4 ones respectively
zeros left in every element of the current population of size Θ(n).

For every ~x in the current population, we define a(~x) := min{|~x|0, |~x|1}
such that amin = min~x∈P{a(~x)}. Now we consider the time to reduce amin

from n1/4 to 3. The probability to produce from a solution ~y with a(~y) >
amin +n1/4 an improving ~z is of order O(n−n1/4

) and therefore such an event
does not happen within a polynomial number of steps with probability close
to 1. We call a step a k-step iff it creates a solution ~z with |~z|1 > |~y|1 by
flipping k of the remaining 0-bits (respectively the remaining 1-bits) of a
solution ~y. The probability to flip k of these bits in a single mutation step

of a solution ~y with a(~y) ≤ amin + n1/4 is upper bounded by
(

amin+n1/4

n

)k

=

O(n−3k/4). Since the probability that a ~y with amin ≤ |~y|1 ≤ amin + n1/4

will be chosen for the mutation from the current population is of order
O(n−3/4), the probability for a k-step mutating a ~y from that region is
O(n−3(k+1)/4). Hence, for k ≥ 2 this does not happen within Θ(n2 log n)
steps with probability 1− o(1) using Markov’s inequality. This implies that
with probability 1−o(1) a solution ~z with a(~z) < amin can only be produced
by mutating the at most 2 elements of the population with a–value amin.
The expected time to reduce the current amin to amin − 1 by 1-steps under
the condition that an ~x with a(~x) = amin has been chosen for mutation is
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n
amin

. Thus, the expected time to reduce the value amin from n1/4 to 3 is of
order

Θ(n)
n1/4
∑

r=4

n

r
= Θ(n2 log n).

This shows that the expected time until the first search point ~x ∈ {0, 1}n
with Plateau1(~x) > n is determined by Global SEMO is Ω(n2 log n), which
completes the proof.

Using the asymmetric mutation operator, the function Plateau1 be-
comes much harder. Jansen and Sudholt (2005) have shown that the prob-
ability that (1+1)EAasy optimizes Plateau1 in 2O(n1/4) steps is bounded

above by 2−Ω(n1/4). In contrast to this, the search gets easier if the objective
|~x|1 is added, i.e., if Plom is optimized by Global SEMO, as it is shown in
the next theorem.

Theorem 4. The expected optimization time of Global SEMOasy on Plom
is Θ(n2)

Proof. First assume that the population contains an element ~x ∈{1i0n−i, 1≤
i ≤ n}. For such an element ~x, Global SEMOasy behaves on Plom like the
(1+1)EAasy on |x|1. According to (Jansen and Sudholt, 2005), (1+1)EAasy

needs an expected time of O(n) to optimize |x|1. As the population size is
at most O(n), the optimum is reached after an expected number of O(n2)
steps.

Now assume that we start with an element ~x 6∈ {1i0n−i, 1 ≤ i ≤ n}. We
will analyze the expected number of steps to reach the optimum assuming
that no element from {1i0n−i, 1 ≤ i ≤ n} enters the population. Otherwise
we already know that we need at most an additional number of O(n2) steps
in expectation to reach the optimum. To mutate an element ~x towards the
optimum, a mutation which flips no one-bit and at least one zero-bit can
be used. The probability that such a mutation happens for a given ~x is

p(~x) :=

(

1− 1

2|~x|1

)|~x|1
(

1−
(

1− 1

2|~x|0

)|~x|0
)

.

Since
1

2
≤
(

1− 1

2k

)k

≤ e−1/2,

we can bound this probability by p(~x) ≥ 1−e−1/2

2
where we denote Euler’s

number by e ≈ 2.718 . . . throughout this work. As two elements ~x, ~y ∈
({0, 1}n \ {1i0n−i, 1 ≤ i ≤ n}) with |~x|0 6= |~y|0 do not dominate each other,
as soon as a mutation creates an element with k ones, the population will
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contain one such element until the end of the algorithm. Hence, we need an
expected number of

O

(

n ·
n−1
∑

i=0

2

1− e−1/2

)

= O(n2)

steps to reach the optimum, as a specific element of the population is picked
with probability Ω(1/n).

The proof of the lower bound largely follows the proof of Theorem 3.
Again, we show that the population size is linear after amin first leaves the
interval [n

4
, n

3
] by ensuring that the expected decrease of amin is constant in

this interval. For this, observe that to obtain from a step that decreases amin

by i a step that decreases it by i+1, one of the remaining ones (respectively
zeros) has to be flipped. The probability for this flip is at most n

3
1

2(n/4)
= 2

3
,

which then leads to a constant expected decrease in each step. This in turn
shows a linear population size after this phase.

Hence, when amin leaves this interval, the population P is with high
probability of size |P | = Θ(n). Also with high probability, we have amin ≥ n

5
.

Now consider the probability pij to produce in the next mutation step from
~x with |~x|0 = i a solution ~x′ with |~x′|0 = j where j < i. Jansen and Sudholt
(2005) have shown that pij ≤ 2j−i. Let ~x ∈ P be the solution with the
smallest number of zeros. Denote by D = |~x|0 the Hamming distance of ~x
to 1n. Consider a solution ~y ∈ P with |~y|0 = |~x|0 + k, where k ∈ [0, |~x|1]. A
mutation step from ~y to ~x reduces D in expectation by at most

n
∑

i=k+1

2−i(i− k) < 2−k

∞
∑

i=1

2−ii = 2−k+1.

Then the expected decrease of D in the next mutation step is at most

1

|P |
n
∑

k=0

2−k+1 <
2

|P |
∞
∑

k=0

2−k =
4

|P | ,

as P contains at most one individual with k zeros for each k. Since |P | =
Θ(n) holds, the expected decrease of D in each iteration is at most O(1/n).
Hence, Ω(n2) iterations are necessary to reduce the value of D by Θ(n)
which completes the proof.

It remains to examine the problem Plzm. An exponential deceleration
of the runtime (in n) in comparison to the analyses on Plom comes from the
solutions ~x from the former plateau SP1. These search points are compara-
ble in Plzm as in Plom, but this time, the second objective |~x|0 of Plzm
is leading Global SEMO and Global SEMOasy in the opposite direction of
the Pareto optimum 1n. The following theorem shows the more than clear
effect of adding the “wrong objective”, i.e., that the choice of an additional
objective can influence the runtime of an evolutionary algorithm drastically.
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Figure 7: Relation graph for the biobjective problem Plzm : {0, 1}4 → N
2.

Reflexive and transitive edges are omitted for clarity.

Theorem 5. The optimization times of Global SEMO and Global SEMOasy

on Plzm are eΩ(n) with probability 1− e−Ω(n).

Proof. The objective vectors (n + 2, 0), (n, n) and (n + 1, n − 1) with the
corresponding search points 1n, 0n and 10n−1 make up the entire Pareto
front of Plzm, cf. the relation graph of Plzm in Fig. 7. We show that the
claimed lower bound holds for obtaining the search point 1n which is the
optimal search point for Plateau1. Considering the running time until the
remaining two Pareto-optimal solutions are found is therefore not necessary
to prove the theorem.

The initial search point consists with probability 1 − e−Ω(n) of at most
2n/3 ones using Chernoff bounds. Accepted steps increasing the number
of ones have to produce a solution of SP1 ∪ {1n}. The probability to reach
1n directly from a search point ~x 6∈ SP1 is upper bound by 2−n/3 for both
algorithms as all 0-bits have to be flipped. The other opportunity to obtain
the search point 1n is to produce it from a search point of SP1. The first
solution of SP1 found during the run of the algorithm has with probability
1− e−Ω(n) at most 3n/4 1-bits as the probability of flipping Θ(n) bits in a
single mutation step is e−Ω(n) for both algorithms. Afterwards, the number
of ones can only be increased by producing the search point 1n directly. As
each individual in the population has at most 3n/4 ones with probability
1 − e−Ω(n), the probability of obtaining 1n is upper bounded by 2−n/4 for
both algorithms. Hence, the overall time to achieve the search point 1n is
eΩ(n) with probability 1− e−Ω(n).

In summary, we have seen that one and the same problem can become
harder or easier to solve for an evolutionary algorithm if a second objective
is added. Rigorous running time analyses showed that the differences of the
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expected running times can be exponential in the number of bits in the rep-
resentation. Section 2.2.4 will investigate the effect of additional objectives
also experimentally showing that the effects are not only asymptotic results
but can be seen in practice. Before, the next section will present a further
running time analysis which shows what can happen if two equally difficult
single objectives are combined to a biobjective problem.

2.2.3 Coping With Two Plateaus

In Sec. 2.2.2, the added objectives were easy to solve individually for the
(1+1)EA. The main reason for the smaller running time of Plom as com-
pared to Plateau1 is that both functions have the same global optimum.
One can also argue that not the Plateau1 function is becoming easier to
solve by adding a second objective but that adding the Plateau1 function
made the easy functions |~x|0 and |~x|1 harder to solve. Therefore, the ques-
tion arises whether combining two objectives to a biobjective problem may
result in a faster optimization process than optimizing the different objec-
tive functions separately. In the following, we show that the combination
of two equally complex problems yields an easier problem if both functions
are optimized as a biobjective problem.

We know from Theorem 2 that Global SEMO has an expected running
time of Θ(n3) on Plateau1. Let SP2 := {0i1n−i, 1 ≤ i < n}, then this
result also holds for the function

Plateau2(~x) =











|~x|1 : ~x 6∈ SP2

n + 1 : ~x ∈ SP2

n + 2 : ~x = 0n

due to the symmetry with Plateau1. We now consider the multiobjective
problem

Plateaus(~x) = (Plateau1(~x),Plateau2(~x))

where Global SEMO has to cope with a plateau in each objective and show
that this is easier than solving the single-objective problems separately. Fig-
ure 8 shows the relation graphs of Plateau1, Plateau2, and Plateaus
exemplary for n = 4 decision variables.

Theorem 6. The expected optimization time of Global SEMO on Plateaus
is Θ(n2 log n).

Proof. The objective vectors (n+2, n) and (n, n+2) with the corresponding
search points 1n and 0n constitute the Pareto front of Plateaus as the
solutions 1n and 0n are the optima of the two objective functions Plateau1

and Plateau2. There does not exist an objective vector (n + 1, n + 1) for



2.2. The Effect of Additional Objectives on Multiobjective Evolutionary Algorithms 37

1110

1111

1101 1011 0111

1100 1010 1001 0110 0101 0011

1000 0100 0010 0001

0000

1110

1111

1101 1011 0111

1100 1010 1001 0110 0101 0011

1000 0100 0010 0001

0000

1110

1111

1101 1011 0111

1100 1010 1001 0110 0101 0011

1000 0100 0010 0001

0000

Figure 8: Relation graphs for the functions Plateau1 (upper left) and

Plateau2 (upper right) as well as the combination of them (bottom, problem

(Plateau1,Plateau2)). Reflexive and transitive edges are omitted for clarity.

the considered problem which shows that the search points 1n and 0n are
the only Pareto-optimal ones.

The population size of Global SEMO on Plateaus is always bounded
by O(n) as each objective function attains at most n + 3 different values.
In a first step, we consider the number of generations until solutions with
objective vectors (n + 1, ·) and (·, n + 1) have been included into the popu-
lation and assume that the Pareto-optimal solutions with objective vectors
(n + 2, n), and (n, n + 2) respectively, have not been obtained before. We
investigate the case to obtain (n + 1, ·). As long as such a solution has not
been obtained, we consider the solution ~x with the largest Plateau1-value
in the population. This is determined by the number of zeros in ~x. Assume
that |~x|0 = k holds. Then, the probability to produce from ~x a solution ~x′

with a higher number of zeros is at least (n − k)/(en). The probability of
choosing ~x in the next step is Ω(1/n). Hence, the number of zeros increases
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after an expected number of O(n2/(n − k)) steps. Summing up over the
different values of k, the search point 0n with objective vector (n, n+2) has
been obtained after O(n2 log n) steps if no solution with objective vector
(n + 1, ·) has been produced before. Flipping the first bit in 0n leads to a
solution with objective vector (n+1, ·) and can be obtained in an additional
phase of O(n2) steps. The expected time to obtain a solution with objective
vector (·, n + 1) can be bounded by O(n2 log n) using the same arguments.

After P includes solutions with objective vectors (n + 1, ·) and (·, n +
1) or a subset of Pareto-optimal solutions dominating these vectors, the
population size is always bounded by 2. We consider how to obtain the
search point 1n. Let ~x be the search point with objective vector (n + 1, k)
in the population. Flipping the bit xk+1 in ~x leads to a solution ~x′ with
objective vector (n+1, k +1) that dominates and therefore replaces ~x. The
population size is at most 2 and the probability of flipping one single specific
bit is at least 1/(en) which implies that the expected waiting time for such
a step is O(n). The value of k will be increased at most n−1 times until the
search point 1n has been included into P . Hence, the expected time until
this solution has been obtained is O(n2). The same holds for including
the search point 0n using the same arguments. Altogether the expected
optimization of Global SEMO on Plateaus is O(n2 log n).

The lower bound proof is analogue to the lower bound proof of Theo-
rem 3, since the functions Plateaus and Plom are the same on the set
{0, 1}n \ ({0i1n−i, 0 ≤ i ≤ n} ∪ {1i0n−i, 0 ≤ i ≤ n}).

As we already mentioned before, Jansen and Sudholt (2005) have shown
that the (1+1)EAasy is totally inefficient on Plateau1. The same argu-
ments hold for Plateau2 as it differs from Plateau1 only by exchanging
the roles of zeros and ones. Surprisingly, this does not hold for Global
SEMOasy and Plateaus. In the following, we show that Global SEMOasy

is quite efficient on Plateaus.

Theorem 7. The expected optimization time of Global SEMOasy on the
problem Plateaus is Θ(n2).

Proof. As in the proof of Theorem 6, we first bound the expected number
of generations until the population includes search points with objective
vectors (n+1, ·) and (·, n+1) and assume that the Pareto-optimal solutions
with objective vectors (n + 2, n) and (n, n + 2) respectively have not been
obtained before. For obtaining (n+1, ·), consider the search point ~x with the
largest Plateau1 value. Assume that it has |~x|0 = k zeros. The probability
to obtain from ~x a solution with more zeros, that therefore is incomparable
to ~x or even dominates ~x, can be bounded by (1 − e−1/2)/2, as shown in
the proof of Theorem 4. Summing this up for all values of k and using the
fact that the population size is always bounded by O(n), a solution with
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objective vector (n + 1, ·) is obtained after an expected number of O(n2)
generations. By symmetry, the same holds for obtaining a search point with
objective vector (·, n + 1).

Now assume that two search points with objective vectors (n + 1, ·) and
(·, n + 1) are included in the population. Since they dominate all other
points, the population size is upper bounded by 2 in this case. If the objec-
tive vector of the first search point is (n + 1, k), the corresponding bitstring
consists of k ones followed by n−k zeros. This search point can be improved
by flipping the (k + 1)th zero to one. The probability for this to happen is

p(~x) =

(

1− 1

2k

)k(
1

2(n− k)

)(

1− 1

2(n− k)

)n−k−1

which can be bounded by

p(~x) ≥ 1

2

1

2(n− k)

(

1− 1

2(n− k)

)

1

2
= Ω

(

1

n

)

.

Hence, after an expected number of O(n2) generations the population will
contain the search point with objective vector (n+2, n). By symmetry, the
same holds for obtaining the search point with objective vector (n, n + 2).

The lower bound proof can be done analogously to the lower bound proof
of Theorem 4, since the functions Plateaus and Plom are the same on
the set {0, 1}n \ ({0i1n−i, 0 ≤ i ≤ n} ∪ {1i0n−i, 0 ≤ i ≤ n}).

As we have seen, the combination of two equally difficult single-objective
problems can be solved faster if they are combined to a new biobjective
problem. This result theoretically supports the usage of additional objec-
tives in practice as it was proposed by Knowles et al. (2001) and Jensen
(2004). However, the formulation of the new objectives is not obvious and
might need lots of problem knowledge to avoid an increase in the running
time. Furthermore, it is not obvious how the theoretical results can be gen-
eralized to practically relevant algorithms such as the NSGA-II or SPEA2
since they use an additional secondary selection criterion that has not been
investigated theoretically yet. Further research in this direction is therefore
required to fully answer the question what makes many-objective problems
difficult for those algorithms.

2.2.4 Experimental Studies

In the previous sections, we investigated plateaus of indifferent solutions in
single-objective problems and examined how an additional objective changes
the dominance relation on this plateau and therefore influences the running
time for simple algorithms like the Global SEMO and the (1+1)EA.
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With the following experimental study, we want to tackle three questions
that remain open after our theoretical investigations: (i) can the asymptot-
ical results also be observed for small instances, (ii) can the effect of making
a problem harder or easier by adding an objective be reported for a mul-
tiobjective problem instead of the single-objective Plateau1, and (iii) can
we observe the same behavior also on other types of plateaus, e.g., sets of
incomparable solutions?

In the following, we investigate experimentally for both multiobjective
problems and plateaus of incomparable solutions whether the running time
of Global SEMO can be increased and decreased with an additional objec-
tive. First, we investigate a biobjective problem with the same plateau SP1

that was considered above whereas Sec. 2.2.4.2 shows that an addition of
objectives can increase or decrease the running time of Global SEMO also
for other kinds of plateaus. The explanation of what happens remains the
same as in the previous sections: if plateaus are introduced by an addi-
tional objective the running time increases if a good direction on the search
points vanishes and decreases if a deceptive direction vanishes; if plateaus
are eliminated by adding an objective that introduces a direction on the cor-
responding search space region, the new direction increases or decreases the
running time depending on whether the introduced direction is deceptive or
not.

2.2.4.1 Similar Plateaus With More Objectives

First, we investigate the influence of the addition of a third objective to a
biobjective problem, based on the two functions

LeadingOnes(~x) =
n
∑

i=1

i
∏

j=1

xj

and

TrailingZeros(~x) =
n
∑

i=1

n
∏

j=i

(1− xj)

which were first investigated in (Laumanns et al., 2004a) as the problem
Lotz(~x) = (LeadingOnes(~x),TrailingZeros(~x)). Here, we consider
the slightly changed functions

f1(~x) =











LeadingOnes(~x) if ~x 6∈ SP1

n + 1 if ~x ∈ SP1

n + 2 if ~x = 1n
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and

f2(~x) =











TrailingZeros(~x) if ~x 6∈ SP1

n + 1 if ~x ∈ SP1

n + 2 if ~x = 1n

that are to be maximized at the same time leading to the modified Lotz
problem (f1, f2) where SP1 = {1i0n−i, 1 ≤ i < n} as defined above. Note,
that f1(~x) = f2(~x) holds, if ~x ∈ SP1. In this case, we have to cope with the
same plateau as given by the function Plateau1. The search point 1n is
also here the only (Pareto-)optimal search point with the objective vector
(n + 2, n + 2). Again, the focus lies on the plateau and not on the fact
that there is only a single Pareto-optimal solution as argued above. The
only difference between the biobjective problem (f1, f2) and the function
Plateau1 is given by the search points not on the plateau. Here, the
population of Global SEMO may grow due to a number of incomparable
solutions.

Starting with the modified Lotz problem (f1, f2), we investigate the
effect of adding either the function |x|1 or the function |x|0 to the problem.
Adding |x|1 decreases the running time of Global SEMO, whereas adding
|x|0 increases it. The effect is caused by the same principle observed in
Sec. 2.2.2. Right before finding the Pareto-optimal point 1n, Global SEMO
has to overcome the plateau 1i0n−i (1 ≤ i < n) of indifferent solutions. If
|x|1 is added, this third objective induces a direction to the optimum on this
plateau; if |x|0 is added the generated direction on the plateau is deceptive.

Figure 9 shows the box plots of the running times of 31 independent
Global SEMO runs on all three problems for different bitstring lengths
(n ∈ {5, 10, 15, 20, 25, 30})8. The non-parametric Kruskal-Wallis test with
the extension to multiple comparisons9 has been performed for every bit-
string length to support the above stated hypotheses that Global SEMO
needs more time for optimizing (f1, f2, |x|0) than for (f1, f2) and that Global
SEMO needs less time for optimizing (f1, f2, |x|1) than for the original prob-
lem (f1, f2). The null hypothesis of equal distributions was rejected at the
significance level of 0.01 for all considered decision space sizes supporting
the visual illustration of Fig. 9. Note that the runs were aborted if no
Pareto-optimal search point has been found in the first 100,000 generations
to keep the time for the experiments at a manageable level. This and the
large variance of the single runs explain the unexpected decrease of the me-

8The boxplots have been produced by the built-in boxplot command of MATLAB

showing the lower quartile, median, and upper quartile values. The default maximum

whisker length of 1.5 times the interquartile range has been used. Data points lying

beyond the ends of the whiskers are marked by a “+”.
9As implemented in the PISA performance assessment toolbox (Bleuler et al., 2003)

and described in (Conover, 1999) on pages 288ff.
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Figure 9: Comparison of the running times for Global SEMO if a third objective

is added to the modified Lotz problem: original problem (f1, f2) (solid line),

(f1, f2, |x|1) (dashed), and (f1, f2, |x|0) (dotted). Note, that the runs are aborted

if no Pareto-optimal point has been found in the first 100,000 generations. For

clarity, the three boxplots corresponding to a specific number of decision variables

have been slightly shifted horizontally.

dian between the original problem with 25 and the one with 30 decision
variables.

2.2.4.2 Different Kinds of Plateaus

In addition to plateaus of indifferent solutions which occur frequently in
single-objective problems, multiobjective problems may also exhibit plateaus
of incomparable solutions. In this section, we investigate the running time
changes of Global SEMO for both kinds of plateaus if an objective is added.

Plateaus of Indifferent Solutions

The basis biobjective problem we use for the investigation of plateaus of in-
different solutions is the original Lotz of (Laumanns et al., 2004a). All so-
lutions with the same number of leading ones and trailing zeros are mapped
to the same objective function values yielding a plateau of indifferent solu-
tions. In the following, we will refer to the decision variables that neither
belong to the leading ones nor to the trailing zeros of a solution ~x as the
middle block ~xM . In addition, |~x| denotes the length of the bitstring ~x.
Adding objectives that take into account only the bits in the middle blocks
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base function g (Laumanns et al., 2004a):

max

max

g1(~x) =

g2(~x) =

LeadingOnes(~x)

TrailingZeros(~x)

slower with

min g(i)(~x) = |~xM |−LeadingZeros(~xM)−TrailingOnes(~xM)

faster with

min g(ii)(~x) = |~xM |1

Figure 10: Definitions of the functions illustrating the changes of running time

with respect to making indifferent solutions comparable (problems (g1, g2, g(·))).

of solutions will give a direction to these plateaus of indifferent solutions.
Depending on whether this direction is deceptive or not, the running times
of Global SEMO on the corresponding 3-objective problem will be higher
or lower than for the original biobjective problem.

Minimizing the objective g(i) in addition to Lotz = (g1, g2) as defined
in Fig. 10 increases the running time of Global SEMO due to its deceptive
behavior: on the one hand, the number of leading ones and trailing zeros
has to be maximized to reach the Pareto front; on the other hand, the
additional objective g(i) rewards a higher number of leading zeros in the
middle block as well as a higher number of trailing ones. This forces Global
SEMO to flip more or less all bits in the middle block at least once instead of
benefiting from already correctly set bits, i.e., the running time increases. In
contrast, the additional minimization of objective g(ii) = |~xM |1 (see Fig. 10)
or in other words the maximization of zeros in the middle block will flip
bits of the middle block to zeros also if they do not contribute directly
to the maximization of g1 and g2. However, with the middle block’s bits
that are already set to zero, Global SEMO is able to perform big jumps
in the objective function value of g2 in future steps, i.e., the running time
decreases.

To support the above mentioned hypothesis, that the addition of g(i) in-
creases and the addition of g(ii) decreases the running time of Global SEMO
in comparison with the original problem (g1, g2), 31 independent runs of
Global SEMO were performed for different numbers of decision variables
(n ∈ {25, 50, 75, 100, 125, 150}). Note that we measured the number of gen-
erations until the first Pareto-optimal point has been found by Global SEMO
instead of the normal running time. The reason for that is the already high
number of generations that are needed to find the first Pareto-optimal point
which forced us to restrict the number of generations to 100,000: if Global
SEMO did not find any Pareto-optimal point within the first 100,000 gen-
erations, we stopped the run and noted 100,000 as the run’s optimization
time. Figure 11 shows the corresponding box plots. The non-parametric
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Figure 11: Boxplots of the running times until the first Pareto-optimal

point is reached for the problems (g1, g2) (solid line), (g1, g2, g(i)) (dotted), and

(g1, g2, g(ii)) (dashed). Note, that the runs are aborted if no Pareto-optimal point

has been found in the first 100,000 generations. For clarity, the boxplots corre-

sponding to each number of decision variables have been slightly shifted horizon-

tally.

Kruskal-Wallis test for multiple comparisons described in (Conover, 1999)
again rejects the null hypothesis of equal distributions for all comparisons
at a significance level of 0.01 except for the comparison between the run-
ning times for (g1, g2, g(i)) and (g1, g2) with 25 decision variables where the
p-value is approximately 0.033.

Plateaus of Incomparable Solutions

It remains to show that also for problems with plateaus of incomparable
solutions, the addition of objectives can change the running time of a mul-
tiobjective evolutionary algorithm in both ways. To this end, the problem
(h1, h2) as defined in Fig. 12 is investigated. The objective space of (h1, h2)
can be illustrated as the objective space of the original Lotz problem where
the levels 2,3,6,7,10,11, and so forth are mirrored at the origin and then
translated. Figure 13 illustrates the objective space of this problem exem-
plary for a small number of decision variables.

The change of the original Lotz problem to (h1, h2) turns around the
Pareto dominance relation between the mirrored levels: where the Pareto
dominance relation is indicating the direction to the optimum in Lotz, the
new search space direction is deceptive. Global SEMO has to jump out of
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base function h:

max h1(~x) =











LeadingOnes(~x)
iff 0 ≡ (n − |~xM |) mod 4

or 1 ≡ (n − |~xM |) mod 4

−LeadingOnes(~x) − n·
⌊

⌊(n−|~xM |)/2⌋
2

⌋

else

max h2(~x) =











TrailingZeros(~x)
iff 0 ≡ (n − |~xM |) mod 4

or 1 ≡ (n − |~xM |) mod 4

−TrailingZeros(~x) − n·
⌊

⌊(n−|~xM |)/2⌋
2

⌋

else

slower with

min h(i)(~x) = n
2
− |n

2
− |~xM ||

faster with

min h(ii)(~x) = |~xM |

Figure 12: Definitions of the functions illustrating the changes of running

time with respect to making comparable solutions incomparable (problems

(h1, h2, h(·))).

the newly introduced local optima by at least a two-bit flip. This is where
a third objective can help. By making the solutions within the region with
deceptive Pareto dominance relation incomparable, Global SEMO is able
to perform a random walk on newly introduced plateaus of incomparable
solutions. If on the other hand, solutions where the Pareto dominance rela-
tion points in direction to the Pareto front are made incomparable, Global
SEMO needs more time to find the Pareto front than for the original prob-
lem (h1, h2). The objectives h(i) and h(ii) defined in Fig. 12 are introducing
these incomparabilities either on the mirrored levels of Lotz only (h(ii)) or
in both the first and third quadrant (h(i)). The expected behavior is that
the addition of h(i) will increase and the addition of h(ii) will decrease the
running time of Global SEMO in comparison to the biobjective problem.

Figure 14 shows the boxplots of 31 independent Global SEMO runs for
different numbers of decision variables (n ∈ {25, 50, 75, 100, 125, 150}) on all
three problems. As before, we count the number of generations until the first
Pareto-optimal point is found or count 100,000 if no Pareto-optimal point
is found within the first 100,000 generations. The visual inspection of the
boxplots in Fig. 14 indicate that Global SEMO has a higher average running
time on (h1, h2, h(i)) and a lower average running time on (h1, h2, h(ii)) as
the original problem (h1, h2) which is supported by the same Kruskal-Wallis
test as mentioned before at a significance level of 0.01 for all tested decision
space sizes.
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Figure 13: Illustration of the objective space for the modified Lotz problem

(h1, h2) and n = 8 decision variables. For some objective vectors, the correspond-

ing solutions in decision space are indicated where a “*” denotes either a “1” or

a “0” on the corresponding bit string position.

2.3 Summary

In this chapter, we have investigated the question of how additional objec-
tives or the omission of them affect (i) the structure, i.e., the dominance
relation, of a given optimization problem and (ii) the search behavior of
evolutionary algorithms applied to this problem.

It turned out that the omission of objectives can only introduce com-
parabilities whereas addition of objectives, on the contrary, can change the
dominance structure only in the other direction: dominance relations be-
tween solution pairs can only be removed from the dominance relation—
making comparable solution pairs incomparable or removing an indiffer-
ence relationship. The addition of objectives can, therefore, only introduce
a direction to plateaus of indifferent solutions or remove a direction in a cer-
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Figure 14: Boxplots of the running times until the first Pareto-optimal point

is reached for the problems (h1, h2) (solid line), (h1, h2, h(i)) (dotted), and

(h1, h2, h(ii)) (dashed). Note, that the runs are aborted if no Pareto-optimal

point has been found in the first 100,000 generations. For clarity, the three box-

plots corresponding to a specific number of decision variables have been slightly

shifted horizontally.

tain search space region by making the solutions incomparable. Rigorous
running time analyses have shown that these changes can vary the running
time of simple evolutionary algorithms drastically in both ways: one and the
same problem can be made both easier and more difficult solely by adding
different objectives, i.e., without changing the search space or one of the ex-
isting objectives. We have also shown that the simultaneous optimization of
two equally difficult problems in terms of multiobjective optimization can
be faster than solving the single problems individually resulting in a first
theoretical proof that multiobjectivization can help to reduce the running
time of evolutionary algorithms when further incomparabilities between so-
lutions are added by an additional (helper-)objective.

It is obvious that the considered problems are artificial, however, plateaus
of indifferent and incomparable solutions do exist in practically relevant
combinatorial problems. Also the considered algorithms are simplified ver-
sions of practically relevant ones. Nevertheless, global SEMO uses algorith-
mic concepts such as the mutation operator or the selection scheme that are
also used in other algorithms in practice. Thus, the presented results have
different implications—also for algorithms and problems that differ from the
investigated ones. On the one hand, they can help with the design and the
classification of multiobjective benchmark problems according to different
categories of hardness. On the other hand, they indicate that domain knowl-
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edge may not only be incorporated in terms of problem-specific algorithmic
components, but also in the form of additional objective functions.

In addition to the work presented in this chapter, several theoretical
studies investigating the effects of additional objectives have been pub-
lished recently. Malinowska (2002) and later on Fliege (2007) and Mäkelä
and Nikulin (2008) investigate how additional objectives change the set of
Pareto-optimal solutions. These studies, however, do not investigate the
effect on optimization algorithms; only Gal and Hanne (1999) showed that
even the addition or omission of essential objectives that do not change
the Pareto set can change the outcome of some multiobjective optimization
techniques. As already discussed above, Handl et al. (2008) investigate the
effects of multiobjectivization, i.e., the decomposition of a single-objective
optimization problem into a multiobjective one. All mentioned studies en-
hance the understanding of the difference between single-objective and mul-
tiobjective problems—one important aspect in the fields of evolutionary
multiobjective optimization and multicriteria decision making that might
even become more interesting in the future in combination with the newly
proposed set-based view of multiobjective optimization (Zitzler et al., 2009;
Bader et al., 2009). Whether the observed effects of additional objectives
can also be seen in practical applications, for example if the number of
objectives is larger than two or if the search space is continuous, remains
future work.



3
Objective Reduction

In the last decade, there has been a growing interest in applying evolution-
ary algorithms to multiobjective optimization problems, mainly to approx-
imate the set of Pareto-optimal solutions. However, most of the publica-
tions in this area deal with problems where only a few, i.e., between two
and four, objectives are involved, while studies with many objectives are
rare, cf. (Coello Coello et al., 2007). The reason is that a large number
of optimization criteria leads to further difficulties with respect to decision
making, visualization, and computation; for instance, it has been shown
empirically that state-of-the-art MOEAs such as NSGA-II and SPEA2 do
not scale well with an increasing number of objectives (Khare et al., 2003;
Purshouse and Fleming, 2003b; Wagner et al., 2007), i.e., the algorithms
have more and more difficulties to find solution sets that are close to the
Pareto set if the number of objectives increases. Nevertheless, from a prac-
tical point of view it is desirable with most applications to include as many
objectives as possible without the need to specify preferences among the
different criteria. The 2007 conference on evolutionary multi-criterion op-
timization (Obayashi et al., 2007) revealed that there is a need to handle
such many-objective scenarios, and the challenge is to develop concepts and
methods to tackle the aforementioned difficulties.

An interesting research question that arises in this context is whether
actually all optimization criteria are necessary and some of the objectives
may be omitted without—or with only slightly—changing the problem char-
acteristics. The motivation behind this question lies in the observation that
additional objectives cause problems mainly when they are competing with
existing ones; a set of non-conflicting criteria can be represented by a single
objective. Methods for automated objective reduction can be beneficial for
both decision making and search. On the one hand, the decision maker
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would have to consider fewer objective values per solution, it would be eas-
ier to visualize the solutions, and the number of nondominated solutions
is likely to decrease as shown by Winkler (1985), resulting in a further re-
duction of the information which has be taken into account. On the other
hand, search algorithms may work more efficiently and consume less com-
putational resources, if the number of objectives is decreased adaptively.
Similar issues emerge with computationally expensive objective functions,
e.g., when extensive simulations need to be carried out in order to deter-
mine the objective function values. These statements only conflict with the
results in the previous chapter at first sight; we argue here that additional
objectives can be helpful in some cases (as pointed out in the previous
chapter) but on the other hand, they should be automatically omitted if
their omission does not affect the induced weak Pareto dominance rela-
tion but increases the running time of evolutionary algorithms due to their
high dependency on the number of objectives, e.g, for hypervolume-based
algorithms, cf. Chapter 4.

The issue of objective reduction has gained only little attention in the
literature so far, and existing methods are either restricted to particular
function classes or do not take the underlying dominance structure into
account. In this chapter and based on the investigations in the previous
one, we propose a methodology for objective reduction that allows both to
consider black-box optimization criteria and to maintain and control the
dominance structure. The key contributions are:

• Formal notions of objective conflicts, a degree of conflict, redundant
objectives, and minimum objective sets;

• A definition of different types of objective reduction problems includ-
ing the aggregation of objectives and the design of corresponding ex-
act and greedy algorithms; running time analyses thereof are also
presented;

• A systematic study of the efficacy of the proposed approach on various
benchmark problems and a real-world application;

In the following, we will first review related work (Sec. 3.1) before pre-
senting the theoretical foundations (Sec. 3.2 and Sec. 3.3) and the corre-
sponding objective reduction algorithms (Sec. 3.4, Sec. 3.5, and Sec. 3.6).
The application of the objective reduction methods in decision making is
demonstrated in Sec. 3.7.
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3.1 Related Work

Although the need for approaches to handle many-objective problems is
apparent in terms of real-world applications, not many studies are known
that deal with the reduction of the objective set to reduce the complexity
of a problem.

To the best of my knowledge, the first publication in the field of MOEAs
that pointed out the possibility of omitting objectives is the one by Pur-
shouse and Fleming (2003a). The paper discusses in detail various relation-
ships between single objectives such as conflict, harmony, and independence
together with their effect on evolutionary multiobjective optimization. In
a short paragraph, the authors mention that (traditional) dimensionality
reduction techniques could be used to simplify both decision making and
search, but they do not propose a concrete approach for a reduction of the
objective set.

Dimensionality reduction is a well-known problem in many areas like
statistics and data mining, and various methods to extract and select fea-
tures1 are known. One can distinguish between two distinct approaches:
feature extraction and feature selection. The task in feature extraction is
to determine a (small) set of arbitrary features, while the task in feature
selection is to find the smallest subset of the given features, representing
the given data best. Translated to the multiobjective optimization field,
one can ask either for a set of arbitrary objectives or for a subset of given
objectives which describes the original problem best. Several approaches
to solve feature extraction and feature selection problems are known from
the literature. Some of the most popular feature extraction methods are
Principal Component Analyses (PCA) (Jolliffe, 2002), Independent Com-
ponent Analysis (ICA) (Hyvärinen et al., 2001), or Self-Organizing Maps
(Kohonen, 2001). Clustering and biclustering techniques (Jain et al., 1999)
are examples for feature selection methods (Langley, 1994; Liu and Motoda,
2008). Also evolutionary algorithms have been used for feature extraction
and selection tasks, see for example (Vafaie and de Jong, 1993). We refer
to survey articles on dimensionality reduction such as (Fodor, 2002) for a
more detailed overview.

Although there are many dimensionality reduction approaches available,
the common dimensionality reduction techniques cannot be used directly as
an objective reduction technique in evolutionary multiobjective optimiza-
tion as Purshouse and Fleming (2003a) already pointed out. The reason
is that the Pareto dominance relation is not taken into account—in other
words: it cannot be ensured that the Pareto dominance relation is main-
tained while the number of objectives is reduced.

1Usually, the variables under consideration are called features.
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An objective reduction approach which preserves the dominance struc-
ture has been proposed by Gal and Leberling (1977) for the case when the
objective functions are explicitly given as linear combinations of the (real)
decision variables, i.e., the Pareto set is determined within the problem for-
mulation. Hence, this approach, as well as a generalization to a broader
definition of redundancy among objectives by Agrell (1997), is restricted to
the narrow class of linear problems and inapplicable to general black-box
scenarios. Also newer results on objective reduction in the MCDM field
(Malinowska, 2002, 2006; Malinowska and Torres, 2008) are based on the
assumption of explicit objective functions and therefore not applicable in
a black-box scenario. Furthermore, it was pointed out by Gal and Hanne
(1999, 2006) that these objective reduction approaches cause troubles with
search algorithms as they are based on a conflict definition that considers
the effect of an objective omission on the Pareto set only. Changing a given
problem to a problem with less objectives but the same Pareto set might
be of high interest if the entire Pareto set can be found by optimizing the
smaller objective set only. However, in practice this is not always given
as the omission of redundant objectives might introduce further difficulties
with respect to the adjustment of parameters of the search algorithms to
the new problem.

The question of finding new objectives that reformulate the original
problem with fewer objectives (feature extraction) has been already ad-
dressed in the context of coevolution (de Jong and Bucci, 2006, 2008). This
approach, however, is restricted to certain types of objective functions that
arise in the context of coevolution, namely so called tests, i.e., objective
functions that are either 1 or 0.

The only studies that tackled objective reduction in an evolutionary
multiobjective optimization setting have been proposed by Deb and Sax-
ena. In (Deb and Saxena, 2005, 2006), the authors propose a method that is
based on principal component analysis to decrease the number of objectives
during search. The method aims at computing a set of “the most important
conflicting objectives” by omitting redundant ones, i.e., those that are less
influential with respect to the principal components. It was incorporated
into the algorithm NSGA-II and used to shrink the objective set iteratively
in the course of multiple optimization runs. Furthermore, it was tested on
and primarily invented for problems where the Pareto front has a lower
dimension than the problem formulation itself. Since the approach of Deb
and Saxena (2005, 2006) considers the correlation between objectives as an
indicator for the conflict between them, it cannot guarantee that the (weak)
Pareto dominance relation, and therefore the Pareto set, is preserved. In
addition, no quantitative measure can be specified by how much the domi-
nance relation changes when objectives are omitted. The same holds for a
recently published extension that is based on two non-linear dimensional-
ity reduction techniques (Saxena and Deb, 2007) and that was applied to
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problems where constraints are considered as objectives (Saxena and Deb,
2008).

In the following, we propose an approach for objective reduction that
both is suited to black-box optimization problems and allows to maintain
and control the dominance structure. To this end, we first investigate objec-
tive conflicts in general and give a new definition of conflicting objective sets
in particular. Furthermore, we introduce the terms of redundant and mini-
mum objective sets that build the basis of the objective reduction method
to follow.

3.2 Objective Conflicts

3.2.1 Conflicting, Redundant, and Minimum Objec-

tive Sets

In Chapter 2, we have seen what happens if objectives are added to a
problem formulation. Based on the general investigations on the Pareto
dominance relation and especially on Theorem 1, it is easy to see under
which circumstances objectives can be omitted without changing the prob-
lem structure: whenever the underlying relation graph remains the same.
We will use the notion of conflicting and non-conflicting objective sets to
capture this observation.

Definition 1. Two objective sets F1,F2 are called conflicting if the induced
weak Pareto dominance relations differ, i.e., �F1 6=�F2 and non-conflicting
otherwise (�F1=�F2).

This definition is somehow a general form of the ideas of non-essential
objectives in the field of multicriteria decision making: A non-essential or
redundant objective of a multiobjective optimization problem is, according
to Gal and Leberling (1977), an objective the omission of which does not
change the Pareto set. Although algorithms for identifying the set of non-
essential objectives are known (Gal and Leberling, 1977; Agrell, 1997; Mali-
nowska, 2006; Malinowska and Torres, 2008), the approaches are only appli-
cable if the objective functions are linear2, i.e., of the type fi(~x) =

∑n
j=1 αjxj

for αj ∈ R. Furthermore, newer results identified that the limitation of the
definition of non-essential objectives to the Pareto set instead of consid-
ering all solutions might introduce difficulties for some MCDM techniques
(Gal and Hanne, 1999, 2006): for example, when omitting non-essential ob-
jectives, the solutions found by scalarization techniques like the weighted

2Although Agrell (1997) considers also more general problems, his algorithm for find-

ing the non-essential objectives is only applicable in the linear case.
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sum differ from solutions found if all objectives are optimized. Moreover,
heuristic methods such as MOEAs do not guarantee to find Pareto-optimal
solutions and objective reduction methods that are solely based on consid-
ering the Pareto set neglect the impact of the Pareto dominance relation
during the search.

The definition of non-conflicting objectives as in Def. 1 avoids these
problems by investigating the entire dominance relation: whenever an ob-
jective subset F ′ ⊆ F is non-conflicting with the entire objective set F ,
an omission of the objectives in F \ F ′ will preserve the weak dominance
relation, otherwise, the weak dominance relation will change. Similar to the
studies about non-essential objectives in the MCDM field, a few definitions
of conflict exist in the MOEA literature as well: Deb (2001) and Tan et al.
(2005) define conflict also only depending on the Pareto front or the presence
or absence of comparable solutions, while Purshouse and Fleming (2003a)
define conflict as a property of objective pairs. As the following example
shows, the three mentioned definitions cannot indicate whether objectives
can be omitted without affecting the dominance structure.

Example 3. Assume that the four solutions ~a, ~b, ~c, and ~d in Fig. 15 rep-
resent either the entire search space or the Pareto set3. Then, the original
objective set {f1, f2, f3, f4} is conflicting according to Deb (2001) as there
is no single optimal solution but four Pareto-optimal ones. For the same
reason of incomparable solution pairs, the objective set is also conflicting
according to Tan et al. (2005). In addition, every objective pair “exhibits ev-
idence of conflict” as defined by Purshouse and Fleming (2003a). The three
conflict definitions mentioned may lead to the conclusion that all objectives
are necessary. However, objective f3 can be omitted and all solutions re-
main incomparable to each other with regard to the objective set {f1, f2, f4},
i.e., the weak Pareto dominance relation on the search space stays unaf-
fected, cf. Fig. 4(l) and (o) in Chapter 2. In contrast to the three above
mentioned conflict definitions, Def. 1 classifies the objective sets {f1, f2, f4}
and {f1, f2, f3, f4} as non-conflicting.

This example indicates that objective conflict appears to be rather a
set-based property than a property of objective pairs which is the reason
why we defined conflict between objective sets in Def. 1. Similarly, the
question of whether objectives can be omitted while the dominance structure
is preserved cannot be decided by considering relations between objective
pairs only; the NP-hardness proof of the δ-MOSS problem in Sec. 3.3 will
support this statement. We will use the term redundancy to state whether
objectives in an objective set can be omitted or not (necessary and sufficient
criterion) without changing the entire dominance relation—in contrast to

3The objective values of the four solutions are exactly the same than in Fig. 3 in

Chapter 2.
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Figure 15: Parallel coordinates plot for the given example with four solutions

and four objectives that have to be minimized; the objective function values are

exactly the same than in Fig. 3.

the definition of conflicting objectives in the MCDM field as, e.g., in (Gal
and Leberling, 1977) and subsequent publications, where only the influence
of objectives on the Pareto set is considered.

Definition 2. A set F ′ ⊆ F of objectives is called redundant if and only if
there exists an objective subset F ′′ ⊂ F ′ that is non-conflicting with F ′.

The additional question of which objective set is the smallest among
those ones, that are non-conflicting with the entire objective set, can be
denoted as finding a minimum objective set, and will be defined as follows.

Definition 3. An objective set F ′ ⊆ F is denoted as

• minimal with respect to F iff F ′ is both not redundant and non-
conflicting with F ;

• minimum with respect to F iff F ′ is the smallest minimal objective
set with respect to F .

In the following, we often just talk about minimal and minimum objec-
tive sets if it is clear from the context that we refer to minimal/minimum
objective sets with respect to the set F of all objectives. A minimal objec-
tive set is a subset of the original objectives that cannot be further reduced
without changing the associated preorder. A minimum objective set is the
smallest possible set of original objectives that preserves the original order
on the search space. By definition, every minimum objective set is minimal,
but not all minimal sets are at the same time minimum.

Example 4. In the example depicted in Fig. 15, the entire objective set is
redundant since the objective set {f1, f2, f4} induces the same dominance
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relation as {f1, f2, f3, f4}, see Fig. 4(l) and (o) in Chapter 2. The set
{f1, f2, f4} is at the same time minimal and minimum with respect to the
entire objective set because no other objective subset with three or fewer
objectives induces the same dominance relation as all objectives.

Note that in general neither every minimal objective set is at the same
time minimum nor a unique minimum objective set exists.

3.2.2 Measuring the Degree of Conflict

The requirement that the underlying relation graph must not change is
often too strict in practice; the size of the minimum objective set may be
close to the number of original objective functions. In order to achieve a
more substantial reduction of the objective set, a continuous measure of
conflict is helpful that allows to gradually tune the acceptable changes in
the dominance relation. Before defining such a measure, we will illustrate
the basic idea in the following example.

Example 5. Let us again consider the above example which is again de-
picted in Fig. 16. We have seen that the omission of objective f3 does not
change the underlying dominance structure (Example 3). A further omis-
sion of an objective would change the dominance relation by making one (if
f1 is omitted), two (if f2 is omitted), or even three (if f4 is omitted) solution
pairs comparable, cf. Fig. 4 in Chapter 2. When examining in detail what
happens if, e.g., f1 is omitted together with f3, we observe that as a result
solution ~c is weakly dominated by solution ~b. As ~b and ~c are incomparable
with respect to the entire objective set, we make an error by omitting f1

and f3 and wrongly assuming that ~b weakly dominates ~c. However, if the
f1 value of ~c was larger by an additional term of δ = 0.5 ~b would weakly
dominate ~c with respect to both the set {f2, f4} and the entire objective set.
Thus, we would make no error.

The δ value of 0.5 in the above example can be used as a measure to
quantify the difference in the dominance structure induced by {f2, f4} and
the entire objective set. By computing the δ values for all solution pairs, we
can then determine the maximum error. Similar, we can define the average
δ-error if we average the obtained δ values over all solution pairs. These
ideas result in the definition of a general error measure for a certain set of
solutions A ⊆ X if the objective set F ′ is considered instead of the original
objective set F :

Definition 4. Given two sets of objectives F ′ and F and a set of solutions
A ⊆ X, we define the maximum δ-error δmax as
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Figure 16: Illustration of δ-error if the objectives f1 and f3 are omitted. If

instead of the entire set of objectives F , the objective set F ′ = {f2, f4} is con-

sidered, the only solution pair where F ′ and F do not induce the same order is

the pair ~b,~c (although b 6�F ~c holds, ~b �F ′ ~c). However, if the objective values of
~b would be smaller by a constant of δ = 0.5, ~b would weakly dominate ~c already

with respect to all objectives and the induced Pareto dominance relations �F

and �F ′ would be the same for the solution pair ~b,~c. In other words, no domi-

nance would be wrongly assumed between ~b and ~c if we consider the ε-dominance

relation with ε = δ = 0.5.

δmax(A,F ′,F) = max
~x,~y∈A

~x 6�F~y

~x�F′~y

{

max
fi∈F
{fi(~x)− fi(~y)}

}

and the average δ-error δavg is defined as

δavg(A,F ′,F) =
1

|A| · (|A| − 1)

∑

~x,~y∈A

~x 6�F~y

~x�F′~y

max
fi∈F
{fi(~x)− fi(~y)} .

The meaning of the maximum error δmax is that whenever we wrongly
assume that ~x weakly dominates ~y with respect to an objective subset F ′,
we also know that ~x is not worse than ~y in all objectives by an additive
term of δ.

Example 6. Consider again the example from above, depicted in Fig. 16.
When considering F ′ := {f2, f4}, the induced Pareto dominance relation

gives only for the solution pair (~b,~c) a wrong relation (~b �F ′ ~c although ~b 6�F
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~c) which results in an error of δ = maxfi∈F{fi(~b)− fi(~c)} = 0.5. Therefore,

the maximum error for all solutions A = {~a,~b,~c, ~d} is δmax(A, {f2, f4},F) =
0.5; for F ′ := {f1, f3}, the maximum error is δmax(A, {f1, f3},F) = 6 in-

duced by the solutions ~b and ~a and their f4 values, cf. the relation graphs
of Fig. 4 in Chapter 2. However, for {f2, f4} only one solution pair re-

sults in an error whereas for {f1, f3}, both the solution pair (~b,~a) (with

δmax({~b,~a}, {f1, f3},F) = 6) and the pair (~d,~c) (with δmax({~d,~c}, {f1, f3},F)
= 1) give an error. This results in average errors of δavg(A, {f2, f4},F) =
0.5/12 ≈ 0.042 and δavg(A, {f1, f4},F) = (6 + 1)/12 ≈ 0.583 respectively.

Note, that we refer to the maximum δ-error whenever we say δ-error
without any further explanation. Furthermore, note that we always assume
that all objective values have the same scale such that the small errors δ
are comparable among the objectives. In addition, the above definition
of δ-error assumes that an error made close to the Pareto front is of the
same importance to a decision maker than the same error made far away
from the Pareto front. Situations where a decision maker prefers extremal
solutions with maximal objective function values are not considered here.
The same holds for objective functions for which the possible objective
function values are not equally distributed: the case that, e.g., solutions
close to extremal values are more unlikely than ones with mid-range values,
is not considered in this study. If one or several of these preferences are
given by the decision maker, the definition of δ-error should be adjusted
accordingly. Here, however, we assume the most general preference relation
given by a decision maker to be the (weak) Pareto dominance relation and
therefore define the δ-error as above—postponing a more general definition
of δ-error for future work.

The given idea of determining the maximum error δmax can be used
to define a continuous definition of objective conflict, namely δ-conflicting
objective sets, which is based on the weak (additive) ε-dominance relation
�ε

F ′ defined as4

�ε
F ′ := {(~x, ~y) | ~x, ~y ∈ A ∧ ∀i ∈ F ′ : fi(~x) ≤ fi(~y) + ε}

where A ⊆ X, F ′ ⊆ F , and ε ∈ R>0, cf. (Zitzler et al., 2003). Instead of
using, e.g., the number of edges in which the corresponding relation graphs
differ as a degree of conflict, we take the δmax error into account and define
two objective sets as δ-non-conflicting if the corresponding ε-dominance
relations with ε = δ are identical.

Definition 5. Let F1 and F2 be two objective sets. We call F1 δ-non-
conflicting with F2 if and only if both

(

�F1⊆�δ
F2

)

and
(

�F2⊆�δ
F1

)

holds;
otherwise F1 and F2 are denoted as δ-conflicting.

4Note that also the multiplicative ε-dominance relation of (Zitzler et al., 2003) can be

used; all the following results apply to the multiplicative ε-dominance relation as well.
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Note that the relations �F1 , �F2 , �δ
F1

, and �δ
F2

have not to be defined
over the entire decision space X; the relation can also be restricted to a
certain set of solutions A ⊆ X. The following theorem, the proof of which
is given in Appendix A to improve readability, shows the connection between
the definition of δ-conflict with respect to the ε-dominance relation and the
maximum δ-error of Def. 4.

Theorem 8. Let F1,F2 be two objective sets and A ⊆ X a set of so-
lutions. Then, F1 is δ-non-conflicting with F2 with respect to A for all
δ ≥ max{δmax(A,F1,F2), δmax(A,F2,F1)} and no δ < max{δmax(A,F1,F2),
δmax(A,F2,F1)} exists such that F1 is δ-non-conflicting with F2.

The above definition of δ-non-conflicting objectives is useful for chang-
ing a problem formulation by considering a different objective set. When
replacing an objective set F1 by another objective set F2 which is δ-non-
conflicting with F1, one can be sure after the replacement that for any
~x, ~y ∈ X, ~x either weakly dominates ~y with respect to both objective sets
and we make no error, or ~x dominates ~y with respect to F2 and ~x weakly
δ-dominates ~y with respect to F1. In other words, we make an error by
considering F2 instead of F1 only if we wrongly assume that ~x weakly dom-
inates ~y, although ~x does not weakly dominate ~y with respect to F1. In this
case, the error is bounded by δ: ~y is not better than ~x in any objective in F1

by an additive term of δ. As a consequence, we know that for any Pareto-
optimal solution with respect to �F1 there exists a Pareto-optimal solution
with respect to �F2 that weakly δ-dominates the former with respect to F1

(and vice versa)5. When replacing an objective set by a δ-non-conflicting
subset of this objective set, one can guarantee that the resulting Pareto-
optimal set is not worse than the original Pareto-optimal set by an additive
term of δ in any omitted objective.

Based on this extended notion of conflict, one can canonically general-
ize the definitions of redundancy, minimal and minimum objective sets as
follows.

Definition 6. A set F ′ ⊆ F of objectives is called δ-redundant if and only
if there exists an objective subset F ′′ ⊂ F ′ that is δ-non-conflicting with F ′.

Definition 7. Let δ ≥ 0. An objective set F ′′ ⊆ F ′ is denoted as

• δ-minimal with respect to F ′ iff F ′′ is both not δ-redundant and δ-
non-conflicting with F ′;

• δ-minimum with respect to F ′ iff F ′′ is the smallest δ-minimal objec-
tive set with respect to F ′.

5Note that the definition of Pareto optimality with respect to a certain set of objectives

is the same than the one given in Sec. 1.2 and we only specify it here explicitly as the

underlying set of objectives changes.
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A further aspect that can be of interest is to ask for the minimum error
δ that is possible when restricting the size of the reduced objective set by
an upper bound. This leads to the k-EMOSS problem that will be introduced
in the following section.

Example 7. Regarding the above example (Fig. 16), the set {f1, f3, f4} is
0.5-minimal but not 0.5-minimum with respect to the entire objective set,
since the smaller set {f2, f4} is 0.5-minimal as well. Because no objective
set with one objective only induces an error smaller than or equal to 0.5,
the set {f2, f4} is also 0.5-minimum with respect to the entire objective set.

3.3 Computing Minimum Objective Sets:

Problems and Their Complexity

After we have defined what minimum objective sets are, obvious open ques-
tions are how we can compute them and how difficult in terms of complexity
theory the corresponding problem is. This section will investigate the latter
question before we provide objective reduction algorithms in the next sec-
tion. Regarding the measure of conflict, as defined in the previous section,
there are two perspectives of objective reduction: on the one hand, given
an error δ, one may ask for a δ-minimum objective set; on the other hand,
one can ask for a δ-minimum objective subset of predefined size k with the
smallest possible δ-error. These problems can be formalized as follows.

Definition 8. Given a δ ∈ R and a set A ⊆ X of m solutions, together
with the objective values fi(~x) ∈ R where 1 ≤ i ≤ k and ~x ∈ A, the problem
δ-MINIMUM OBJECTIVE SUBSET, δ-MOSS for short, is to compute an objective
subset F ′ ⊆ F which is δ-minimum with respect to F .

Definition 9. Given a k ∈ N and a set A ⊆ X of m solutions, together
with the objective values fi(~x) ∈ R where 1 ≤ i ≤ k and ~x ∈ A, the prob-
lem MINIMUM OBJECTIVE SUBSET OF SIZE k WITH MINIMUM ERROR, or k-
EMOSS for short, is to compute an objective subset F ′ ⊆ F which has size
|F ′| ≤ k and is δ-non-conflicting with F with the minimal possible δ.

As the set A, we can imagine either the entire search space (A = X),
which is only feasible for small search spaces, or an arbitrary sample of
the search space such as a Pareto front approximation or the population
of an evolutionary multiobjective optimizer (A ⊂ X). Unfortunately, both
problems are considered to be hard to solve in general as the next theorem
states.

Theorem 9. Both the δ-MOSS problem and the k-EMOSS problem are NP-
hard.
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Before we prove Theorem 9, we state another simple objective reduction
problem, the NP-hardness of which can be shown easily by a Turing re-
duction6 from the NP-hard set cover problem. This MINIMUM OBJECTIVE

SUBSET PROBLEM (MOSS) is then later used to show the NP-hardness of the
generalized δ-MOSS and k-EMOSS problems.

Definition 10. Given a set A ⊆ X of m solutions together with the weak
Pareto dominance relation �F and for all objective functions fi ∈ F (1 ≤
i ≤ k) the single relations �i where

⋂

1≤i≤k �i =�F , the problem MINIMUM

OBJECTIVE SUBSET, or MOSS for short, is to compute an index I ⊆ {1, . . . , k}
of minimum size with

⋂

i∈I �i =�F .

Theorem 10. The problem MOSS is NP-hard.

Proof. First, we recapitulate the definition of the NP-hard SET COVER

PROBLEM, or SCP for short, from Garey and Johnson (1990):

Given a collection C = {C1, . . . , Cl} of l ∈ N subsets of a finite set S =
{1, . . . ,m} (m ∈ N), compute an index I ⊆ {1, . . . , l} of minimum
size with

⋃

i∈I Ci = S.

A Turing transformation SCP ≤T MOSS proves the NP-hardness of MOSS.
Figure 17 gives an illustrative example of the transformation for a collection
of l = 3 subsets.

Starting from the SCP instance consisting of the set S = {s1, . . . , sm}
and the subsets Ci with 1 ≤ i ≤ l, all relations �i as well as �F in the
MOSS instance are defined on the basic set A := {~x1, . . . , ~xm, ~x′

1, . . . , ~x
′
m}

where the ~xj and ~x′
j (1 ≤ j ≤ m) are single solutions. The relation �F

will be the reflexive closure of the antichain on A, i. e., �F only contains
the elements (~xj, ~xj) and (~x′

j, ~x
′
j) for 1 ≤ j ≤ m, see Fig. 17. The re-

lations �i with 1 ≤ i ≤ l are all constructed in the same way. A rela-
tion �i is build up on the linear preorder7 [~x1, ~x

′
1, ~x2, ~x

′
2, . . . , ~xm, ~x′

m] which
additionally, contains the element (~x′

j, ~xj) iff sj 6∈ Ci. Furthermore, we
have to compute another relation �k+1 which is the reverse linear preorder
[~x′

m, ~xm, ~x′
m−1, ~xm−1, . . . , ~x

′
1, ~x1]. After this transformation, we question our

MOSS oracle once. The resulting index ISCP for the SCP problem will be then
ISCP := Ioracle \ {l + 1} if the oracle produces Ioracle as its output.

It remains to show that the transformation yields an exact algorithm
for SCP with polynomial running time, under the assumption that there is
an exact polynomial time algorithm A for MOSS. Let us assume that (S =

6For general details on complexity theory and Turing reductions in particular, we

refer to the book of Garey and Johnson (1990).
7We write a linear preorder of n solutions as [~x1, ~x2, . . . , ~xn] and interpret it as the

relation {(~xi, ~xj) | 1 ≤ i ≤ j ≤ n}.
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Figure 17: An example for the Turing reduction from SCP to MOSS. The reflexive

and transitive edges are omitted for clarity.

{s1, . . . , sm}, C1, . . . , Cl) is the SCP instance with Ci = {c1, . . . , c|Ci|} ⊆ S.
Via the described transformation and the hypothetical algorithm A, we can
compute the index ISCP := IA \ {l + 1} as the output corresponding to the
SCP instance. Obviously, the computation of ISCP is possible in polynomial
time using a polynomial algorithm for MOSS where the transformation needs
O(lm2) time and produces a MOSS instance of size O(lm2). To complete the
proof, we still have to show (i) why always l + 1 ∈ IA, (ii) why IA \ {l + 1}
is a correct output for our SCP instance, and (iii) why the computed index
IA \ {l + 1} is minimum.

First, we will take a look at the question (i), i. e., why �l+1 is always
needed to yield �F as the intersection of some �i. Because in �F no
pair ~x, ~y ∈ A with ~x 6= ~y is comparable, for each pair ~x, ~y ∈ A, ~x 6= ~y,
there has to be at least one i ∈ IA where ~x 6�i ~y and at least one j ∈ IA
with ~y 6�j ~x. Considering the pair ~x1, ~x

′
1, for all �i with i ∈ {1, . . . , l},

~x1 �i ~x′
1 holds by construction. Only in the last objective fl+1, ~x1 �l+1 ~x′

1

does not hold. Consequently, �l+1 is always needed, to construct �F as
the intersection of single �i’s. Now we show (ii) why I := IA \ {l + 1} is
always a correct output for the given SCP instance. As we have seen before,
l + 1 ∈ IA and therefore, the intersection of the �i’s does not contain any
pairs (~xν , ~xµ), (~xν , ~x

′
µ), (~x′

ν , ~xµ), and (~x′
ν , ~x

′
µ) with 1 ≤ ν < µ ≤ m and no

pairs (~xν , ~x
′
ν) with 1 ≤ ν ≤ m. The construction of the relations �i with

i ∈ {1, . . . , l} results in the absence of pairs (~xν , ~xµ), (~xν , ~x
′
µ), (~x′

ν , ~xµ), and
(~x′

ν , ~x
′
µ) with 1 ≤ µ < ν ≤ m in the intersection if there will be at least

one i ∈ IA selected with 1 ≤ i ≤ l. There only remains the possibility of
pairs (~x′

ν , ~xν) with 1 ≤ ν ≤ m in the intersection. To avoid this, for each
ν ∈ {1, . . . ,m} there must be at least one i ∈ {1, . . . , l} in IA with ~x′

ν 6�i ~xν .
By construction of the Turing transformation, this can only occur if cν ∈ Ci.
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Thus,
⋃

i∈IA\{l+1} Ci = {1, . . . ,m} = S. Last, we have to show (iii) why the
computed index IA \ {l + 1} is a minimum index for SCP. Assume that
IA \ {l + 1} is not a minimum index for SCP, i.e., there is a smaller index
J with |J | < |I| and

⋃

j∈J Cj = S. As one can easily see from the above
transformation, J ∪ {l + 1} would be a smaller index for MOSS than IA.

We can now come back to the proof that δ-MOSS and k-EMOSS are NP-
hard problems:

Proof of Theorem 9. First, we prove the NP-hardness of δ-MOSS by a Tur-
ing reduction from the above NP-hard MOSS problem. Secondly, we prove
the NP-hardness of k-EMOSS via a Turing reduction from δ-MOSS.

MOSS ≤T δ-MOSS
The idea of this Turing reduction is to compute objective values for all the
solutions in A of a MOSS instance yielding the same weak dominance relation
as �F and �i respectively. With those objective vectors and δ = 0, the δ-
MOSS oracle is asked once for a 0-minimum objective set. This objective set
can directly be used as output for the MOSS problem, since the two problems
with δ = 0 ask for the same minimum objective set. It remains to show how
the objective values are computed and that it is possible within polynomial
time. Starting with the MOSS instance (A,�F ,�i for all 1 ≤ i ≤ k), the
δ-MOSS instance is computed in time O(k · |A|2) as follows. Choose δ = 0.
Assign the solutions’ ith objective values according to a topological sorting
of �i. As there are at most O(|A|2) edges in the relation graphs of the �i,
the topological sorting costs O(|A|2) per objective, resulting in a runtime of
O(k · |A|2) in total.

δ-MOSS ≤T k-EMOSS
A δ-minimum objective set with respect to F is obviously of size 1 ≤ l ≤ k.
Asking the k-EMOSS oracle with the same objective values than the δ-MOSS
instance and all possible sizes 1 ≤ l ≤ k iteratively, the smallest computed
objective set which has an error of at most δ is a δ-minimum set, i.e., it can
be taken as output for the δ-MOSS problem. The Turing transformation can
be done in linear time regarding the δ-MOSS instance.

Since the two problems δ-MOSS and k-EMOSS together with the restricted
MOSS problem areNP-hard, we cannot expect to find polynomial algorithms
that solve the problems exactly unless P = NP . However, we propose an
exact algorithm with exponential running time in the next section to have a
reference algorithm when investigating the potential of objective reduction
later on. Furthermore, the next section presents several approximation al-
gorithms based on greedy heuristics that are fast enough in practice and, for
the special case of the MOSS problem, ensure the best theoretically possible
approximation ratio.
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3.4 Computing Minimum Objective Sets:

Algorithms

In the following, we propose both exact and approximation algorithms to
solve the two problems δ-MOSS and k-EMOSS. Corresponding implementations
of the algorithms are freely available for download at http://www.tik.ee.
ethz.ch/sop/download/supplementary/objectiveReduction/.

3.4.1 An Exact Algorithm

In this subsection, we propose an exact algorithm, that is exponential in
the number k of objectives involved but polynomial in the number |A| of
solutions, and that is suited to both problem formulations δ-MOSS, and k-
EMOSS respectively. The practical use of this algorithm is twofold. On
the one hand, this algorithm is used later to investigate the potential of
the proposed objective reduction approach by computing the maximally
achievable objective reduction for some test problems. On the other hand,
the exact algorithm provides a basis to compare the quality of objective
subsets computed by heuristic approaches that are presented later in this
section.

Instead of simply considering all 2k possible objective subsets and com-
puting whether they are minimal with respect to the set F of all objectives
and the entire set of solutions A, the basic idea of the exact algorithm is to
consider solution pairs separately. This separate information is then com-
bined to get all minimal objective sets for increasing sets of solution pairs.
The algorithm considers all solution pairs (~x, ~y) successively in arbitrary
order. The solution pairs considered so far are stored in the set M . The
set SM contains at any time all minimal objective subsets F ′ together with
the minimal δ′ value such that F ′ is δ′-non-conflicting with the set F of all
objectives when taking into account only the solution pairs in M .

The algorithm uses a subfunction δmax({~x, ~y},F1,F2), to compute for
two solutions ~x, ~y ∈ A and two objective sets F1,F2 the maximum δmax

error from Def. 4 such that F1 and F2 are δmax-non-conflicting with respect
to the solution set {~x, ~y}. To guarantee, that the set SM contains only
pairs (F ′, δ′) such that F ′ is always δ′-minimal with respect to F with the
smallest δ′ possible, the union ⊔ of two sets of objective subsets S1, S2 is
done with simultaneous deletion of not δ′-minimal pairs (F ′, δ′) as follows:
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S1 ⊔ S2 := {(F1 ∪ F2, max{δ1, δ2}) | (F1, δ1) ∈ S1 ∧ (F2, δ2) ∈ S2

∧ ∄(F ′
1, δ

′
1) ∈ S1, (F ′

2, δ
′
2) ∈ S2 :

(

F ′
1 ∪ F ′

2 ⊂ F1 ∪ F2 ∧max{δ′1, δ′2} ≤ max{δ1, δ2}
)

∧ ∄(F ′
1, δ

′
1) ∈ S1, (F ′

2, δ
′
2) ∈ S2 :

(

F ′
1 ∪ F ′

2 ⊆ F1 ∪ F2 ∧max{δ′1, δ′2} < max{δ1, δ2}
)}

The full procedure is detailed in Algorithm 4. Note that the running time
of Algorithm 4 is polynomial in the number m := |A| of solutions but
exponential in the number k of objectives. Due to the NP-hardness of the
objective reduction problems, we cannot expect to find much faster exact
algorithms. Nevertheless, the exact algorithm is applicable for instances
with few objectives and a moderate number of solutions as experimental
results will show in Sec. 3.5.

Theorem 11. Algorithm 4 solves both the δ-MOSS and the k-EMOSS problem
exactly in time O(m2 · k · 2k).

For details and the very technical correctness proof, we refer to Ap-
pendix A. The upper bound for the running time of the exact algorithm
can be derived by computing the maximum size of the set SM . As SM

contains at most O(2k) objective subsets of size O(k), the computation of
SM ⊔ S{(~x,~y)} in line 9 is possible in time O(k · 2k). The outer loop will be
finished after at most O(m2) iterations. Thus, the entire algorithm runs
in time O(m2 · k · 2k). Note, that the exact algorithm can be easily paral-
lelized, as the computation of the sets S{(~x,~y)} are independent for different
pairs (~x, ~y). It can also be accelerated if line 9 of Algorithm 4 is tailored
to either the δ-MOSS or the k-EMOSS problem by including a pair (F ′, δ′)
into SM∪{(~x,~y)} only if δ′ ≤ δ, and |F ′| ≤ k respectively, which is done in
the implementation available for download and used for the experiments
to follow. Moreover, the algorithm can be used to compute all minimum
objective subsets if simply the entire set SM is outputted instead of a single
element (F ′, δ′).

That Algorithm 4 indeed has a running time that is exponential in the
number of objectives shows the following theorem which is based on a con-
structed MOSS instance.

Theorem 12. The worst-case running time of Algorithm 4 for the MOSS

problem is Ω(m2 · 2k/3).

Proof. Figure 18 shows the parallel coordinates plot of an instance for which
Algorithm 4 needs time Ω(m2 · 2k/3) if m solutions and k objectives are in-
volved. We assume that this instance consists of an even number of m
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Algorithm 4 An exact algorithm for the problems δ-MOSS and k-EMOSS
1: Init:

2: M := ∅
3: SM := ∅
4: for all pairs ~x, ~y ∈ A, ~x 6= ~y of solutions do

5: S{(~x,~y)} := ∅
6: for all objective pairs fi, fj ∈ F , not necessary i 6= j do

7: compute δij := δmax({~x, ~y}, {fi} ∪ {fj},F)

8: S{(~x,~y)} := S{(~x,~y)} ⊔ ({fi} ∪ {fj}, δij)

9: end for

10: SM := SM ⊔ S{(~x,~y)}

11: M := M ∪ {(~x, ~y)}
12: end for

13: Output for δ-MOSS: (F ′, δ′) in SM with minimal size |Fmin| and δ′ ≤ δ

14: Output for k-EMOSS: (F ′, δ′) in SM with size |F ′| ≤ k and minimal δ′

solutions A := {~x1, . . . , ~xm} together with the relation �F and k = 3/2 ·m
relations �i corresponding to the objective functions F := {f1, . . . , f3/2·m}
where only the solutions ~x2i−1 and ~x2i for 1 ≤ i ≤ m/2 are incomparable.
The incomparability of such pairs is only caused by their 3ith, (3i+1)th, and
(3i+2)th objective values, i. e., we need either the objective pair f3i−2, f3i−1

or the pair f3i−1, f3i to describe the incomparability, cf. the parallel coor-
dinates plot in Fig. 18. Thus, whenever Algorithm 4 considers a new pair
~x2i−1, ~x2i of incomparable solutions, the size of the set S reduplicates. Be-
cause we have m/2 = k/3 of those incomparable pairs, S is of size 2k/3 after
the algorithm considered all of the k/3 incomparable pairs. This is possible
after the first k/3 of altogether

(

m
2

)

steps of the algorithm, which results in
a running time of at least (

(

m
2

)

− k/3) · 2k/3 = Ω(m2 · 2k/3). Note that this
restricted example can be easily extended to the case where m > k.

3.4.2 Heuristics

The three heuristic algorithms, we propose in this section, are better suited
for large instances of the δ-MOSS problem, and k-EMOSS respectively, than
the proposed exact algorithm. They are much faster but therefore do not
guarantee to find a δ-minimum objective set. Nevertheless, the sizes of the
objective sets, and the δ-errors respectively, are close to the sizes and errors
of the δ-minimal sets found by the exact algorithm, see Sec. 3.5. In addition,
for the case of 0-MOSS, the greedy algorithm proposed below has the best
approximation ratio possible as we will detail in the following.
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Figure 18: The parallel coordinates plot of an instance with an even number

m solutions and k = 3/2 ·m objectives for which the exact algorithm needs time

Ω(m2 · 2k/3).

3.4.2.1 A Greedy Algorithm for δ-MOSS

The general idea of the proposed approximation algorithm for δ-MOSS is to
adapt the well-known greedy algorithm for the set cover problem to compute
an objective subset F ′, δ-non-conflicting with the set F of all objectives in
a greedy way. This greedy algorithm for the set cover problem chooses
at each step the set that covers most of the uncovered elements until all
elements are covered (Slav́ık, 1996). With respect to the δ-MOSS problem,
this algorithm translates into the following one.

Starting with an empty set F ′ of objectives, the algorithm chooses in
each step the objective fi the addition of which removes most of the edges in
the relation graph of �F ′ which are not contained in the relation graph for
all objectives, i.e., F . Since we are interested in approximating the δ-MOSS
problem, i.e., finding a δ-non-conflicting objective set, we do not care about
remaining edges in �F ′ which imply an error of at most δ. This idea is
formalized with the following generalization of the weak ε-dominance, the
(δ1, δ2)-dominance relation:

Definition 11. Let δ1, δ2 ∈ R and F1,F2 be two objective subsets. The
(δ1, δ2)-dominance relation �δ1,δ2

F1,F2
on X is defined as ~x �δ1,δ2

F1,F2
~y :⇐⇒

(∀f1 ∈ F1 : f1(~x) ≤ f1(~y) + δ1) ∧ (∀f2 ∈ F2 : f2(~x) ≤ f2(~y) + δ2) for all ~x, ~y
∈ X.

The (δ1, δ2)-dominance relation states that with respect to objective set F1

a solution δ1-dominates another one and with respect to the objective set
F2 the same solution δ2-dominates the latter. Within the greedy algorithm
for δ-MOSS, the details of which are depicted as Algorithm 5, all edges in
�0,δ

F ′∪{i},F\(F ′∪{i}) are not considered; that means we do not care about so-
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Algorithm 5 A Greedy Algorithm for δ-MOSS.
1: Init:

2: based on the solution set A and the corresponding objective vectors,

compute the relations �i for all 1 ≤ i ≤ k as well as �F

3: F ′ := ∅
4: R := A× A\ �F

5: while R 6= ∅ do

6: i∗ = argmin
i∈F\F ′

{|(R∩ �i)\ �0,δ
F ′∪{i},F\(F ′∪{i}) |}

7: R := (R∩ �i∗)\ �0,δ
F ′∪{i∗},F\(F ′∪{i∗})

8: F ′ := F ′ ∪ {i∗}
9: end while

lutions inducing an error of at most δ in the objectives in F \ (F ′ ∪ {i}),
i.e., in the set of objectives that are not taken. For the proof of the poly-
nomial running time and the correctness stated in Theorem 13, we refer to
Appendix A.

Theorem 13. Given the objective vectors f(~x1), . . . , f(~xm) ∈ R
k and a

δ ∈ R, Algorithm 5 always provides an objective subset F ′ ⊆ F , δ-non-
conflicting with F := {f1, . . . , fk} in time O(min{k3 ·m2, k2 ·m4}).

Note, that Algorithm 5 does not necessarily yield a δ-minimal objective
set. However, by simply checking whether an additional omission of single
objectives in the computed set F ′ leaves the dominance relation unchanged,
a δ-minimal set can be guaranteed. The asymptotic running time will stay
the same, since the additional check of δ-minimality can be done in time
O(k2 ·m2). For the case of δ = 0, Algorithm 5 corresponds to a well-known
greedy algorithm for the set cover problem where �0,0

F ′∪{i},F\(F ′∪{i})=�F .
In this case, we can use results on the approximation ratio of polynomial
algorithms for the set cover problem (Slav́ık, 1996; Feige, 1998) to prove
that Algorithm 5 has the best possible approximation ratio of Θ(log |A|).
Since the problem MOSS is NP-hard, we cannot expect to solve the problem
exactly in polynomial time unless P = NP. However, we can aim at poly-
nomial algorithms that approximate an optimal solution, i.e., algorithms
that try to find an objective subset that is probably not optimal but where
the size can be upper bounded. The term approximation ratio then refers to
such an upper bound on the number of objectives in a computed objective
set divided by the number of objectives in an optimal set, i.e., a minimum
objective set.

Theorem 14. Algorithm 5 with δ = 0 can be seen as an approximation
algorithm for the MOSS problem with the best possible approximation ratio of
Θ(log |A|).
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Proof. First of all, we have to comment on the fact that Algorithm 5 cannot
directly be applied to the MOSS problem since the instances of δ-MOSS and
MOSS differ. In case the instance size for the δ-MOSS problem is not too
high, i.e., the description length of the objective vectors is not too large8 the
instance for 0-MOSS can be easily transferred to a MOSS instance of similar size
by computing the corresponding relations from the given objective vectors.
Then, results on the approximation ratio of a greedy algorithm for the set
cover problem (SCP) can be used to prove the theorem.

To show the upper bound on the approximation ratio, we sketch the
proof of a Turing reduction MOSS ≤T SCP and refer to Theorem 19 in Ap-
pendix A for the entire proof. Given an instance for MOSS, consisting of
the relations �F⊆ X × X and �i⊆ X × X with

⋂

1≤i≤k �i=�F , we can
compute an SCP instance as follows. The set S in the SCP instance contains
an element sx,y for each (~x, ~y) ∈�F . A subset Ci of S in the SCP instance
contains an element sx,y iff ~x 6�i ~y. The output for the MOSS problem,
is the index I, computed by the SCP oracle. The Turing reduction needs
time linear in the instance size and produces an SCP instance of linear size.
This translation shows the equivalence between MOSS and SCP: Where SCP

is asking for the smallest set of Ci’s such that ∪Ci = S, MOSS asks for the
smallest number of objectives �i such that ∩ �i=�F . Since Algorithm 5
uses this equivalence and then acts like the greedy algorithm for SCP, the
upper bound O(log m) for the approximation ratio of the greedy algorithm
for SCP, where m is the number of elements in the ground set of SCP which
corresponds to the number of solutions in the MOSS instance, is directly
translated to Algorithm 5.

For proving that Algorithm 5 has an approximation ratio of Ω(log |A|),
we use conclusions made for SCP. The work of Feige (1998) showed that
there is no ε > 0 such that an approximation algorithm can solve SCP with
approximation ratio (1− ε) ln m, unless NP ⊂ TIME(mO(log log m)). With
the Turing transformation from SCP to MOSS in the proof of Theorem 10,
Feige’s lower bound for SCP yields a lower bound of Ω(log 2m) = Ω(log m) =
Ω(log |A|) for MOSS. This is due to the fact that in the transformation from
SCP to MOSS the size m of the set S is transformed into the set A of size 2m.
Assuming, that there is a polynomial approximation algorithm for MOSS

with an approximation ratio of o(log m), we get a contradiction to Feige’s
results, because we can transform each SCP instance in polynomial time into
a MOSS instance with A of size 2m and solve SCP via the o(log m) algorithm
for MOSS.

8By description length, we mean the length of a binary representation of the objective

values which might be high in comparison to the number of objectives and solutions

involved if we allow for a high precision or exponentially large values (in m and k) of the

objectives. If we do not restrict the description length here, the complexity results do

not hold, e.g., if the instance size is already exponential in the number of solutions.
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Algorithm 6 A greedy algorithm for k-EMOSS
1: Init:

2: F ′ := ∅
3: while |F ′| < k do

4: F ′ := F ′ ∪ argmin
i∈F\F ′

{δmax (A,F ′ ∪ {i},F)}
5: end while

3.4.2.2 A Greedy Algorithm for k-EMOSS

A simple greedy heuristic to approximate the k-EMOSS problem is to choose
the k objectives iteratively. Starting with an empty set F ′ of objectives in
each of the k steps, the algorithm chooses the next objective fi to be included
into F ′ as the objective yielding the smallest δ such that F ′ ∪ {fi} is δ-
non-conflicting with the entire objective set, see Algorithm 6. Algorithm 6
obviously computes always an objective subset of size k which is δ-non-
conflicting with the entire objective set but does not guarantee to find the
set with minimal δ.

Theorem 15. Algorithm 6 needs time O(m2 · k3) to compute an objective
subset of size k.

Proof. The greedy algorithm needs time O(m2 ·k3) altogether since at most
k loops with k calls of the δmin subfunction are needed. One call of the
δmin function needs time Θ(m2 · k) and all other operations need time O(1)
each.

3.4.2.3 A Second Greedy Algorithm for k-EMOSS based on Omis-

sion of Objectives

In this section, we present a second greedy algorithm for the k-EMOSS prob-
lem, allowing a kind of hierarchical clustering of the objective set yielding
a visualization of the computed δ-errors in a tree, as depicted in Fig. 19.
Instead of constructing a δ-non-conflicting objective set by adding objec-
tives as in Algorithm 6, Algorithm 7 removes objectives greedily until the
resulting subset has the desired number of k objectives. At each step, the
objective pair fi, fj with the smallest δ-error between fi and fj is selected
and the objective that maximizes the error between fi and fj is omitted.
Algorithm 7 provides the details. If the algorithm is run with k = 1, each
of its steps can be visualized as an inner node in a tree, cf. Fig. 19, which
can support the decision maker with useful information on the measure of
conflict between objective pairs. Starting with the set of all objectives at
the leafs, each iteration of the algorithm corresponds to an inner node where
one objective is omitted; the later an objective is omitted, the closer the
corresponding node is to the root (Fig. 19).
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Algorithm 7 A second greedy algorithm for k-EMOSS, based on omitting

objectives.
1: Init:

2: F ′ := F
3: while |F ′| > k do

4: (fr, fs) := argmin
fi,fj∈F ′

{δmax (A, {fi}, {fj})}

5: if δmax (A, {fr}, {fs}) < δmax (A, {fs}, {fr}) then

6: F ′ := F ′ \ {fs}
7: else

8: F ′ := F ′ \ {fr}
9: end if

10: end while

Figure 19: Example of a tree computed by

Algorithm 7. The course of the algorithm can

be identified by a horizontal line that moves

from the leaves to the root. Each inner node

thereby indicates the omission of an objec-

tive and the corresponding δ-error after this

omission. Note that the objective noted at

each inner node is the only objective from

the corresponding subtree that is kept. The

dashed line, e.g., corresponds to the situation

after the objectives f2 and f3 have been omit-

ted, i.e., when the objective set is reduced to

{f1, f4, f5} and the error is δ = 0.014.
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Theorem 16. Algorithm 7 needs time O((k − k) · k2 ·m2) = O(k3 ·m2) to
compute an objective subset of size k.

Proof. The computation of the minimal δ-error in the δmax (A, {fi}, {fj})
function costs O(m2) for each objective pair fi, fj since for all O(m2) possi-
ble pairs of solutions the resulting δ-error regarding the two objectives fi, fj

can be computed in constant time. This δmax computation has to be com-
puted for at most O(k2) objective pairs per iteration of the while loop. The
if-statement can be executed in constant time because the computation of
the maxima can be done before within line 4 without increasing the runtime
asymptotically. At most k − k = O(k) iterations of the while loop result in
the overall running time stated.
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3.5 Investigating Minimum Objective Sets

Regarding the proposed objective reduction algorithms, three main ques-
tions arise. First, what is the usefulness of these algorithms regarding con-
crete problems, in particular how much can the objective set be reduced?
Secondly, how good are the objective sets computed by the greedy methods
in comparison with the exact algorithm? And third, how does the objective
reduction approach proposed here compare to the one of (Deb and Saxena,
2006)? This section provides first experimental results for these questions,
whereas Sec. 3.7 shows in more detail how the algorithms can be employed
in decision making on the basis of a real-world application. How the al-
gorithms can be employed during search is part of the last chapter of this
thesis.

The validation of the algorithms regarding the three questions above is
done in two different scenarios. On the one hand, the indicator-based evo-
lutionary algorithm IBEA, proposed in (Zitzler and Künzli, 2004), is used
to generate Pareto front approximations for various test problems which
are used as inputs for the objective reduction algorithms. Altogether four
different test problems are considered: the three problems DTLZ2, DTLZ5,
DTLZ7 (Deb et al., 2005), and the 0-1-knapsack problem with instances of
100, 250 and 500 items, denoted as KP100, KP250, and KP500 (Laumanns
et al., 2004a). The population size µ of IBEA varies with the number k
of objectives, i.e., µ = 100 for k = 5, µ = 200 for k = 15, and µ = 300
for k = 25. For simplicity, only one IBEA run per problem instance is
performed. Other parameters are chosen according to the standard set-
tings of the PISA package presented in (Bleuler et al., 2003). On the other
hand, we consider a random scenario where the objective values for a set
of solutions are generated at random using a uniform distribution over the
interval [0, 1] ⊂ R. This corresponds to randomly chosen solutions of a
problem with objectives, the induced total preorders of which are chosen
uniform randomly from the set of all total preorders.

The reason for choosing the mentioned problems is to provide a wide
range of problems with different characteristics that allows to both test
the objective reduction algorithms extensively and to provide statements
as general as possible. Note also that the problems have been chosen from
the set of all available problems in the PISA package before the objective
reduction algorithms have been applied such that the choice of the problems
is not tailored towards the algorithms.

3.5.1 Investigating δ-Minimum Objective Sets

To show the potentials of our objective reduction approach, we use the exact
Algorithm 4 to compute 0-minimum objective sets in the random scenario
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Figure 20: Size of the computed minimum sets for different number k of ran-

domly chosen objectives and the number |A| of solutions.
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Figure 21: Comparison of the exact and the greedy algorithm for δ-MOSS on the

0-1-knapsack problem.

and δ-minimum sets for the entire search space of the 0-1-knapsack problem
with 7 items9. The sizes of the 0-minimum objective sets in the random
scenario, averaged over 100 independent random samples, are shown in
Fig. 20; the sizes of the δ-minimum sets, averaged over 5 knapsack instances,
can be found in the left part of Fig. 21.

Regarding the random scenario, the resulting sizes of the minimum ob-
jective subsets behave similar for all tested solution set sizes |A|: with
increasing number of objectives, the size of the computed minimum set in-
creases up to a specific point, depending on the number of solutions, and
further decreases with more objectives. The larger the search space, i.e.,
the more solutions we generate, the less objectives can be omitted. With

9With more items, the entire search space of size 2#items would be too large to handle

with the exact algorithm due to its running time.
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200 solutions and 16 objectives, however, about 25% of the objectives can
be omitted without changing the underlying dominance structure. Another
observation is that the potential of the objective reduction not only relies on
the number of objectives but also on the number of solutions: the smaller
the set A of solutions, the more objectives can be omitted.

The investigation of the 0-1-knapsack problem indicates a similar be-
havior of the δ-minimum objective sets: the more objectives are used in the
problem formulation, the more objectives can be omitted. Furthermore, by
increasing the allowed δ-error, even more objectives can be omitted. For
example, the δ-minimum sets contain only 4.4 objectives in average for the
20-objective knapsack problem if we allow an error of δ = 50; instead, 10.6
objectives are needed to preserve the dominance relation with no error.
However, the interpretation of the influence of δ on the results is difficult as
the range of δ highly depends on the problem instances as we will see later.

As the running times, depicted in the right-hand plot of Fig. 21 for
the knapsack instances and in Fig. 22 for the random scenario, indicate,
the exact algorithm is not applicable for larger instances of practical size.
Therefore, the greedy algorithms with their smaller running times have been
developed to cope with problem instances with hundreds of solutions and a
few tens of objectives in reasonable time. The following section shows that
the greedy algorithm for the δ-MOSS problems yields comparable results to
the exact algorithm. Because of that, only the greedy algorithms are used
in the reminder of this thesis.

3.5.2 Investigating Approximate Objective Reduction

Before we investigate approximate objective reduction by applying the greedy
algorithms, we briefly compare the exact Algorithm 4 with the greedy Algo-
rithm 5 on δ-MOSS. To this end, we both use the random objective problem
and the 0-1-knapsack problem with 7 items as described above and the
results of which are shown in Fig. 22 and Fig. 21 respectively.

For both problems, the comparison shows the same two aspects. First,
the objective sets computed with the greedy algorithm are not too large
in comparison to the minimum sets computed with the exact algorithm.
Nevertheless, the difference between the sizes of the objective sets computed
by the two algorithms increase with more objectives. Second, the greedy
algorithm is—as expected—much faster than the exact algorithm. The
runtime is a large advantage of the greedy algorithm, especially for larger
values of δ because the heuristic’s runtime decreases with larger δ, cf. the
right hand plot in Fig. 21.

Within the scenario of given Pareto front approximations for the DTLZ
and knapsack instances with various numbers of objectives, we further inves-
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Figure 22: Comparison between the exact and the greedy algorithm for the

0-MOSS problem on sets with 32 solutions and random objective values. The left

plot shows the size of the computed objective sets averaged over 100 runs for

different number of objectives. In the right plot, the average running times of

both algorithms are shown for 100 runs on each number of objectives.

tigate the ability of the greedy objective reduction methods to approximate
the generalized δ-MOSS and k-EMOSS problems. To be able to compare the
results for the different test problems and the varying number of objectives,
we choose the δ and k values relatively. On the one hand, the error δ is cho-
sen relatively to the spread of the IBEA population after 100 generations,
i.e., the difference between the largest and highest objective value in the
IBEA population corresponds to an error of δ = 1. On the other hand, the
size k of the objective sets is denoted relatively to the number k ∈ {5, 15, 25}
of objectives in the problem formulation. We choose four different δ values
for the δ-MOSS problem (0%, 10%, 20%, 40%) and three different values for
k (30%, 60%, 90%). Table 1 shows the results.

With δ = 0, the results for the test problems are similar to those for the
random problem. Although an objective reduction is possible while preserv-
ing the preorder on the solutions, further objectives can be omitted if we
allow changes of the dominance structure within the dimensionality reduc-
tion. For example, the knapsack instance with 500 items and 25 objectives
does not allow an omission of objectives while preserving the dominance
relation on the 300 solutions. Permitting an error of 20%, 8 objectives can
be omitted, while even 12 objectives can be omitted if an error of 40% is
allowed. However, the influence of a greater error δ on the resulting objec-
tive set size depends significantly on the problems. For example, only small
errors yield fundamentally smaller objective sets for the DTLZ7 instances,
while even a large error produces no further reduction for all DTLZ2 and
DTLZ5 instances. By examining the k-EMOSS problem for the 18 instances
in Table 1, we see similar results in a different manner. The smaller the
chosen size k of the resulting objective sets, the larger the error in the
corresponding dominance structure.

Overall, one can see that the problem instances with a higher number
of objectives can be reduced further than problem instances with only 5
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Table 1: Sizes (for δ-MOSS) and relative errors (for k-EMOSS) of objective subsets

for different problems, computed with the Algorithm 5, and 6 respectively. For

δ-MOSS, the δ value is chosen relatively to the maximum spread of the IBEA

population after 100 generations; in the case of k-EMOSS, the specified size k of

the output subset is denoted relatively to the problem’s number of objectives.

#
ob

je
ct

iv
es

#
so

lu
ti

on
s

δ-MOSS k-EMOSS

0% 10% 20% 40% 30% 60% 90%

KP100 5 100 5 5 5 5 0.926 0.516 0.486

KP100 15 200 11 10 10 9 0.818 0.348 0.000

KP100 25 300 13 13 13 11 0.597 0.000 0.000

KP250 5 100 5 5 5 4 0.859 0.697 0.280

KP250 15 200 11 11 10 9 0.762 0.342 0.000

KP250 25 300 12 12 12 11 0.575 0.000 0.000

KP500 5 100 5 5 5 4 0.748 0.504 0.237

KP500 15 200 15 15 14 10 0.643 0.435 0.278

KP500 25 300 25 23 17 13 0.472 0.320 0.138

DTLZ2 5 100 5 5 5 5 0.991 0.970 0.920

DTLZ2 15 200 13 13 13 13 0.942 0.891 0.000

DTLZ2 25 300 18 18 18 18 0.832 0.782 0.000

DTLZ5 5 100 5 5 5 5 0.952 0.906 0.896

DTLZ5 15 200 11 11 11 11 0.860 0.803 0.000

DTLZ5 25 300 13 13 13 13 0.820 0.000 0.000

DTLZ7 5 100 5 5 1 1 0.135 0.134 0.132

DTLZ7 15 200 10 1 1 1 0.078 0.070 0.000

DTLZ7 25 300 11 1 1 1 0.050 0.000 0.000

objectives. However, this might be due to the fact that the number of
solutions increases only slightly with the number of objectives such that
the entire dimensionality of the search space cannot be represented, e.g., by
only 300 solutions in a 25-objective space. Furthermore, we would like to
stress the exception of DTLZ7 in the considered set of test functions where
probably the different scaling of the objectives allows for a large reduction
of the objectives even if the error is quite small.
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3.5.3 Comparison to a PCA-based Objective Reduc-

tion Approach

Before we come to the case of objective aggregation in the next section,
we compare the proposed objective reduction approach to the method of
Deb and Saxena (2005, 2006) on k-EMOSS for a knapsack instance with
20 objectives. We apply both methods on a Pareto front approximation
for a knapsack instance with 100 items and 20 objectives, generated with
an IBEA run as before (100 generations, population size 50). Since the
PCA-based objective reduction method of Deb and Saxena cannot handle
the k-EMOSS problem directly, we choose different threshold cuts (TC) such
that all possible sizes of objective subsets are computed, where the TC
determines the number of examined eigenvectors. Because an additional
eigenvector causes either 0, 1, or 2 additional objectives in the resulting
objective subset, objective subsets with 1, 5, 6, and 10 objectives cannot be
generated by the PCA-based method for the considered knapsack instance.
Note, that Deb and Saxena’s method also performs an additional reduction
of objectives using a reduced correlation matrix. Nevertheless, the method
does not necessary yield, in general, δ-minimal sets, similar to our greedy
algorithm.

Table 2 shows the computed objective subsets together with the absolute
and relative10 δ-errors for the objective subsets computed with the method
of Deb and Saxena, the exact Algorithm 4 and the greedy Algorithm 6 for
k-EMOSS. In addition, Table 2 presents the used TC vales for the method
of Deb and Saxena and Fig. 23 provides parallel coordinates plots for the
computed sets, 0-non-conflicting with the set of all objectives.

The fewer objectives are removed from the objective set, the smaller the
δ-error gets for all methods similar to what we have seen before. Although
the exact algorithm shows that only 7 objectives are necessary to yield no
error, the other two approaches perform noticeable reductions of objectives.
But since Deb and Saxena’s method is not especially developed for k-EMOSS,
the resulting objective sets cause larger errors in the dominance structure
than the corresponding sets, computed with the greedy algorithm11. Note,
that the method of Deb and Saxena yields a 0-non-conflicting subset of
size 11 if one chooses the TC value as recommended in (Deb and Saxena,
2005) as 95%. This last result is especially interesting since the considered
knapsack problem does not obviously have a Pareto front of lower dimension

10The relative error δrel is the absolute error δmax divided by the spread of the IBEA

population, i.e., the same than the normalized δ-error above.
11The same is expected if the more recent objective reduction algorithms proposed

in (Saxena and Deb, 2007) would be considered here. However, the comparison with

these algorithms as well as with other more recent approaches, e.g., with the algorithms

proposed in (López Jaimes et al., 2008, 2009) is not the main focus of this thesis.
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(a) original problem formulation with 20 objectives
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Figure 23: Visualization of the results from Table 2. The plots show the objec-

tive values for the 50 solutions computed by an IBEA run on a knapsack instance

with 20 objectives. Figure (a) shows the values for the complete set of 20 ob-

jectives. The other figures show the objective subsets, 0-non-conflicting with the

whole objective set, computed by the approach of Deb and Saxena (2006) (b),

the greedy Algorithm 6 (c), and the exact Algorithm 4 (d).

than the original problem formulation with 20 objectives. Although Deb
and Saxena applied their algorithm only to those types of problems with
a lower-dimensional front and, in addition, it does not aim at preserving
the dominance relation, the PCA-based approach is also applicable to more
general problem scenarios and preserves the dominance structure.
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Table 2: Comparison between the PCA-based approach of Deb and Saxena (2006) with the exact Algorithm 4 and the greedy Algorithm 6

for k-EMOSS on a Pareto front approximation of a knapsack instance with 20 objectives.

PCA-based k-EMOSS exact k-EMOSS greedy

# obj TC δmax δrel objective set δmax δrel objective set δmax δrel objective set

1 - - - - 552 0.9154 18 552 0.9154 18

2 0.0000-0.5410 603 1.0000 4,14∗ 485 0.8043 8,9 508 0.8425 6,18

3 0.5411-0.6704 546 0.9055 4,7,14 447 0.7413 6,12,15 462 0.7662 6,9,18

4 0.6705-0.7702 546 0.9055 4,14,16,19 363 0.6020 7–9,11 418 0.6932 6,9,14,18

5 - - - - 289 0.4793 3,4,8,9,20 369 0.6119 4,6,9,14,18

6 - - - - 129 0.2139 3–5,8,9,18 356 0.5904 2,4,6,9,14,18

7 0.7703-0.8442 466 0.7728 2,4,7,12,14,16,19 0 0.0000 1,5,8,11,15,17,20 324 0.5373 2,4,6,9,13,14,18

8 0.8443-0.9235 466 0.7728 2,4,5,7,12,14,16,19 0 0.0000 1,5,8,11,15,17,20 287 0.4760 2,4,6,8,9,13,14,18

9 0.9236-0.9472 357 0.5920 1,2,4,5,7,12,14,16,19 0 0.0000 1,5,8,11,15,17,20 0 0.0000 2–4,6,8,9,13,14,18

≥11 ≥ 0.9473 0 0.0000 1,2,4,5,7,12–14,16,19,20 0 0.0000 1,5,8,11,15,17,20 0 0.0000 2–4,6,8,9,13,14,18

∗Note, that for 0.3983 ≤ TC ≤ 0.5410, the original set is 4, 7, 14, but the final reduction using the reduced correlation matrix omits objective 7.
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It is worth noting as well that in the case of 11 and more objectives,
all objective reduction approaches find different objective sets that are non-
conflicting with the entire objective set. Moreover, also if only a few objec-
tives are desired in the resulting objective set, the exact and the greedy al-
gorithm find different objective sets the δ-errors of which only differ slightly.
This might indicate that there are at least two small almost equivalent ob-
jective subsets that contain most of the problem structure; however, further
research is necessary here.

The parallel coordinates plots in Fig. 23 show in addition, how the ob-
jective reduction approaches reduce the amount of data, a decision maker
would have to consider in an a posteriori scenario while the Pareto dom-
inance relation among the solutions is not affected: The huge amount of
objective values in the original 20-objective Pareto front approximation
(Fig. 23(a)) can be reduced by more than 60% for the exact algorithm—
counted in the number of the objective values shown to the decision maker
(Fig. 23(d)). Also the greedy, and therefore much faster algorithm can
reduce the number of objectives shown to a decision maker from 20 to 9
(Fig. 23(c)).

3.6 Objective Reduction by Aggregating Ob-

jectives

In this section, we generalize the ideas of objective reduction in the previous
section by considering aggregations of several objectives and thereby make
use of the fact that when aggregating objectives instead of omitting them
less information is lost, i.e., the δ-error can be further decreased. In this
context, the main goal can be restated as follows: find a minimum set of
new objectives where each of them represents a weighted sum of a subset of
the original objectives such that the dominance structure between solutions
is (mainly) preserved. Clearly, this formulation also captures the omission
of objectives as weights can be set to 0. Note that this idea of grouping
the objectives and optimizing the weighted sums of them separately while
keeping the overall nature of a multiobjective problem is not new. However,
when Koski and Silvennoinen (1987) introduced this idea and applied it to
several truss bar design problems, the grouping of the objectives as well as
the choice of the weights have been left to the decision maker. Here, we aim
at finding the weights automatically depending on a given set of solutions.

The next subsection defines the problem formally and investigates the
benefit of objective aggregation in terms of the achieved δ-error and the
changes in the dominance structure in general. Later on, we present a
greedy algorithm to approximate the optimal solution to the problem of
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Figure 24: Example of Fig. 3: (left) original objectives; (right) original objective

f1 and aggregated objective 0.6 · f2 + 0.4 · f4. For details, see text.

finding a minimum objective subset that preserves most of the dominance
structure (Sec. 3.6.2). It works by iteratively selecting a pair of objectives
that is integrated into a new objective using weighted-sum aggregation. The
selection of the objective pair yielding the best δ-error can be performed
exactly in an efficient way as we show in Sec. 3.6.2.2. The experimental
validation in Sec. 3.6.3 indicates that especially with a large number of
objectives the new method can better preserve the problem characteristics
and has advantages over the proposed methods that omit objectives only.

3.6.1 Aggregation vs. Omission of Objectives

The main purpose of this section is to understand how the Pareto dominance
relation changes if objectives are aggregated and what is the difference to
omitting objectives. Before we start our investigation with the same exam-
ple used in Chapter 2 and in the previous sections, we quickly recapitulate
the result for objective omission from Sec. 2.1: the only possible changes
in the dominance relation if objectives are omitted are that comparable
solutions can become indifferent and incomparable solutions can become
comparable or indifferent. In other words, only new comparabilities can be
introduced by omitting objectives.

Example 8. Let us consider again the example from Chapter 2, depicted
in Fig. 24. We recapitulate that the omission of f3 does not change the
dominance structure but no set of two objectives induces the same Pareto
dominance relation than the set of original objectives.

We have seen that the omission of objectives introduces new compara-
bilities and information about the original dominance structure gets lost.
As an alternative, the number of objectives can also be reduced by the ag-
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gregation of objectives and thereby keeping more of the information about
the original objectives as we will see in the following. Here, we consider
the simplest case of objective aggregation: the weighted sum approach. An
aggregated objective f a is thereby a linear combination of the original ones,
i.e., f a

i =
∑

fj∈F
wi,j · fj, where we assume without loss of generality12 that

the non-negative weights wi,j (1 ≤ j ≤ k) for each of the new objectives
sum up to 1. This formalism also contains the omission of objectives as an
aggregation where all weights are either 1 or 0.

Example 9. Once again, we consider the above example in Fig. 24. As
we have seen, no objective pair can preserve the weak Pareto dominance
relation entirely. However, if we allow the aggregation of objectives, a set of
two aggregated objectives can be found that preserves the dominance relation
completely. The right hand plot of Fig. 24 shows the parallel coordinate plot
for such a set {f1, 0.6 · f2 + 0.4 · f6}. All four solutions are still pairwisely
incomparable, i.e., the original dominance relation is preserved.

When aggregating objectives, the only change in the dominance struc-
ture is the introduction of comparabilities—exactly as with the omission of
objectives. If for a pair ~a,~b ∈ X of solutions, ~a �F

~b holds, i.e., fi(~a) ≤ fi(~b)

for all 1 ≤ i ≤ k, ~b will stay weakly dominated with respect to any set of
aggregated objectives if the weights are all positive and the objectives are
coming from F . If, however, for a pair ~a 6�F

~b holds, the aggregation
can introduce the domination of ~a if for all newly introduced objectives
f a

i (~a) 6> fa
i (~b) holds due to the choice of the weights.

In Sec. 3.3, given a set A ⊆ X of solutions and a k ∈ N, the k-EMOSS
problem was introduced as the problem of finding the best objective subset
F ′ ⊆ F of size k that minimizes the resulting (maximum) δ-error. Here,
we generalize this problem to finding the best set of k aggregated objectives
such that the resulting δ-error is minimized and denote it as the Optimal
Aggregation Problem:

Definition 12. Given a k ∈ N, a set A ⊆ X of solutions, and a chosen
δ-error (either δ = δmax or δ = δavg). Let F = {f1, . . . , fk} be the set of
all objectives. The OPTIMAL AGGREGATION PROBLEM, or OAP for short, with
respect to δ is defined as follows: Find a set of weight vectors W = {~w =
(w1, . . . , wk) ∈ [0, 1]k | ∑1≤i≤k wi = 1} with |W | = k such that the δ-error
of the set of aggregated objective vectors

δ(A,
⋃

(w1,...,wk)∈W

{
k
∑

i=1

wifi},F)

is minimal.

12If
∑

fj∈F wi,j = 1 is not given, we can easily ensure the property by using the weights

wi,j/
∑

fj∈F wi,j instead which does not change the Pareto dominance relation.



3.6. Objective Reduction by Aggregating Objectives 83

In the remainder of this thesis, we will refer to the problem of finding
the optimal aggregation with respect to the maximum error as OAPmax and
denote the optimal aggregation problem with respect to the average δ-error
as OAPavg. For both problems, we propose a greedy heuristic in the following.

3.6.2 A Greedy Heuristic for Finding the Best Aggre-

gation

As the special case of k-EMOSS is already NP-hard (see Sec. 3.3), the gener-
alized problems OAPmax and OAPavg are also at least NP-hard and therefore
too complex to solve them exactly under the assumption P 6= NP . To ap-
proximate the OAPmax and OAPavg problems, we, therefore, propose a greedy
approximation algorithm the idea of which is to iteratively aggregate objec-
tive pairs until the desired number of objectives is reached—in other words,
the algorithm resembles the approach of hierarchical clustering.

3.6.2.1 Main Procedure

Algorithm 8 shows the pseudo code of the aggregation procedure. It car-
ries a set W of weight vectors w = (w1, . . . , wk) ∈ R

k
≥0 along which, at

any time, is a representation of the set of aggregated objectives. Each
weight vector w = (w1, . . . , wk) corresponds to the aggregated objective
fa =

∑k
i=1 wifi. Starting with the original objectives, i.e., with k weight

vectors containing exactly one 1-entry and otherwise zeros (line 2), the δ-
error equals 0. Then, in each step of the while-loop, where |W | denotes the
number of elements in W , the objective pair the aggregation of which yields
the smallest error is aggregated and the corresponding weight vectors and
the δ-error are adjusted. To this end, for each objective pair, represented
by the weight vectors in W , the weight α when optimally aggregating this
objective pair is computed (line 7). Optimally in this case, means that
the δ-error is minimized when deleting the objective pair fq, fr and adding
a new objective fnew = αfq + (1 − α)fr. In terms of the corresponding
weight vectors, the new set of weight vectors W ′ after the aggregation of
fq and fr can be written as the old set W without ~q and ~r but with the
new wnew = α~q + (1− α)~r (line 8). How the optimal weight α can be com-
puted in the function aggregateOptimally(A,F ′,F) such that the δ-error
is minimized will be explained in detail in the following.

3.6.2.2 Optimally Aggregating Two Objectives

Assume, without loss of generality, that we want to aggregate the two
objectives f1 and f2 in a set of objectives F optimally, i.e., we have to
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Algorithm 8 A Greedy Heuristic for the problems OAPmax and OAPavg.

Require: solution set A ⊆ X with set of objectives F = {f1, . . . , fk};
number of desired objectives k ≥ 1;

type of δ-error: type ∈ {max, avg}
1: Init:

2: W = {~w ∈ R
k
≥0 |

∑k
i=1 wi = 1 ∧ ∃i ∈ {1, . . . , k} : wi = 1}

3: δ = 0

4: while |W | > k do

5: δbest = +∞
6: for all ~q, ~r ∈W,~q 6= ~r do

7: α = aggregateOptimally(~q, ~r, A,W,F)

8: W ′ = (W \ {~q, ~r}) ∪ {α~q + (1− α)~r}

9: δ′ = δtype

(

A,
⋃

(w′
1,...,w′

k∈W ′)

{

k
∑

i=1

w′
ifi

}

,F
)

10: if δ′ ≤ δbest then

11: Wbest = W ′

12: δbest = δ′

13: end if

14: end for

15: W = Wbest

16: δ = δbest

17: end while

18: return (W, δ)

find the weight α ∈ [0, 1] such that the δ-error between the original ob-
jective set F and the new set F ′ = F \ {f1, f2} ∪ fnew is minimal where
fnew = αf1 +(1−α)f2 is the new aggregated objective. In the following, we
will use for the current set of objectives excluding the two objectives that
have to be aggregated the term remaining objectives and call the objective
set F ′

rem := F \ {f1, f2}.
The idea behind the function aggregateOptimally(A,F ′

rem∪{fnew},F)

is to determine for each solution pair ~a,~b ∈ A a function ∆(~a,~b) : [0, 1]→ R≥0

that gives for each possible weight α ∈ [0, 1] the δ-error that is introduced if
the objective pair is aggregated to the new objective fnew. Figure 27 gives
some examples how this ∆(~a,~b) function can look like. How this function
∆(~a,~b) can be computed is explained later on in detail. Assuming we know

the functin ∆(~a,~b) for all possible ~a,~b ∈ X, the best weight αopt over all
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solution pairs and the corresponding δ-error δopt can then be computed as

αopt = argmin
α∈[0,1]

∆A(α)

δopt = min
α∈[0,1]

∆A(α)

where, depending on the problem to solve,

∆A(α) = ∆A,max(α) = max
~a,~b∈A

∆(~a,~b)(α)

for OAPmax and

∆A(α) = ∆A,avg(α) =
1

|A|(|A| − 1)

∑

~a,~b∈A

∆(~a,~b)(α)

for OAPavg. In other words, if the error depending on the weight α is known
for all solution pairs, the maximum δ-error ∆A,max is computed as the maxi-
mum over all solution pairs whereas the average δ-error ∆A,avg is the δ-error
averaged over all solution pairs. The optimal weight is then chosen in the
best weight interval, i.e., the weight interval with the minimal δ-error, see
again Fig. 27 for an illustration. We would like to mention already here,
that the choice of αopt is not unique—most of the time it is rather an opti-
mal weight interval than a single value. We will discuss the actual choice of
αopt in the interval with smallest δ-error later and decide to fix the center
of the optimal interval as the optimal weight for the moment.

Now, we explain how to determine the function ∆(~a,~b). To this end, we

fix ~a and ~b and distinguish between two situations:

(a) δ({~a,~b},F ′
rem,F) = 0, i.e., even if we omit the objectives f1 and f2,

we make no error. In this case, α can be chosen arbitrarily in [0, 1]
and the δ-error is 0, i.e., ∀α ∈ [0, 1] : ∆(~a,~b)(α) = 0.

(b) ~a and ~b are standing with respect to the remaining objectives F ′
rem in

a different relationship than with respect to the entire objective set
F , i.e., it depends on the choice of α which error we make. In this
case (i) ~a �F ′

rem
~b but ~a 6�F

~b and/or (ii) ~b �F ′
rem

~a but ~b 6�F ~a can
hold.

Assume first that (i) holds but not (ii). In this case, we need to choose α such

that ~a 6�F ′ ~b holds with respect to the new objective set F ′ = F ′
rem∪{fnew} to

make no error, or in other words, we need to ensure that fnew(~a) > fnew(~b).
This inequality can be rewritten as

fnew(~a) > fnew(~b)

⇐⇒ αf1(~a) + (1− α)f2(~a) > αf1(~b) + (1− α)f2(~b)

⇐⇒ α(f1(~a)− f1(~b) + f2(~b)− f2(~a)) > f2(~b)− f2(~a) (3.1)
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yielding—depending on the precise objective values of ~a and ~b—an interval
S ⊆ [0, 1] of α, where the δ-error is zero13. For all other choices of α,

fnew(~a) ≤ fnew(~b) according to Equation 3.1 and together with the fact that

~a �F ′
rem

~b but ~a 6�F
~b, the relation between ~a and ~b induced by F ′

rem and
F ′

rem ∪ {fnew} is the same and by aggregating f1 and f2, we make an error
that is the same as if we would omit f1 and f2 entirely. Therefore

∆
(i)

(~a,~b)
=

{

0 if α ∈ S

δmax/avg({~a,~b},F ′
rem,F) else

where the δ-error in the else case again depends on the problem to solve.
Examples of this function for different solution pairs can be seen in Fig. 27.

The case where (ii) but not (i) holds follows analogously by changing

the roles of ~a and ~b and yields the similar function

∆
(ii)

(~a,~b)
=

{

δmax/avg({~a,~b},F ′
rem,F) if α ∈ S

0 else
.

What remains to investigate is the case where both (i) and (ii) hold. In this

case, we make an error with any choice of α: either ~a �{fnew}
~b and the error

is ∆
(i)

(~a,~b)
as in case (i) or ~b �{fnew} ~a and the error is ∆

(ii)

(~a,~b)
. In case both

~a �{fnew}
~b and ~b �{fnew} ~a hold, i.e., if ~a and ~b are indifferent with respect

to fnew, the resulting error is the maximum of both errors ∆
(i)

(~a,~b)
and ∆

(ii)

(~a,~b)
.

Thus,

∆(~a,~b)(α) = max{∆(i)

(~a,~b)
, ∆

(ii)

(~a,~b)
} .

Example 10. The left hand plot of Fig. 25 shows two solutions ~a and
~b with two objectives f1, f2, the aggregation of which to the new objective
fnew = αf1+(1−α)f2 causes an error for all choices of α ∈ [0, 1]. The reason
why we make an error for all choices of α is that the two solutions become
comparable for any choice of α although they are incomparable with respect
to the original objectives. The resulting dominance relation changes from
~b �{fnew} ~a to ~a �{fnew}

~b when α is increased, cf. the middle plot of Fig. 25.
The value αc for which both solutions are indifferent (the intersection point
αc in the middle plot of Fig. 25), can be computed when the inequality in

13Such an interval obviously exists if f1(~a) − f1(~b) + f2(~b) − f2(~a) 6= 0 when the

inequality in (3.1) can be easily solved by dividing by (f1(~a) − f1(~b) + f2(~b) − f2(~a)).

In case that f1(~a) − f1(~b) + f2(~b) − f2(~a) = 0, i.e., if f1(~a) − f1(~b) = f2(~a) − f2(~b), the

objective value distances between ~a and ~b are the same for f1 and f2 and therefore either

fnew(~a) < fnew(~b) or fnew(~b) > fnew(~a) with respect to the new aggregated objective fnew

for all choices of α. Thus, the interval for α is either empty (if fnew(~a) < fnew(~b) for all

choices of α and we always make an error) or the entire interval [0, 1] if fnew(~a) > fnew(~b)

for all choices of α and we never make an error by the aggregation of f1 and f2.



3.6. Objective Reduction by Aggregating Objectives 87

1

2

2

1

a

b

1f

2f new
f

α
10 cα

a

b

1

2

α
10 cα

∆
{a,b}

(α)

Figure 25: Illustration of the aggregation of two objectives that is optimal for

two solutions ~a and ~b: (left) original objectives with distances between ~a and ~b

in f1 (➁) and f2 direction (➀); (middle) resulting aggregated objective values

fnew = αf1 + (1 − α)f2 for all choices of 0 ≤ α ≤ 1; (right) corresponding δmax-

error for all choices of α where the dark gray area corresponds to a choice of

α such that ~b is wrongly assumed to weakly dominate ~a and the error equals

the distance ➁ and the light gray area corresponds to the case where ~a weakly

dominates ~b with respect to the aggregated objective and the error is ➀.

Equation 3.1 is changed to an equality. The rightmost plot of Fig. 25 shows
the resulting δ-errors ∆{~a,~b} for each choice of α (indicated as “➀” and

“➁” in Fig. 25 and corresponding to the distances f2(~a) − f2(~b) (➀) and

f1(~b)− f1(~a) (➁) in the left hand plot of Fig. 25).

Note that in the biobjective Example 10, the set of remaining objec-
tives is empty. In the following example, the set of three objectives has to
be reduced by one objective as it would be the case within a run of Algo-
rithm 8, i.e., the set of remaining objectives always contains one objective.
In addition, we consider more than one solution pair here.

Example 11. Consider four solutions ~a,~b,~c, ~d ∈ A with the objective vec-
tors f(~a) = (1, 8, 4), f(~b) = (6, 2, 7), f(~c) = (3, 4, 4), and f(~d) = (0, 7, 7)
as depicted in Fig. 26. In the following, we illustrate the progress of Al-
gorithm 8 if the average δ-error has to be minimized and the objective set
has to be reduced to k = 2 objectives. After initialization, the algorithm
computes the optimal choice of α for each objective pair. Figure 27 shows
the computation for the objective pair (f1, f2) in more detail: for each solu-
tion pair ~x, ~y, the ∆(~x,~y) function is computed as described above (left plot
of Fig. 27) and the average over all these functions is taken as the over-
all error function ∆A(α) (right hand plot of Fig. 27). The optimal choice
of α yielding a minimal δ-error has to lie in the interval indicated by the
arrow in the right hand plot of Fig. 27. For the other two objective pairs
(f1, f3) and (f2, f3), similar ∆A functions can be obtained, see Fig. 28. The
best intervals with an error of δavg = 0 can be obtained when aggregating
f1 and f2 with an α ∈ (0.5, 0.65) and when aggregating f2 and f3 with an
α ∈ (0.6, 0.65) by simply choosing the intervals with the smallest δ-error.
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Figure 26: Illustration of the four points ~a,~b,~c, ~d of Example 11.
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Figure 27: Computation of δ-errors dependent on the weight for all solution

pairs (left) and corresponding δ-error averaged over all solution pairs (right) if

the first two objectives in Example 11 are aggregated. The arrow in the right

hand plot indicates the optimal weight interval.

Note that it is not specified in Algorithm 8 how the α value has to be
chosen within an optimal interval. Although each choice yields the same δ-
error in the current aggregation step, the choice within the optimal interval
might influence the errors we make when aggregating other objectives in
a future step of the algorithm. Therefore, we compare different strategies
experimentally in the following.

3.6.3 Experimental Validation

After presenting the aggregation heuristic for the OAPmax and OAPavg prob-
lems, three main questions remain open: (i) Is it important how to choose
the weight within the optimal interval found by the aggregation heuristics?
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intervals are indicated by arrows.

(ii) How much can the δ-error be reduced by the new aggregation heuris-
tics in comparison to simply omitting objectives? and (iii) What can be
gained by reducing the number of objectives during the search? While the
third question will be tackled separately in the last chapter of this thesis,
this section is addressing the first two experimentally. In the last section
of this chapter, we apply the proposed objective reduction approaches af-
terwards to a real-world problem of optimizing a radar waveform to show
their usefulness with respect to decision making.

The Influence of Different Weight Choices Within the Optimal

Interval

As discussed above, the weight choice within the optimal interval found by
the proposed aggregation heuristics might have an influence on the overall
δ-error although in the current step, all choices lead to the same δ-error.
To investigate the influence of different weight choices on the overall result-
ing error, we compare four variants of the greedy OAPmax heuristic: If the
optimal weight interval and the corresponding objective pair is found, we
either choose the weight in the middle of this interval (variant “CENTER”),
uniformly at random within the interval (“UNIFORM”), or as the center of
the left (“LEFT”) or right (“RIGHT”) half of the interval.

Settings To perform the comparison, we created 3·51 random instances by
choosing the objective values uniformly at random in [0, 1]: 51 solution sets
of 50 solutions with 4 objectives, 51 sets of 100 solutions with 6 objectives,
and 51 sets of 200 solutions with 8 objectives. These instances have been
handed over to the greedy OAPmax algorithm that had to reduce the objective



90 Chapter 3. Objective Reduction

set to 25 and 50 percent of the original objectives14. The resulting maximum
δ-errors have been ranked for all four variants “CENTER”, “UNIFORM”,
“LEFT”, and “RIGHT” (rank 1: best, rank 4: worst) and then compared
by means of the Kruskal-Wallis test with the additional Conover-Inman
procedure for multiple comparisons as described in (Conover, 1999) on pages
288–290. All tests have been performed on the basis of a p-value of 0.05.

Results Without any exception, no significant difference between the al-
gorithm variants could be observed. Apparently, the greedy property of the
algorithm, i.e., not looking ahead to weight choices in future steps of the
algorithm, does not allow for different behavior between the four variants.
In other words, a significantly better choice in one step might be outweighed
by a worse choice in one of the next steps and vice versa. Since the four vari-
ants do not show significant differences, we decided to use the “CENTER”
variant exclusively in the following due to its slightly faster implementation.

Comparison Between Aggregation and Omission

To experimentally validate the proposed aggregation heuristics for the OAPmax
and OAPavg problems, we compare them with the k-EMOSS heuristic in Algo-
rithm 6.

Settings For the comparison, Pareto front approximations of 18 test prob-
lem instances have been generated similar to the experiments in Sec. 3.5 by
running the indicator-based evolutionary algorithm IBEA, proposed in (Zit-
zler and Künzli, 2004), for 100 generations with the standard settings of the
PISA package (Bleuler et al., 2003). The only parameter that changed be-
tween the test cases was the population size which was chosen as 100 for the
5-objective problems and as 200 for the 15-objective problems. In addition
to the DTLZ2, DTLZ3, DTLZ7 (Deb et al., 2005)15, WFG3, WFG6, WFG8
(Huband et al., 2006)16 and three instances of the 0-1-knapsack problem
with 100 (KP100), 250 (KP250), and 500 (KP500) items (Laumanns et al.,
2004a) with 5 and 15 objectives each, we also considered two instances of a
network processor design problem called EXPO (Künzli et al., 2004) with 3
and 4 objectives. The Pareto front approximations for the EXPO instances
had 43 solutions and 143 solutions respectively. Also here, the choice of the
used test functions is somehow arbitrary, with the idea of providing a wide
range of problems, and which is not tailored towards the algorithms.

14More precisely, to 1 and 2 objectives for the 4-objective instances, to 1 and 3 for the

6-objective instances, and to 2 and 4 for the 8-objective instances.
15The number of decision variables has been set to 250.
16For all WFG problems, the number of decision variables has been also fixed to 250

and the number of position variables has been chosen to 168 and the number of distance

variables to 82 according to the recommendations in (Huband et al., 2006) to be able to

keep the numbers constant over all numbers of objectives.
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Based on these test instances, the three considered greedy algorithms
for the k-EMOSS, the OAPmax, and the OAPavg problem respectively, were used
to reduce the objectives to 90%, 60%, and 30% of the number of original
objectives, i.e., to 1, 3, and 4 for the 5-objective problems and to 4, 9, and
13 for the 15-objective problems. The EXPO instances had to be reduced to
1 and 2 (3-objective) and to 1, 2, and 3 objectives (4-objective) respectively.
Table 3 shows the resulting normalized17 δmax-errors for all three algorithms
and, in addition, the average δ-error for the aggregation heuristics proposed
in Sec. 3.6.2. Note that a δ-value of 0.0000 in Table 3 refers to no errors
whereas a ∗ is used to indicate an error that is smaller than 0.0005 but that
is not exactly 0.

Results For all considered problem instances, except when the 15-objective
DTLZ2 problem is reduced to 4 objectives (⌊15 ·30%⌋ = 4), the aggregation
heuristic optimizing the maximum error yields lower or the same errors than
the heuristic that omits objectives, cf. Table 3. Therefore, we conclude that
the error can, in general, be decreased for the same number of objectives
when aggregation is allowed. For example, the preservation of the entire
dominance relation (δ = 0) can be achieved for the reduction to 60% of the
original objectives for 4 of the 12 DTLZ and knapsack problem instances if
aggregation is allowed whereas the k-EMOSS heuristic cannot find objective
subsets of this sizes without making an error. Note that the only case
where the omission of objectives yields a smaller error than both aggregation
heuristics occurs for a reduction to 30%, i.e., a small number of objectives.
This might be due to the fact that the greedy heuristic omitting objectives
creates the objective subset by adding objectives greedily instead of reducing
the number of objectives step-by-step as the greedy aggregation heuristics
do.

As expected, the aggregation heuristic optimizing the average error per-
forms better with respect to the average error and worse with respect to
the maximum error in most cases compared to the heuristic optimizing the
maximum error. The next section will show that a low average δ-error might
be beneficial when visualizing solution sets of many-objective problems.

Regarding the absolute δ-errors and the difference between the maximum
and the average δ-errors, we can conclude that the maximum δ-error is
usually caused by a single or a small number of solution pairs and a high
maximum value does not coincide with a large average error as can be seen
in Table 3. An average error that is close to 1/|A| (i.e., 1/100 or 1/200 in
Table 3) together with a high or medium maximum error therefore indicates
that the reduced objective set induces only for a few solution pairs the wrong
Pareto dominance relation among the solutions.

17The δ-errors have been normalized to the objective values of each instance such that

the difference between the highest and lowest objective value equals 1 for every objective.
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maximum δ-error
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30% 60% 90% 30% 60% 90% 30% 60% 90%

KP100 5 100 .9263 .5164 .4860 .7829/.2659 .3781/.0072 .2576/.0003 1.000/.2649 .4911/.0060 .2576/.0003

KP100 15 200 .8180 .3483 .0000 .7705/.0209 .0000/.0000 .0000/.0000 .8977/.0130 .0000/.0000 .0000/.0000

KP250 5 100 .8588 .6967 .2797 .8588/.3149 .2758/.0013 .1189/.0001 .8156/.3049 .6300/.0014 .1189/.0000

KP250 15 200 .7622 .3421 .0000 .6921/.0200 .0000/.0000 .0000/.0000 .7807/.0090 .0000/.0000 .0000/.0000

KP500 5 100 .7484 .5041 .2370 .6829/.1924 .3638/.0117 .2079/.0028 .6735/.1934 .3773/.0074 .2370/.0018

KP500 15 200 .6425 .4350 .2775 .4333/.0297 .1991/.0012 .0866/.0000 .5691/.0175 .2608/.0008 .1800/.0000

DTLZ2 5 100 .9909 .9699 .9202 .9909/.5876 .7928/.0113 .6371/.0019 1.000/.5592 .8618/.0091 .6541/.0010

DTLZ2 15 200 .9418 .8910 .0000 .9517/.0524 .4044/ ∗ .0000/.0000 .9823/.0119 .4044/ ∗ .0000/.0000

DTLZ5 5 100 .9523 .9062 .8958 .9368/.5324 .6323/.0077 .4771/.0010 .9794/.5171 .8017/.0077 .4897/.0007

DTLZ5 15 200 .8601 .8030 .0000 .8549/.0226 .0000/.0000 .0000/.0000 .9286/.0083 .0000/.0000 0.000/.0000

DTLZ7 5 100 .1353 .1335 .1321 .1353/.1121 .1222/.0003 .0000/.0000 .1558/.1116 .1233/.0002 .0000/.0000

DTLZ7 15 200 .0778 .0700 .0000 .0748/.0001 .0000/.0000 .0000/.0000 .0778/.0001 .0000/.0000 .0000/.0000

WFG3 5 100 .6611 .0000 .0000 .6611/.2402 .0000/.0000 .0000/.0000 .6611/.2402 .0000/.0000 .0000/.0000

WFG3 15 200 .0000 .0000 .0000 .0000/.0000 .0000/.0000 .0000/.0000 .0000/.0000 .0000/.0000 .0000/.0000

WFG6 5 100 .1329 .0000 .0000 .1329/.0490 .0000/.0000 .0000/.0000 .1329/.0490 .0000/.0000 .0000/.0000

WFG6 15 200 .0000 .0000 .0000 .0000/.0000 .0000/.0000 .0000/.0000 .0000/.0000 .0000/.0000 .0000/.0000

WFG8 5 100 .5636 .0000 .0000 .5636/.1783 .0000/.0000 .0000/.0000 .5636/.1741 .0000/.0000 .0000/.0000

WFG8 15 200 .0000 .0000 .0000 .0000/.0000 .0000/.0000 .0000/.0000 .0000/.0000 .0000/.0000 .0000/.0000

EXPO 3 43 .9423 .9423 .6901 .9423/.3010 .9423/.3010 .3729/.0104 1.000/.2537 1.000/.2537 .7754/.0096

EXPO 4 143 .6665 .5049 .2202 .6665/.1684 .3248/.0213 .1197/.0017 .8048/.1414 .5484/.0050 .1281/ ∗

∗ the error is here smaller than .00005 although not exactly zero
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Figure 29: Normalized parallel coordinates plot of the used WFG3 instance

with 5 objectives and 100 solutions.

Moreover, we would like to point out that the Pareto front approxima-
tions of the WFG test problem instances are seemingly of a certain shape
since only a few objectives are necessary to describe the trade-offs between
the objectives (see Table 3). Figure 29 shows as an example the used front
of the WFG3 instance with 5 objectives in a normalized parallel coordinates
plot. By looking at the objectives f4 and f5, we can observe that this ob-
jective pair induces all incomparabilities between the solutions due to their
opposing nature in the found region of the search space. Therefore, the
results of the WFG test problems in Table 3 might not be as representative
for real-world applications as for the other problems.

3.7 Application to Decision Making

In this last section of the chapter, we provide examples how the above
objective reduction algorithms and the definition of conflict can be useful
in practice. In the case of offline analysis where a set of non-dominated
solutions is given, the proposed approach of objective reduction can not
only indicate which objectives are redundant but can also provide insights
in the problem itself to make the decision making process easier. We will
show these benefits exemplary for a radar waveform problem with nine
objectives, recently proposed by Hughes (2007). The general question of
whether objective reduction is useful during the search is the subject of
the last section in the next chapter where we show experimentally that
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the integration of an online objective reduction can drastically improve the
running time of a hypervolume-based search algorithm.

3.7.1 The Radar Waveform Optimization Problem

The real and unmodified engineering problem of radar waveform optimiza-
tion, described in (Hughes, 2007), is to choose a set of waveforms for a pulsed
Doppler radar allowing an unambiguous measure of both range and velocity
of targets. The formalization of the radar waveform problem uses 9 objec-
tives altogether. Hughes (2007) states various relationships between these
9 objectives due to their definitions, e.g., that the objective pairs 1 & 3, 2
& 4, 5 & 7, and 6 & 8 have a degree of correlation because they are metrics
associated with the performance in range and velocity respectively18.

Based on a set of 22, 844 non-dominated solutions, collected from mul-
tiple MOEA runs, and provided by the author of (Hughes, 2007)19, we
investigate the usefulness of the objective reduction approach proposed in
this chapter in a decision making scenario, where a set of non-dominated
solutions is used to learn about the problem and to get a deeper insight
into the problem itself. To apply both the exact and the greedy algorithms
for δ-MOSS and k-EMOSS as well as the aggregation heuristic for the OAPmax
and OAPavg problems, a reduction of the large set of solutions to a smaller
set is necessary and performed by computing the ε-nondominated solutions
out of the normalized original ones. The error ε is chosen as 6.2% yielding
107 solutions in the reduced set20. The computation of the smaller set of
ε-nondominated solutions out of the entire set of 22, 844 solutions means
that whenever we make a statement of δ-error with respect to the set of 107
solutions, we can assure that the error with respect to the set of all known
solutions is at most ε + δ.

3.7.2 Minimum Objective Sets

Computing all δ-minimal sets with the exact Algorithm 4 shows that for the
reduced set of 107 solutions two objectives can be omitted without changing
the dominance structure. With respect to the entire set of 22, 844 solutions,
this means that we make only an error of at most 6.2% when omitting the
correct two objectives. Nevertheless, the use of such a reduction is limited.

18See page 10 of (Hughes, 2007).
19Dr. Evan J. Hughes, Department of Aerospace, Power and Sensors, Cranfield Uni-

versity, Shrivenham, Swindon, Wiltshire, England, e.j.hughes@cranfield.ac.uk.
20Note, that the used error of 6.2% and the resulting solution set size of 107 is more

or less arbitrary. Smaller errors, i.e., larger solution sets with up to 5000 solutions yield

similar results.
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Figure 30: Radar waveform problem: visualization of minimum δ-error between

objective pairs. Errors larger than 0.8 are omitted for clarity and the line width

indicates the δ-error (the thicker, the smaller the error). The arrows point at the

objectives which should be used.

Reducing the set of objectives from 9 to 7 still yields a huge amount of
information, a decision maker has to survey, especially if more than 22, 000
solutions are to be compared.

3.7.3 Investigating Objectives Pairwisely

More useful for a decision maker would be to learn about the problem,
i.e., to draw quantitative conclusions on the relationship between single
objectives similar to the ones stated in (Hughes, 2007) qualitatively. The
definition of δ-conflict and the corresponding algorithms to compute the δ-
errors based on a set of solutions can provide such quantitative statements
on objective pairs. For example, we can compute the minimum δ-error
between all possible objective pairs and illustrate them as in Fig. 30. A low
δ-error between an objective pair predicts that the consideration of only
the one objective the arrow points at in Fig. 30 while the other objective is
omitted does not change the dominance relation with an error of more than
δ. Surprisingly, the smallest error occurs between objectives 4 and 9, the
second smallest between objective pair 1& 7, in contrast to the prediction
of Hughes (2007).

These pairwise δ-errors can, in addition, be used within the greedy Algo-
rithm 7 for k-EMOSS and the greedy aggregation Algorithm 8 to obtain a tree
visualization of the objective conflicts. Both the greedy Algorithm 7 and
the greedy heuristic for OAPmax (Algorithm 8) have been run for all possible
objective set sizes (1 ≤ k ≤ k) on the set of 107 non-dominated solutions.
Figure 31 shows the two resulting trees together with the maximum and
average δ-errors corresponding to the different levels of the tree, i.e., the
computed objective sets of different size. Although both algorithms pur-
sue the goal of creating a set of objectives that is as small as possible and
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Figure 31: Tree Visualization for the radar waveform problem: (left) greedy

k-EMOSS Algorithm 7 with objective omission; the crosses depict which objectives

are omitted; (right) greedy aggregation heuristic with respect to δmax-error.

at the same time preserves most of the dominance structure, the results
are different. The greedy k-EMOSS heuristic identifies f4 and f1 as the most
unimportant and f6 as the most important objective(s) whereas the aggre-
gation heuristic aggregates three objective pairs before the aggregation of
f7 and f9 changes the dominance structure for the first time. However, the
combination of both approaches can indicate interesting conclusions about
the importance of single objectives to the overall optimization problem. In
the example of Fig. 31, f1 and f4 are deleted first by the greedy k-EMOSS
algorithm on the one hand, but also the aggregation heuristic uses these two
objectives in the first two steps to reduce the number of objectives. Thus,
and the fact that for both algorithms the first two reduction steps do not
introduce an error in the dominance relation, one can argue that the infor-
mation within the objectives f1 and f4 might be covered already by other
objectives in the problem formulation and therefore can be identified as the
least important criteria which reduces the amount of objectives a decision
maker has to take into account.

Where the above examples illustrate how the proposed objective reduc-
tion approach can be used to analyze objective relations and to assist a
decision maker in better understanding the problem characteristics which
in the end might make it easier to decide which solutions are the most
favorable ones, the following section shows that the objective reduction al-
gorithms also might help in terms of visualization.

3.7.4 Visualizing Pareto Fronts

To show the advantages of the proposed aggregation heuristics with respect
to visualization, we apply the objective omission heuristic for the k-EMOSS
problem (Algorithm 6), the aggregation heuristic for the OAPmax and OAPavg
problem (Algorithm 8), and a general dimensionality reduction approach,
namely PCA, to the above radar waveform optimization problem21.

21The reason why Algorithm 6 is used here instead of Algorithm 7 is the fact that we

would like to reduce the number of objectives to a plottable number, here k = 2, for



3.7. Application to Decision Making 97

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

objectives

ob
je

ct
iv

e 
va

lu
es

Radar Waveform Problem: Original Objective Vectors

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

0

0.2

0.4

0.6

0.8

1

objectives

no
rm

al
iz

ed
 o

bj
ec

tiv
e 

va
lu

es

Radar Waveform Problem: Normalized Objective Vectors

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

Figure 32: Parallel coordinates plots of the 22, 844 solutions for the radar wave-

form problem: (top) original objective vectors (bottom) normalized objective

vectors.

Visualizing the set of all known non-dominated solutions is a crucial
task in many-objective optimization. For the radar waveform problem, the
high number of both solutions and objectives makes the visualization of
non-dominated solutions difficult. Even the visualization as a parallel co-
ordinates plot does not provide a decision maker a way to easily reveal
information about the problem due to the high amount of data, see Fig. 32.
Here, we argue that the objective reduction techniques proposed above can
help to gain a detailed understanding of the problem itself by plotting lower
dimensional projections of the non-dominated solutions. To this end, we
use the reduced set of 107 non-dominated solutions as the input for the

which Algorithm 6 is better suited than Algorithm 7 as it constructs the objective set

by adding objectives instead of deleting some.
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Figure 33: 2-dimensional plots of all known non-dominated solutions of the

radar waveform problem where the objectives are chosen with respect to PCA

(upper left), the exact k-EMOSS algorithm (upper right), and the greedy aggrega-

tion algorithm with maximum error (lower left) and average error (lower right).

objective reduction algorithms and reduce the number of objectives to two.
Contrary, PCA is applied to the set of all 22, 844 non-dominated solutions
since it is fast enough on the set of all points. The eigenvectors correspond-
ing to the two largest eigenvalues are taken as weight vectors that aggregate
the original objectives into two.

Table 4 shows the maximum and average δ-errors and the number of
solution pairs that are comparable for both the reduced set of 107 solutions
and the set of all 22, 844 non-dominated solutions. Figure 33 shows the 2D
plots of all 22, 844 non-dominated solutions for the radar problem if the four
different reduction techniques are applied.

What can be seen from the results is that the number of solution pairs
that remain non-dominated increases from the PCA plot over the one with
original objectives only (k-EMOSS heuristic) to the results of the greedy ag-
gregation heuristic for OAPmax and the on for OAPavg. The reason is that
general dimensionality reduction techniques such as PCA do not take into
account the Pareto dominance relation between the solutions when reduc-
ing the dimensionality of data. Thus, the dominance relation is not pre-
served and many solutions dominate each other. In contrast, the presented
objective reduction approach takes the Pareto dominance relation into ac-
count and reduces the number of objectives while the dominance relation
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Table 4: Comparison of the reduction to 2 objectives for the radar waveform

problem with the reduced set of 107 points (above) and the set of all 22, 844 non-

dominated points (below). Shown are the number of solution pairs (total 5671

and ≈ 2.6 · 108 respectively) for that we wrongly assume comparability together

with the maximum and average δ-errors.

#comparable

solution pairs
δmax δavg

10
7

so
lu

ti
on

s Exact algorithm for k-EMOSS 2’835 0.9935 0.111005

PCA 2’525 0.9797 0.088250

Greedy heuristic for OAPmax 872 0.8898 0.022609

Greedy heuristic for OAPavg 585 0.9638 0.015443

al
l

so
lu

ti
on

s

Exact algorithm for k-EMOSS 130’084’321 1.0000 0.087803

PCA 134’147’513 0.9999 0.081457

Greedy heuristic for OAPmax 49’189’796 0.9902 0.019601

Greedy heuristic for OAPavg 32’471’066 0.9983 0.012444

is changed as little as possible. Therefore, a decision maker looses less
information about the original data set in terms of dominance relation if
the objective reduction approaches are used for visualization instead of a
classical dimensionality reduction technique such as PCA.

With such a reduced visualization of the set of non-dominated solutions,
a decision maker might be able to decide which solutions are preferable much
faster although the aggregated objectives in a plot similar to the lower plots
of Fig. 33 might be more difficult to interpret. Preserving only the Pareto
dominance relation during the objective reduction might also not always be
sufficient; preserving the distance between solutions might be a necessary
criterion as well and future research in this area is highly needed.

3.8 Summary

This chapter addressed the issue of objective reduction in many-objective
optimization. Based on the effects of adding and omitting objectives on
the dominance structure as investigated in the previous chapter, we pro-
posed an objective reduction approach that is based on a general notion
of objective conflict. The approach allows to identify objective sets of
minimum size, while ensuring that the Pareto dominance relation is pre-
served or only slightly changed according to a certain, predefined error.
The problems δ-MOSS and k-EMOSS formalizing this approach have been
defined, their NP-hardness has been proved, and an exact algorithm as
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well as several heuristics have been proposed—corresponding implementa-
tions are freely available for download at http://www.tik.ee.ethz.ch/

sop/download/supplementary/objectiveReduction/. Furthermore, we
investigated the generalization to the aggregation of objectives and pro-
posed a greedy algorithm for this case as well. Although the proposed
exact algorithm is not applicable in practice, the greedy objective reduction
heuristics when applied to typical instances including solution sets with up
to 300 solutions and problems with up to 20 objectives run in a few seconds
(on a Dual-Core AMD Opteron linux machine with 2.6Ghz; dependent on
the algorithm and the desired k and δ also much faster) such that they can
be also used during the search as we will discuss in the next chapter.

The experimental results have demonstrated that the proposed method-
ology can support the decision maker by reducing the amount of data to be
considered and by making quanti

That the research direction, we followed during this chapter, is interest-
ing and that further achievements can be expected in the future is shown
by other studies that have been conducted in the meantime. López Jaimes
et al. (2008) for example, built upon our objective reduction approach and
proposed improved algorithms for the δ-MOSS and k-EMOSS problems based
on a known feature selection algorithm. López Jaimes et al. (2009) then
proposed another correlation-based objective reduction algorithm and ap-
plied it in a multiobjective optimizer to reduce the number of objectives
during search. Köppen and Yoshida (2007) on the other hand, proposed
another idea to visualize high-dimensional objective spaces; instead of try-
ing to reduce the δ-error as in this chapter, their method tries to preserve as
many relationships between the individuals as possible when reducing the
number of objectives to a lower one. Also Costa and Oliveira (2009) tackled
the visualization of the outcomes of many-objective optimizers in terms of
objective reduction via principal component analysis.

Although we showed the usefulness of automatically finding a compact
representation of the original objectives within a decision making scenario,
the proposed approach might be also helpful in other scenarios. For ex-
ample, the aggregation heuristics might be helpful if an initial weighting of
the objectives within the well-known weighted sum method is sought. The
objective reduction approach can also be helpful in many-objective scenar-
ios where the computation times needed for the distinct objective functions
vary highly. However, the application of the proposed methods to these
scenarios remains future work.

Another application area of the proposed objective reduction approaches
remained untackled so far: the reduction of the number of objectives during
search can be helpful, especially in hypervolume based search—the topic of
the thesis’ last chapter.



4
Hypervolume-Based Search

and Objective Reduction

The hypervolume indicator, first introduced by Zitzler and Thiele (1998b,
1999), is one of the most important quality indicators in the evolutionary
multiobjective optimization field. Originally proposed for performance as-
sessment, the hypervolume indicator has also gained lots of interest within
multiobjective evolutionary algorithms to guide the search (Knowles and
Corne, 2003; Huband et al., 2003; Zitzler and Künzli, 2004; Nicolini, 2005;
Beume et al., 2007; Igel et al., 2007; Zitzler et al., 2007; Bader et al., 2008;
Bader and Zitzler, 2008; Bader et al., 2009). These hypervolume-based
MOEAs have been shown to outperform classical Pareto dominance based
MOEAs such as NSGA-II and SPEA2, in terms of convergence to the Pareto
front especially if the number of objectives is high (Wagner et al., 2007) and
nowadays seem to be the first choice when handling multiobjective optimiza-
tion problems with many objectives.

The main reason for this and for the popularity of the hypervolume
indicator is the fact that—in comparison to many other indicators—the hy-
pervolume indicator is compliant or compatible with the Pareto dominance
relation (Knowles and Corne, 2002; Zitzler et al., 2003, 2009), we also say
it refines the Pareto dominance. The refinement property of an indicator
I is fulfilled if for all sets A,B of solutions, the indicator value I(A) is
strictly higher than I(B) whenever A is dominating B. This refinement
property allows to indirectly optimize the objective functions with respect
to the Pareto dominance relation while further search directions towards the
Pareto set are introduced. This helps especially if many objectives are op-
timized since the number of incomparable solution sets increases (Winkler,
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1985). Another important property of the hypervolume indicator directly
follows from this refinement property: a solution set that optimizes the
hypervolume indicator covers the entire Pareto front (Fleischer, 2003).

At the beginning of this thesis project, not many theoretical investi-
gations of the hypervolume indicator were known and many properties of
the hypervolume had not been understood. Although Knowles and Corne
(2002) had pointed out that the choice of the hypervolume’s reference point
changes the order in which solution sets outperform each other, it was not
understood how the choice of the reference point influences the optimal
distribution of points on the Pareto front. Furthermore, the bias of the
hypervolume in terms of which solutions are preferred on the Pareto front
if the number of solutions is upper bounded, e.g., by the population size,
had not been understood and the statements on the bias were inconsistent.
Also the question why and when hypervolume-based MOEAs are beneficial
had not been investigated at that time. The complexity of the hypervolume
computation had not been proven and the best algorithms at that time had
running times of Θ(nk−1) where n is the number of solutions and k the num-
ber of objectives. We refer to Bader and Zitzler (2008) for a more detailed
review on algorithms for computing the hypervolume indicator.

In recent years, many important steps towards the understanding of the
hypervolume as well as towards its applicability in multiobjective search
have been made. For example, the open question of the problem complex-
ity has been solved which shows that the running time of exact algorithms
cannot be upper bounded by a polynomial in the number of objectives under
the assumption P 6= NP (Bringmann and Friedrich, 2008). Nevertheless,
several new algorithms have been proposed in the meantime which improve
the running time of the hypervolume computation in comparison to the first
algorithms (While, 2005; Fonseca et al., 2006; Beume and Rudolph, 2006;
While et al., 2006; Bringmann and Friedrich, 2008). The best known exact
algorithm has been proposed by Beume and Rudolph (2006) when adapt-
ing an existing algorithm for Klee’s measure problem the running time of
which is of order O(nk/2). Moreover, Monte Carlo sampling was used to
make hypervolume-based MOEAs better suited for many-objective prob-
lems (Bader et al., 2008; Bader and Zitzler, 2009; Auger et al., 2009a) such
that nowadays, the running time of those algorithms is not a restriction any
more in many-objective scenarios.

Furthermore, general theoretical investigations on the hypervolume in-
dicator as a set measure have shown that hypervolume-based MOEAs do
not converge in general if they only produce one solution per generation and
delete the one with the smallest hypervolume contribution (Zitzler et al.,
2009; Beume et al., 2009). Very recently, the choice of the reference point
and the bias of the hypervolume in terms of optimal µ-distributions1 have

1With the work of Fleischer (2003), it is clear that optimizing the hypervolume indi-
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been investigated theoretically (Auger et al., 2009c)—basic foundations that
will hopefully increase the popularity of the hypervolume further.

Several investigations on the hypervolume indicator have also been car-
ried out throughout this thesis project. In the remainder of this chapter,
three main contributions to the field of hypervolume-based MOEAs are pre-
sented. In particular, we

• provide the first rigorous running time analysis of a hypervolume-
based MOEA (Sec. 4.2),

• propose a weighted hypervolume version that allows for incorpora-
tion of user preferences and validate the approach experimentally
(Sec. 4.3), and we

• apply the objective reduction methods proposed in the previous chap-
ter to a hypervolume-based MOEA to deal with many objectives
although the exact hypervolume indicator computation is expensive
(Sec. 4.4).

Before, the hypervolume indicator is introduced in detail in Sec. 4.1.1 and
the Simple Indicator-Based Evolutionary Algorithm (SIBEA), the basic al-
gorithm for all studies to follow, is defined in Sec. 4.1.2.

4.1 Foundations

4.1.1 The Hypervolume Indicator

Contrary to the previous sections, we consider, without loss of generaliza-
tion, maximization problems here if appropriate in order to simplify the
notation and to comply with the original publications (Brockhoff et al.,
2008; Zitzler et al., 2007) the content of which we present below. Note also
that we use the notation � instead of � here which is, for the sake of sim-
plicity, also used between objective vectors, although it is originally defined
on the decision space X. Furthermore, we restrict the investigations in this
chapter to solution sets although in general the population of a MOEA is
a multiset since individuals can be contained more than once. However, we
assume that a restriction to sets is not crucial here but will improve the

cator will result in a set covering the entire Pareto front if no restriction on the number

of points is given. However, this cannot be guaranteed in practice since the number of

solutions that can be stored at the same time is bounded above, for example by the

population size µ of a MOEA. The question then is which set with at most µ solutions

maximizes the hypervolume; or in the terms of Auger et al. (2009c), how an optimal

µ-distribution looks like.
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Figure 34: Illustration of the attainment function αA for A = {~a1,~a2,~a3} in the

two-dimensional case. In the gray area, the attainment function is 1 and 0 in the

area above the set A in case of maximization.

clarity and readability of the following paragraphs in comparison to the for-
mal way of using multisets throughout this chapter. We denote the set of all
solution sets by 2X and the set of all sets of objective vectors by Ω := 2R

k
.

The classical definitions of the hypervolume indicator are based on vol-
umes of polytopes (Zitzler and Thiele, 1999) or hypercubes (Fleischer, 2003)
and assume that the weak Pareto dominance is the underlying preference
relation. Several other equivalent definitions have been proposed in the
meantime as well as different names are used in the literature such as hyper-
volume metric (Van Veldhuizen, 1999), S-metric (Zitzler, 1999), or Lebesgue
measure (Laumanns et al., 1999; Fleischer, 2003). However, using the term
Lebesgue measure for the hypervolume indicator is a little bit confusing since
the Lebesgue measure is a general concept in integration theory and it is
part of the definition of the hypervolume indicator, see for example Chap-
ter 2 or the definitions in (Emmerich et al., 2005; Bader and Zitzler, 2008).
Here, we give an equivalent definition based on attainment functions that
allows to generalize the hypervolume indicator to a weighted version later
on.

The attainment function (Grunert da Fonseca et al., 2001) gives, roughly
speaking, for each objective vector in the objective space Rk the probability
that it is weakly dominated by the outcome of a particular multiobjective
optimizer. As only single sets are considered here, we can take a slightly
simplified definition of the attainment function:

Definition 13 (Attainment function for an objective vector set). Given a
set A ⊆ X of solutions, the attainment function αA : Rk → {0, 1} for A is
defined as

αA(~z) :=

{

1 if f(A) � {~z}
0 else

for ~z ∈ R
k.
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Figure 35: The hypervolume indicator of a set {a1, a2, a3} of three points and for

a predefined reference point ~r = (r1, r2) when maximizing the objective functions.

This definition is illustrated for a biobjective example in Fig. 34. The
concept of attainment functions can be used to give another equivalent
formal definition of the hypervolume indicator. It is simply defined as the
volume of the objective space enclosed by the attainment function and a
predefined reference point2, see Fig. 35 for an illustration.

Definition 14 (Hypervolume indicator). The hypervolume indicator IH :
2X → R with reference point ~r = (r1, . . . , rk) can be formulated via the
attainment function as

IH(A) :=

∫ (∞,...,∞)

~r

αA(~z)d~z

where A ∈ 2X is any set of solutions and αA is the above defined attainment
function of A.

Using the hypervolume indicator for search, the optimization goal changes
from finding or approximating the Pareto front to finding or approximating
the set of solutions that maximizes the hypervolume indicator. Fortunately,
these goals are equivalent since the hypervolume indicator has the property
of being a refinement of the Pareto dominance relation3.

Definition 15 (Refinement). According to Zitzler et al. (2009) we call an
indicator I : 2X → R a refinement of the Pareto dominance relation if and
only if

∀A,B ∈ 2X : A � B ∧ B 6� A⇒ I(A) > I(B) ,

i.e., whenever a solution set is dominating another one, the former has a
higher indicator value than the latter.

2Most of the studies which use the hypervolume indicator define only a single reference

point although a recent generalization of the hypervolume indicator defines a set of

reference points (Bader and Zitzler, 2008). Throughout this study, we use the former

definition with only one reference point for the sake of readability.
3Also the equivalent term of being Pareto-compliant has been used, e.g., in (Knowles

et al., 2006).
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As the weak Pareto dominance relation � defines only a partial order
on Ω, the hypervolume indicator refines this relation by introducing fur-
ther comparabilities between solution sets resulting in a total order on Ω
which guarantees that any two objective vector sets are mutually compa-
rable (Knowles et al., 2006; Zitzler et al., 2009). This especially helps to
guide the search within multiobjective evolutionary algorithms if the num-
ber of objectives is high, i.e., if the weak Pareto dominance relation cannot
indicate a search direction due to the high number of incomparable solution
sets.

Furthermore, the refinement property of the hypervolume indicator guar-
antees that a set maximizing the hypervolume indicator contains for each
point on the Pareto front at least one solution that is mapped to this point
(Fleischer, 2003). This, however, is not the case anymore in practical ap-
plications where we restrict the size of the solution sets, e.g., by allowing
only solution sets of a maximal size µ as the population of an evolutionary
algorithm and if at the same time the Pareto front contains more than µ
points. In this case, Fleischer (2003) showed that a set of size at most µ
which maximizes the hypervolume contains only Pareto-optimal solutions.
How these µ points are distributed on the Pareto front has been investi-
gated recently by Auger et al. (2009c). Their investigations show that the
distribution depends on the choice of the hypervolume’s reference point as
well as on the slope of the Pareto front.

4.1.2 SIBEA: the Simple Indicator-Based Evolution-

ary Algorithm

Several evolutionary algorithms to optimize the hypervolume have been
proposed in the literature, e.g., the ESP algorithm (Huband et al., 2003),
IBEA (Zitzler and Künzli, 2004), SMS-EMOA (Beume et al., 2007), or the
MO-CMA-ES (Igel et al., 2007). Most of them use the same (µ+λ)-selection
scheme which will be also investigated in the remainder of this chapter. The
population P of the next generation with |P | = µ is computed from the
set P ′ of solutions that is the union of the previous population and the λ
generated offsprings in the following way: after ranking of the solutions with
respect to the Pareto dominance relation, e.g., by a non-dominated sorting
of P ′ (Goldberg, 1989), the ranked solutions are, starting with the best
rank, completely inserted into the new population P until the size of P is
at least µ. For the first set of solutions of same rank, the inclusion of which
yields a population size larger than µ, the solutions ~x with this rank and
the smallest hypervolume contribution are successively removed from the
new population where the hypervolume contribution is recalculated every
time a solution is removed.
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The simplest scheme of such a hypervolume-based MOEA is shown in Al-
gorithm 9 as the Simple Indicator-Based Evolutionary Algorithm (SIBEA).
We will use SIBEA as the baseline algorithm for all studies presented in this
chapter. Note that the algorithm is defined to work with any unary quality
indicator (see Zitzler et al., 2003) as the optimization criterion although we
only use the hypervolume indicator here. The reason why the simple algo-
rithm SIBEA is chosen here instead of a more advanced algorithm is that
the studies presented in this chapter mainly investigate the selection crite-
rion that is nearly the same in all mentioned hypervolume-based algorithms
and results can be therefore carefully transfered to the more complicated
algorithms if necessary.

Given a population size µ, the number N of generations and a certain
indicator function I, SIBEA outputs an approximation A of the Pareto-
optimal set and works as follows. In an initialization step, the population P
of µ solutions is generated by independently choosing µ solutions uniformly
at random from the decision space X. Then, the steps 2 (environmental
selection) and 4 (mating selection and variation) are performed N times.
In the environmental selection step, the population size is reduced to µ by
the following procedure: first, the solutions are ranked according to dom-
inance depth (Zitzler et al., 2004)4 and the individuals are deleted from
the population in order of their ranking. Starting with the set of solu-
tions with the worst rank P ′ ⊆ P , the one with smallest indicator loss
d(~x) := I(P ′)−I(P ′ \{~x}) is deleted first. Until the population size reaches
again µ, individuals are deleted by iteratively recalculating the indicator
losses in the set of solutions with worst rank and deleting the solution with
the smallest loss. Note that this procedure is the same than within other
indicator-based algorithms such as the SMS-EMOA (Beume et al., 2007)
and the MO-CMA-ES (Igel et al., 2007) where the hypervolume indicator
is used. After the termination criterion is checked in step 3, µ parents are
selected in SIBEA uniformly at random from the population and afterwards
recombined and mutated to yield the (multi-)set of µ offspring Q′. The pop-
ulations P and Q′ are combined and the algorithm continues with step 2.
Note that the variation operators are not specified here and will be defined
later. Furthermore, note that the number of offspring is fixed to µ here
although producing a more general number of λ ∈ N offspring in a general
(µ + λ)-strategy is also possible.

The running time analysis, we carry out in the following section, in-
vestigates a version of SIBEA that is tailored towards the optimization in
discrete domain. The main differences between the simplified (µ+1)-SIBEA
described in Algorithm 10 and the general SIBEA procedure of Algorithm 9
are the specified decision space, the usage of a concrete mutation opera-

4Other ranking methods like nondominated sorting (Goldberg, 1989) could be also

used instead.
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Algorithm 9 Simple Indicator-Based Evolutionary Algorithm (SIBEA)

Input: population size µ; number of generations N ; indicator function I

Output: approximation of Pareto-optimal set A

Step 1 (Initialization):

Generate an initial (multi-)set of solutions P of size µ uniformly at ran-

dom from X; set the generation counter m := 0.

Step 2 (Environmental Selection):

Iterate the following three steps until the size of the population does no

longer exceed µ:

1. Rank the population using Pareto dominance and determine the set

of individuals P ′ ⊆ P with the worst rank. Here, dominance depth

(Zitzler et al., 2004) is used.

2. For each solution ~x ∈ P ′ determine the loss d(~x) with respect to the

indicator I if it is removed from P ′, i.e., d(~x) := I(P ′)−I(P ′ \{~x}).

3. Remove the solution with the smallest loss d(~x) from the population

P (ties are broken randomly).

Step 3 (Termination):

If m ≥ N then set A := P and stop; otherwise set m := m + 1.

Step 4 (Mating):

Randomly select elements from P to form a temporary mating pool Q of

size µ. Apply recombination and mutation operators to the mating pool

Q which yields Q′. Set P := P + Q′ (multi-set union). Continue with

Step 2.

tor, the absence of recombination, and a simplified environmental selection
scheme.

As to the decision space, Algorithm 10 considers boolean vectors of
length n, i.e., X = {0, 1}n. The mutation operator is the well-known bitwise
mutation operator (see for example (Droste et al., 2002)) that flips each bit
independently with probability 1/n and that is used in the Global SEMO
as well. As to the environmental selection step, the (µ + 1)-SIBEA aims at
optimizing the hypervolume indicator similar to other hypervolume-based
MOEAs, such as SMS-EMOA, where only one new solution x′ is generated
per generation. Hence, the algorithm removes only the solution ~x with
the smallest hypervolume loss d(~x) from P ∪ {~x′} in each generation. The
ranking of the individuals with respect to dominance depth as in the original
SIBEA is dropped here to make the proof simpler. However, this does not
change the theoretical results, i.e., the obtained running time bound: By
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Algorithm 10 (µ + 1)-SIBEA

Parameters: population size µ

Step 1 (Initialization):

Generate an initial (multi)-set of decision vectors P of size µ uniformly

at random from the decision space {0, 1}n.

Step 2 (Repeat):

a) Select an element ~x from P uniformly at random. Flip each bit of ~x

with probability 1/n to obtain an offspring ~x′. Set P ′ := P ∪ {~x′}.
b) For each solution ~x ∈ P ′ determine the hypervolume loss d(~x) if it

is removed from P ′, i.e., d(~x) := IH(P ′)− IH(P ′ \ {~x}).
c) Choose an element ~z ∈ P ′ with smallest loss in P ′ uniformly at

random, i.e., ~z = argmin~x∈P d(~x) and set P := P ′ \ {~z}.

omitting the ranking of step 2.1 in Algorithm 9, only dominated points
are handled differently—with the original selection scheme of Algorithm 9,
always the worst point on the worst front is deleted, whereas in the simplified
Algorithm 10, any dominated point is deleted with the same probability.
Since the proof does only argue about the set of non-dominated points, the
presented running time bound also holds for the more complex algorithm
although it is not clear whether the proved bound is tight.

4.2 Running Time Analysis of a Hypervol-

ume Indicator Based Algorithm

Many theoretical running time analyses of MOEAs have been carried out
recently, see also Sec. 2.2. However, all results examine algorithms that
are using some kind of dominance relation to guide the search, either the
typical (weak) Pareto dominance (Giel, 2003; Laumanns et al., 2004b,a, and
many others) or the ε-dominance (Horoba and Neumann, 2008). Before this
thesis project started, no theoretical running time results on hypervolume
indicator based MOEAs were known. Recently, Zitzler et al. (2009) provided
the first result on the non-convergence behavior of a (µ + 1)-strategy. An
example of only 4 solutions and two objective functions shows that the
(2+1)-strategy does not always converge to the solution set with the highest
hypervolume value. Beume et al. (2009) investigated the non-convergence
for more general continuous Pareto fronts based on the 4-solutions example.
However, the same (µ + 1)-strategy is used as environmental selection step
in most of the available hypervolume-based MOEAs (e.g., Emmerich et al.,
2005; Igel et al., 2007; Bader and Zitzler, 2008) and these algorithms perform
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well both on the investigated test problems and on real-world applications.
This rises the questions of why these algorithms can be successfully applied
to real-world problems and on which types of problems they do not converge.
To bridge this gap between theory and practice, we carry out a rigorous
running time analysis of the (µ + 1)-SIBEA showing that on the simple
example function Lotz a (µ + 1)-strategy can find the entire Pareto front
in polynomial time. However, the analysis presented here is only a first
step towards a better understanding of hypervolume-based algorithms in
general5.

In the following, we examine the biobjective maximization problem

Lotz(~x) = (LeadingOnes(~x),TrailingZeros(~x))

as it was defined in Sec. 2.2.4.1 and in (Laumanns et al., 2004b). The Pareto
set of Lotz consists of all n+1 solutions of the form 1i0n−i (0 ≤ i ≤ n) that
map to an objective vector of (i, n− i). If the population size µ of a MOEA
is large enough, i.e., µ ≥ n + 1, the aim of the optimization should be to
include the entire set of n + 1 Pareto-optimal solutions in the population
of the MOEA within a finite number of generations which is polynomially
bounded in n. In the following, we show for the (µ + 1)-SIBEA that this
convergence to the Pareto front is indeed given and that the entire Pareto
front is contained in the algorithm’s population after an expected number
of O(µn2) generations.

Without loss of generality, we fix the reference point for computing the
hypervolume to (r1, r2) = (−1,−1). For other choices of the reference point
with negative objective values, some constants in the proofs have to be
adapted; however, the proof ideas and therefore the results hold for arbi-
trary choices of the reference point with r1, r2 < 0. With the choice of the
reference point as (−1,−1), every possible objective vector of Lotz has a
positive hypervolume contribution and due to the discrete Pareto front of
n + 1 solutions and the choice of µ ≥ n + 1, the set of µ solutions maxi-
mizing the hypervolume value covers the entire Pareto front, cf. (Fleischer,
2003). Furthermore, this optimal hypervolume value, assigned to all solu-
tion sets containing the entire Pareto front, is Θ(n2) if the reference point
is set to (−1,−1)6. Before we investigate the overall running time of the

5A running time analysis of SIBEA on another test function has been also performed

in (Brockhoff et al., 2008) but since there is still an ongoing discussion among the authors

whether the proof is entirely correct we refrain from presenting the details here.
6The optimal hypervolume value for the Lotz problem and a reference point of

(−1,−1) results from the simple summation of the stacked hypervolume boxes, given

by the n + 1 Pareto-optimal solutions: the rightmost Pareto-optimal solution has a hy-

pervolume of n+1, the second Pareto-optimal point to the right dominates a hypervolume

which is not dominated by the rightmost point of size n and so forth, yielding an optimal

hypervolume of
∑n+1

i=1 i = (n+1)(n+2)
2 = Θ(n2)
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X1 X2 Xi Xr

Xmax

Lotz(~x1)

Lotz(~xr)

Ymax

Yr−i+1

Yr

Lotz(~xi)

f1 = LeadingOnes

f2 = TrailingZeros

reference point
(−1,−1)

Y1

Figure 36: Illustration of the hypervolume (hatched area) and corresponding

notations X(·), Y(·) in the analysis of (µ + 1)-SIBEA on Lotz.

(µ + 1)-SIBEA on Lotz in Theorem 17, we state a lemma about the run-
ning time until the first Pareto-optimal solution is found.

Lemma 1. The expected time until the (µ + 1)-SIBEA has obtained for the
first time a Pareto-optimal solution of Lotz is O(µn2).

Proof. Throughout this proof, we consider the situation that no Pareto-
optimal search point belongs to the current population P . Let {~x1, . . . , ~xr} ⊆
P be the set of individuals that are not dominated by any other individual
in P . Denote by H the hypervolume covered by these points. Without loss
of generality, we assume that LeadingOnes(~xi) ≤ LeadingOnes(~xi+1)
holds for all 1 ≤ i ≤ r − 1 which also implies TrailingZeros(~xi) ≥
TrailingZeros(~xi+1) for all 1 ≤ i ≤ r − 1, as the r individuals do not
dominate each other. Let X1 = LeadingOnes(~x1)+1 and for all 2 ≤ i ≤ r
let Xi = LeadingOnes(~xi) − LeadingOnes(~xi−1). Furthermore, denote
by Xmax =

∑r
i=1 Xi the maximum LeadingOnes-value with respect to the

reference point (−1,−1). Similar, define Y1 = TrailingZeros(~xr)+1 and
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Yi = TrailingZeros(~xr−i) − TrailingZeros(~xr−i+1) for all 2 ≤ i ≤ r,
and denote by Ymax =

∑r
i=1 Yi the maximum TrailingZeros-value with

respect to the reference point (−1,−1). Figure 36 illustrates the variables
defined above.

Considering one single solution ~xi of the r non-dominated solutions of P ,
we study how the hypervolume can increase. Flipping the single bit which
increases its LeadingOnes-value increases the hypervolume by at least
Yr−i+1; flipping the single bit which increases its TrailingZeros-value
increases the hypervolume by at least Xi. Figure 37 is illustrating these
two cases exemplary for two solutions. We call all these 1-bit flips applied
to one of the r individuals good. Each of these 2r good operations happens
with probability

1

µ
· 1
n
· (1− 1/n)n−1 ≥ 1

eµn

in the next step. Note, that each good operation is accepted as it leads
to a population with a larger hypervolume. The total increase of all good
operations with respect to the current hypervolume H is at least

max{Xmax, Ymax} ≥
√

Xmax · Ymax ≥
√

H.

Choosing one of theses 2r good operations uniformly at random, the ex-
pected increase of the hypervolume is at least

√
H/(2r). Hence, the ex-

pected number of good operations which is needed to increase the hyper-
volume by

√
H is upper bounded by 2r. Using Markov’s inequality, the

probability of having at least 4r operations to achieve this goal is upper
bounded by 1/2. Hence, with probability at least 1/2 a phase containing 4r
good operations is successful, i.e., increases the hypervolume by

√
H with

probability at least 1/2. This implies that an expected number of 2 of these
phases carrying out 4r such good operations each is enough to increase the
hypervolume by

√
H.

Considering all good 1-bit flips together, the probability of carrying out
one good operation in the next step of the algorithm is at least 2r

eµn
. Hence,

the expected waiting time for a good operation is O(µn/(2r)) and the ex-
pected waiting time for increasing the hypervolume by at least

√
H is there-

fore upper bounded by O(µn
2r
· 2 · 4r) = O(µn).

It remains to show that O(n) successive increases of the hypervolume by
its square-root fraction suffice to reach the maximum hypervolume value of
Θ(n2). Let h(t) be the hypervolume of the current solutions after t increases
by at least

√

h(t). Then, h(t + 1) ≥ h(t) +
√

h(t). We want to prove by
induction that h(t) ≥ t2/5. The induction basis case holds trivially since
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Xj

Xmax

Ymax

Yr−j+1

Lotz(~xi)

Lotz(~xj)

Xi

Yr−i+1

Y1

reference point
(−1,−1)

f2

f1

Figure 37: The hypervolume indicator progress within “good” mutation steps

of (µ + 1)-SIBEA. The area, hatched from bottom left to top right, corresponds

to the hypervolume indicator progress within all “good” mutation steps. It is the

union of the single hypervolume progresses for all solutions which are detailed for

two solutions xi and xj as the cross hatched area.

h(0) ≥ 1 ≥ 0 and h(1) ≥ 1 ≥ 1/5. In general,

h(t) ≥ h(t− 1) +
√

h(t− 1) ≥ (t− 1)2

5
+

t− 1√
5

≥ t2

5
+ t

(

1√
5
− 2

5

)

−
(

1√
5
− 1

5

)

≥ t2

5
.

holds for all t ≥ 2 which finishes the induction.

Therefore, the expected number of iterations for the situation where no
solution of the current population is Pareto-optimal is upper bounded by
O(µn2).

Theorem 17. Choosing µ ≥ n + 1, the expected optimization time of the
(µ + 1)-SIBEA on Lotz is O(µn2).
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Proof. Using Lemma 1, the expected time until a first Pareto-optimal solu-
tion has been obtained is O(µn2). Due to the hypervolume-based selection
and the fact that at most n + 1 solutions are mutually non-dominated in
Lotz (Laumanns et al., 2004b), a Pareto-optimal solution that has been
found with the (µ + 1)-SIBEA will stay forever in the population. Increas-
ing the number of Pareto-optimal solutions in the population increases the
hypervolume indicator, i.e., the highest hypervolume value is achieved if and
only if the entire Pareto front is found. Therefore, there is at least one solu-
tion in the population which has a Hamming neighbor that is Pareto-optimal
and not contained in the current population—unless the whole Pareto set
is already found. Hence, the expected waiting time for increasing the num-
ber of Pareto-optimal solutions in the population is O(µn). Having reached
a Pareto-optimal solution for the first time at most n additional Pareto-
optimal solutions have to be produced which implies that the expected time
to achieve a population including all Pareto-optimal solutions is O(µn2).

Although the previous proof shows that the (µ + 1)-strategy finds the
Pareto set of Lotz in polynomial time, this does not imply that the same
behavior can be expected on other test functions or on real-world com-
binatorial optimization problems. Nevertheless, the analysis showed that
the technique of considering the expected hypervolume indicator progress
is applicable to the running time analysis of hypervolume-based algorithms
which might be also useful for the analysis of other problems and more com-
plicated algorithms in the near future. Let us also mention that the above
result will also hold if we use the additional Pareto ranking of Algorithm 9
instead of the environmental selection of (µ + 1)-SIBEA since the proof only
argues about the set of non-dominated solutions. However, more general
results are necessary in the future to argue in favor of hypervolume-based
algorithms from a theoretical point-of-view.

4.3 The Weighted Hypervolume Indicator

As we already argued above, the hypervolume indicator is often used in
practice mainly because of its property of being a refinement of the weak
Pareto dominance relation. However, optimizing the hypervolume indica-
tor instead of solely using the weak Pareto dominance relation to guide the
search introduces a certain search bias, i.e., certain solution sets are pre-
ferred over others even if they are incomparable with respect to the weak
Pareto dominance relation, which is maybe not desired from a decision
maker’s perspective. Auger et al. (2009c) investigate this bias of the hyper-
volume indicator in terms of optimal µ-distributions: how are µ solutions
distributed on the Pareto front if they maximize the hypervolume indicator?



4.3. The Weighted Hypervolume Indicator 115

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8
0

1

2

3

4

5

6

7

8

Figure 38: Illustration of the hypervolume bias towards regions of the front

where the derivative is −1. The plots show the distribution of µ = 20 points

maximizing the hypervolume indicator for two different front shapes.

One result of their theoretical investigations for 2-objective problems is that
the density of points on the Pareto front only depends on the derivative or
angle of the front; in other words the hypervolume indicator favors points
that are lying in Pareto front regions that have an angle of 45◦, see Fig. 38
for an illustration. Since this specific property of the hypervolume indica-
tor does not always comply with the preferences of the decision maker, the
question arises, whether one can design an indicator function that is both
a refinement of the weak Pareto dominance relation and that can handle
specific user preferences such as a bias towards extreme solutions or a pref-
erence towards pre-defined aspiration points, also called preference points7

(Miettinen, 1999). In this section, we introduce a general weighted hyper-
volume indicator that has these two properties. Furthermore, we propose
three different examples of user preferences and show how they can be artic-
ulated within this weighted hypervolume approach on biobjective problem.
A subsequent experimental validation shows the usefulness of this approach
and indicates deficiencies and future research directions.

7Although the usual term in multicriteria decision making is reference point (Mietti-

nen, 1999), we will use the term preference point throughout the text to not confuse the

reader with the hypervolume indicator’s reference point.
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4.3.1 Introductory Example and Outline of the Pro-

posed Approach

The basis of the weighted hypervolume indicator is the definition of the
standard hypervolume indicator via the attainment function in Def. 14:

IH(A) :=

∫ (1,...,1)

(0,...,0)

αA(~z)d~z

where we set, without loss of generality, the reference point of the hyper-
volume to ~r = (0, . . . , 0) and the upper limit of the integral to (1, . . . , 1),
i.e., we assume an objective space of Z = (0, 1)k. Requiring the objective
values to lay between 0 and 1 instead of using R

k as objective space simpli-
fies the following discussions, but does not represent a serious limitation as
there exists a bijective mapping from R into the open interval (0, 1) ⊂ R.
We recapitulate that the attainment function αA(~x) for a given solution set
A ⊆ X is a binary valued function: all weakly dominated objective vectors
are assigned 1, while the remaining objective vectors are assigned 0. That
means all weakly dominated objective vectors have the same weight and
contribute equally to the overall indicator value.

The main idea behind the approach proposed in this section is to assign
different weights to different regions in the objective space Z. This can be
achieved by defining a weight distribution over the objective space such that
the value that a particular weakly dominated objective vector contributes
to the overall indicator value can be any real value strictly greater than
0—provided the integral over the resulting function still exists. To this
end, we introduce a weight distribution function w : Z → R>0, and the
hypervolume is calculated as the integral over the product of the weight
distribution function and the attainment function:

Iw
H(A) :=

∫ (1,...,1)

(0,...,0)

w(~z) · αA(~z)d~z

As we show later, this allows to modify the standard hypervolume indicator
such that (a) the new weighted hypervolume indicator is still a refinement
of the weak Pareto dominance relation and (b) preference information can
be flexibly introduced.

To see how different weight distribution functions affect the behavior
of the corresponding modified hypervolume indicator Iw

H , it is helpful to
consider equi-indicator surfaces. An equi-indicator surface S(I,K) for a
given indicator function I and an indicator value K is defined as the set of
points ~z ∈ Z that all have the same indicator value K, i.e.,

S(I,K) = {~z ∈ Z : I({~z}) = K} .
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(a) The hypervolume indicator
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(b) A biased indicator

Figure 39: Equi-indicator surfaces for simple indicators in the biobjective case.

The abscissa in these two-dimensional examples denotes f1 and the ordinate

f2. Figure (a) shows (a sample of) surfaces for the hypervolume indicator IH

(weight distribution function w((z1, z2)) = 1), Figure (b) illustrates a biased,

modified indicator with weight distribution function w((z1, z2)) = z1. Points on

one equipotential curve share the same indicator value.

In other words, the equi-indicator surfaces indicate the quality of single ob-
jective vectors in terms of the hypervolume indicator value assigned to them
if the hypervolume indicator is considered as the optimization criterion.

If we consider a uniform weight distribution function with w(~z) = 1
for all ~z ∈ Z, we obtain the standard hypervolume indicator IH . In this
case, the equi-indicator surfaces look for k = 2 objectives as depicted in
Fig. 39a. Due to the convex equi-indicator surfaces, we can conclude that
for single solutions, there is a bias towards the diagonal—solutions lying
close to the diagonal have higher hypervolume values than solutions with
the same distance to the hypervolume’s reference point that lie not so close
to the diagonal. That this bias towards the diagonal is, however, not given
for solution sets of arbitrary size has been shown recently by Auger et al.
(2009c) and is illustrated in Fig. 38.

If we change the weight distribution function to, for example, w(~z) = z1

with ~z = (z1, z2, . . . , zn), then in the biobjective case the equi-indicator sur-
faces shown in Fig. 39b are obtained. Obviously, solutions with objective
vectors that have large components in the direction of z1 have higher hy-
pervolume indicator values. Another possibility to introduce different user
preferences is to impose special emphasis on the border of the objective
space, see Fig. 40a. The objective vectors in the ’center’ of the objective
space have weight 1, while the objective vectors on the axes are assigned a
substantially larger weight.8 The corresponding equi-indicator surfaces are

8Since the borders have zero width, they will actually not influence the integral;

therefore, dirac-type functions need to be used to make the border weights effective. In
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Figure 40: Weight distribution function (left) and corresponding indicator

(right) when stressing on coordinate axes.

shown in Fig. 40b. Here, the bias of the original hypervolume indicator for
a single solution towards the diagonal is removed by putting more emphasis
on the areas close to the coordinate axes. The above two examples illus-
trate how weight distribution functions on the objective space can be used
to change the bias of the hypervolume indicator. Based on these informal
observations, we will describe the underlying methodology for an arbitrary
number of objectives next. Moreover, we provide three other examples of
weight distribution functions for the biobjective case. Note that a gener-
alization of these weight distribution functions to an arbitrary number of
objectives is possible, see (Auger et al., 2009a). However, we restrict our-
selves here to examples for biobjective problems due to the easier illustration
of the concepts. Moreover, when generalizing the weight distribution func-
tions to an arbitrary number of objectives, the high computation time of
the exact hypervolume indicator calculation has to be taken into account,
e.g., by sampling the weighted hypervolume indicator as in (Auger et al.,
2009a), which lies outside the focus of this thesis.

4.3.2 Methodology: The Weighted-Integration

Approach

The main concept of the approach proposed in this section is—as already
mentioned above—to extend the basic hypervolume indicator by a weight
distribution function w : [0, 1]n → R>0 which serves to emphasize certain
regions of the objective space:

this scenario, a dirac-type function can be interpreted as a weight function that has an

infinite value at the axis and 0 elsewhere; however, the 2-dimensional integral over the

entire objective space is a constant.
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Definition 16 (Generalized Hypervolume Indicator). The generalized hy-
pervolume indicator Iw

H with weight distribution function w : [0, 1]n → R>0

is defined as the weighted integral

Iw
H(A) :=

∫ (1,...,1)

(0,...,0)

w(~z) · αA(~z)d~z

where A ⊆ X is a set of solutions.

If using this indicator as the basis for optimization algorithms or per-
formance assessment tools, it would be important to know whether it is
compliant with the concept of Pareto dominance. This property will be
shown next.

Theorem 18. Let w : [0, 1]n → R>0 be a weight distribution function such
that the corresponding generalized hypervolume indicator Iw

H is well-defined
for all A ⊆ X. Then for any two arbitrary solution sets A ⊆ X and B ⊆ X,
it holds

A � B ∧ B 6� A⇒ Iw
H(A) > Iw

H(B),

i.e., also the indicator Iw
H is a refinement of the weak Pareto dominance

relation according to (Zitzler et al., 2009).

Proof. If we have A � B ∧ B 6� A, then the following two conditions hold:
∀~y ∈ B ∃~x ∈ A : ~x � ~y and ∃~x ∈ A 6 ∃~y ∈ B : ~y � ~x. Now we can easily see
that the attainment functions of A and B satisfy (αA(~z) = 1)⇒ (αB(~z) = 1)
as A � B. Every point in the objective space that is weakly dominated
by some element in B is also weakly dominated by some element in A. In
addition, because of B 6� A there are some points in the objective space that
are weakly dominated by points in A but not weakly dominated by points
in B. Therefore, there exists a region R ⊂ Z with (αA(~z) = 1)∧(αB(~z) = 0)
for ~z ∈ R; in particular:

∫ (1,...,1)

(0,...,0)

(αA(~z)− αB(~z))d~z > 0

Using the definition of the generalized hypervolume indicator and noting
that w(~z) > 0, we find Iw

H(A) > Iw
H(B).

In order to simplify the definition of weight distribution functions and
to avoid the use of dirac-type functions, we use a slightly different represen-
tation of the generalized hypervolume indicator where L line segments can
be used to establish emphasis on zero-width regions such as axes. Every
line segment li (1 ≤ i ≤ L) is specified by a start point ~si ∈ Z, an end point
~ei ∈ Z, and a corresponding weight distribution function wi : [0, 1]→ R>0.
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Using this notation, we can rewrite the generalized hypervolume indicator
according to Def. 16 as follows

Iw,w1,w2,...,wL

H (A) :=

∫ (1,...,1)

(0,...,0)

w(~z) · αA(~z) · d~z +

∑

i∈{1,2,...,L}

∫ 1

0

wi(~z) · αA(~si + t · (~ei − ~si)) · dt

Assuming that the weight distribution functions are chosen such that all
integrals are well-defined, it is easy to see that the property proven in The-
orem 18 is preserved.

In the following, we will discuss three examples of useful weight distri-
bution functions that will also be used for an experimental validation of the
new approach.

1. The first weight distribution function is the sum of two exponential
functions in direction of the axes:

wext(~z) = (e20·z1 + e20·z2)/(2 · e20)

with L = 0. The effect is an indicator with preference of extremal
solutions. Because of the weight distribution function’s steep slope
near the two axes, a solution set with solutions crowded near the axes
yields a larger indicator value than a population with solutions in the
interior region of the objective space where the weight distribution
function contribute only little to the indicator value.

2. The second weight distribution function focuses on the second objec-
tive by using an exponential function in f2-direction:

wasym(~z) = e20·z2/e20

In addition, the following line segment with a constant weight distri-
bution function on the f1-axis is used:

wasym
1 (~z) = 400, ~s1 = (0, 0), ~e1 = (1, 0)

where L = 1. This combination results in an indicator preferring so-
lutions with extreme f2 values and an additional solution near the
f1 axis. The additional line segment along the f1 axis used here in-
stead of an additional exponential function in f1 direction yields only
a single additional solution lying near the f1 axis instead of many
solutions with large f1 value as with the weight distribution function
wext defined above.



4.3. The Weighted Hypervolume Indicator 121

3. Often, a decision maker has some idea which points in the search
space are the most desirable ones. With the third weight distribu-
tion function, we can integrate such information into an indicator
that is a refinement of the weak Pareto dominance relation by choos-
ing a so-called preference point (a, b) ∈ R

2 before the optimization.
The weight distribution function defined below will then direct the
search of hypervolume-based algorithms towards this point. Multiple
preference points can be considered simultaneously by adding up the
corresponding distinct weight distribution functions.

The following weight distribution function is based on a ridge-like
function through the preference point (a, b), parallel to the diagonal:

wpref (~z) =

{

c+ (2−((2(x−a))2+(2(y−b))2))
(0.01+(2(x−a)−2(y−b))2)

if |z1 − a| < 0.5 ∧ |z2 − b| < 0.5

c else

where ~z = (z1, z2) and L = 0, cf. Fig. 41. The constant c > 0 is
mainly of theoretical interest to guarantee the Pareto compliance of
the indicator. If c is chosen too big, the effect of the additional weight
on the ridge does not allow to restrict the solutions to the objective
space part near the preference point; if c, on the other hand, would be
chosen as 0 the hypervolume indicator has no effect on the population
if it is far away from the preference point. The constant c should
therefore be chosen small in comparison to the values of the ridge but
positive9; here, we use c = 10−5.

The computation of the generalized hypervolume indicator is based on the
hypercube representation of the hypervolume described in Sec. 4.1.1. It
first partitions the whole unit hypercube [0, 1]k into smaller hyperrectangles
based on the objective vectors contained in the set A, and then the weighted
volumes of these hyperrectangles are added. To this end, the above weight
distribution functions have been symbolically integrated using a commercial
symbolic mathematics tool.

Note, that the proposed weight distribution functions as presented here
are limited to biobjective problems. However, a generalization to a higher
number of objectives has been proposed in the meantime in combination
with a new Monte Carlo sampling approach to tackle the high running
time of the exact hypervolume indicator calculation (Auger et al., 2009a).
Although we here provide proof-of-principle results for the biobjective case
only, one should keep in mind that the generalization to an arbitrary number
of objectives is possible and shows qualitatively similar results.

9In the study of Auger et al. (2009a), the authors use a multivariate Gaussian to

generalize the ridge idea to an arbitrary number of objectives and to circumvent the

problem of choosing c.
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Figure 41: Illustration of the weight distribution function wref (~z) for the pref-

erence point (0.2, 0.4) which is indicated by the cross in the middle of the ridge.

4.3.3 Proof-Of-Principle Results

We now show how the three weight distribution functions defined above
influence the search process of SIBEA (Sec. 4.1.2) for three biobjective test
problems.

To this end, we consider two scaling variants to obtain the maximum
effect of the weighted integral: online and offline scaling. In the online
variant, the objective function values are scaled to the interval [0, 1] within
each generation; to guarantee that boundary solutions contribute a non-
zero hypervolume to the overall indicator value, for each axis a line segment
with a constant weight distribution function is added. The offline variant
does not scale the objective function values but the weighting distribution
function. In detail, the weighted integral is only computed over and scaled
to the region where the Pareto front is expected. Since any approximation
set outside this region would yield an indicator value of zero, the standard
hypervolume indicator value, down-scaled such that it does not interfere
with the weighted integral, is added. Note that the offline variant has the
drawback that the expected region of the Pareto front has to be estimated in
advance which might restrict the applicability of the approach in practice.
The recent generalization of the weighted hypervolume indicator approach
to an arbitrary number of objectives by Auger et al. (2009a), however, does
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Figure 42: Pareto front approximations for the three different indicators based

on weight distribution functions on the function ZDT1. For reference, the gen-

erated Pareto front approximation using the usual hypervolume indicator IH is

given in (a). The two scaling methods are plotted for comparison.

not rely on this information since no scaling is necessary anymore while the
weighting distribution function is sampled.

For each of the weight distribution functions defined above, we derive two
indicators, one for the online scaling method and one for offline scaling—
resulting in six different indicators overall. We name the corresponding
indicators Iext

H , Iasym
H , and Ipref

H respectively, and distinguish between the
online and the offline version. The same holds for the usual hypervolume
indicator IH , where we also distinguish between the two scaling methods.

The test functions ZDT1, ZDT3, and ZDT6 (Zitzler et al., 2000) are
optimized by a SIBEA run with population size 20 for 1000 generations.10

Note, that the ZDT functions are to be minimized. Thus, an internal trans-
formation is performed, independent whether the online or offline scaling is
enabled.

10The individuals are coded as real vectors with 30 (ZDT1 and ZDT3) and 10 (ZDT6

decision variables, where the SBX-20 operator is used for recombination and a polynomial

distribution for mutation. The recombination and mutation probabilities were set to 1.0,

according to (Deb et al., 2005).
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Figure 43: Pareto front approximations for the three different indicators and

the two scaling methods on the function ZDT3. For reference, the generated

Pareto front approximation using the usual hypervolume indicator IH is given in

(a).

The figures Fig. 42, Fig. 43, and Fig. 44 show the computed Pareto
front approximations after 1000 generations for the three ZDT functions and
the three indicators Iext

H , Iasym
H , and Ipref

H with both scaling methods. The
preference point for Ipref

H is chosen as (0.5, 0.6) for ZDT1 and ZDT6 and as
(0.5, 1.2) for ZDT3. Due to the different front shapes, the chosen preference
point lies beyond the Pareto front for ZDT6, i.e., the preference point is
dominating Pareto-optimal points, or the preference point lies within the
feasible region for ZDT1 and ZDT3, i.e., the preference point is dominated
by some Pareto-optimal points. Furthermore, the approximation derived
with the established hypervolume indicator IH is shown as golden reference.

The experiments show two main aspects. Firstly, the behavior of the
evolutionary algorithm is similar for all three problems if always the same
indicator is used—independent of the front shape and the scaling method.
With the indicator Iext

H , the solutions accumulate near the extremal points.
When using the indicator Iasym

H , mainly the f2 values are minimized. Due
to the additional weight on the line segment, at least one solution with
large f1 value is also kept in the population if Iasym

H is used. With the in-
dicator Ipref

H , the population moves towards the predefined preference point
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Figure 44: Pareto front approximations for the three different indicators based

on weight distribution functions on the function ZDT6. Plot (a) shows the gen-

erated Pareto front approximation using the usual hypervolume indicator IH for

comparison.

(0.5, 0.6), and (0.5, 1.2) respectively. Secondly, the weighted-integration ap-
proach seems to be feasible for designing new Pareto-compliant indicators
according to specific preferences. The simple indicator-based algorithm was
indeed attracted to those regions in the objective space that were particu-
larly emphasized by means of large weight values.

When comparing the two scaling variants, online and offline, only slight
differences can be observed with the test cases studied in this paper. Online
scaling has the advantage that the preferences are always adapted according
to the current shape of the Pareto front approximation. However, thereby
the actual global indicator changes during the run and potentially cycles can
occur during the optimization process—a phenomenon that emerges with
several state-of-the-art algorithms such as NSGA-II and SPEA2, cf. (Lau-
manns et al., 2002a). Cycling is not necessarily a problem in the biobjective
case, but as the number of objectives increases, it is likely that this behav-
ior causes difficulties. The alternative is offline scaling. Here, the indica-
tor remains fixed and can be used for comparing the outcomes of different
methods. The drawback of this approach is the requirement that domain
knowledge is needed: either about the location of the Pareto front or about
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regions of interest. This problem holds basically for all types of indicators
as well as for the generalization of the approach to arbitrary objectives in
(Auger et al., 2009a).

4.4 Objective Reduction for Hypervolume-

Based Search

Although we have seen that hypervolume-based MOEAs can converge to
the Pareto front for certain problems and that user preferences can be in-
corporated into the hypervolume, the shown results have been attained
for biobjective problems only and it remains to tackle a general problem
with most of the hypervolume-based algorithms if many objectives are con-
sidered: the best known algorithm for computing the hypervolume needs
time exponentially in the number of objectives (Beume and Rudolph, 2006)
and the #P-hardness of the hypervolume computation (Bringmann and
Friedrich, 2008) underpins that no substantially faster algorithms exist un-
der the assumption P 6= NP . To save computation time during hyper-
volume computation, which can be better spent in the generation of more
solutions, we therefore propose to use the objective reduction techniques
presented in Chapter 3 within hypervolume-based algorithms11. Although
a reduction of the objective set during search will obviously reduce the
time needed for the hypervolume computation, it is not clear whether such
an objective reduction affects the quality of the found solutions. Surely,
a reduction yields faster evaluations and therefore more solutions can be
evaluated in the same time. But, on the other hand, an omission of objec-
tives will cause a loss of information which might be useful during search.
Hence, we propose different variants of how objective reduction strategies
can be used within a hypervolume-based MOEA, namely SIBEA, and com-
pare them in an experimental study on several test problem instances. In
particular, we

• propose a general scheme to integrate objective reduction methods
into a multiobjective evolutionary algorithm,

• integrate different types of objective reduction methods with objective
sets of fixed, randomly and adaptively chosen sizes, and

• extensively compare the proposed algorithmic variants with and with-
out objective reduction experimentally;

11Also the recently proposed idea of using Monte Carlo sampling can reduce the run-

ning time of hypervolume-based MOEAs to a reasonable one (Bader et al., 2008; Bader

and Zitzler, 2009; Auger et al., 2009a).
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• furthermore, also the aggregation of objectives during search is inves-
tigated and compared to the omission of objectives.

The study indicates that the (temporary) reduction of the number of ob-
jectives can improve hypervolume-based MOEAs drastically in terms of the
achieved hypervolume indicator values.

4.4.1 Objective Reduction During Search

The simplest possible objective reduction method is to decide in advance
which of the k objectives are considered during the search. The decision
can either be driven by preferences of a human decision maker or via a di-
mensionality reduction technique such as PCA, applied to a set of randomly
chosen solutions. The former approach has the drawback that it is often
too little known about the problem such that deciding which objectives to
take for optimization is difficult. Thus, we would prefer an automated tech-
nique independent of any human preference as the latter is. Nevertheless,
there is still a drawback: it might be the case that in different stages of the
optimization, different objectives are required to reduce the distance to the
Pareto front. In terms of conflicting objectives, this would mean that an ob-
jective pair might be non-conflicting in the beginning, e.g., with respect to
randomly drawn solutions, but near the Pareto front, the two objectives are
conflicting implying that both objectives should be considered together to
cover the entire Pareto front. Therefore, we limit the discussion to objective
reduction methods applied during search.

One recently proposed approach, already discussed in the previous chap-
ter, is based on PCA and was intended to be used for problems with many
objectives the Pareto front of which, however, has a lower dimension (Deb
and Saxena, 2006). The authors present a procedure to extract from a solu-
tion set the objectives which preserve most of the objective correlation. The
objective reduction is integrated into the Non-dominated Sorting Genetic
Algorithm NSGA-II. After NSGA-II is run, the objective reduction proce-
dure is applied to the algorithm’s outcome and the algorithm is started again
while optimizing only the objectives in the computed objective set. This
loop of running NSGA-II and applying the objective reduction technique
afterwards is repeated until the number of objectives cannot be further re-
duced. Although the approach was originally intended for high-dimensional
problems with low-dimensional Pareto fronts, the objective reduction pro-
cedure can also be used to reduce the number of objectives in general. A
problem of the correlation-based objective reduction is the unpredictable
effect on the Pareto dominance relation. The relation-based objective re-
duction approach, discussed in Chapter 3, however, can predict whether an
error in the dominance relation occurs while the number of objectives is re-
duced. In the following, we present how the objective reduction approaches
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of Chapter 3 can be integrated into a hypervolume-based MOEA to improve
the quality of its outcomes.

The basis of the incorporation of objective reduction methods into the
search is again the algorithm SIBEA introduced in Sec. 4.1.2. Algorithm 11
shows again the pseudocode of SIBEA, here extended with a general objec-
tive reduction functionality. The differences to Algorithm 9 are highlighted
in gray. The main difference12 to the original SIBEA version as defined in
Sec. 4.1.2 is the addition of Step 2, in which every G generations a (sub-)set
of objectives is computed with a predefined objective reduction algorithm.
During the algorithm itself, only these objectives are taken into account for
hypervolume computation, dominance ranking and all other instructions
during the next G generations. Then, another run of the objective reduc-
tion algorithm is performed based on the solutions in the current population
and their objective values for all original objectives.

The different approaches for reducing the objective set in Step 2, de-
fined in the following, can be grouped into three classes: either the reduced
objective set has a fixed size that is defined in advance or the number of
considered objectives is dynamically changing independent of the search or
it changes adaptively with respect to the hypervolume indicator values ob-
tained during search. Later on, we also consider the effect of aggregating
objectives but stick to objective omission within this section.

Fixed Objective Set Size

As the simplest objective reduction method, integrated into SIBEA, we fix
the number k of considered objectives in advance. This allows to easily
adjust the computation time of the algorithms, i.e., the smaller k, the faster
the hypervolume computation. On the other hand, it is not easy to control
the quality of the computed Pareto front approximations by changing the
parameter k. A low k will often yield worse results with respect to the
population’s hypervolume. In preliminary experiments, a reduction to 2 to
5 objectives was reasonable. When considering more than 5 objectives, the
hypervolume computation becomes too time-consuming while considering
at least two objectives seems to be required for optimization.

Besides a random version, where the objective sets of fixed size k = 3
are always chosen randomly, the greedy k-EMOSS Algorithm 6 is used to
compute an objective set with predefined size and the smallest possible δ-
error. Other objective reduction algorithms can also be used but are not
considered in the following experiments.

12Furthermore, the stopping criterion is changed to compare different algorithm vari-

ants with respect to their actual running time T (in seconds instead of generations).
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Algorithm 11 SIBEA with Objective Reduction

Input: population size µ; indicator function I;

running time T in seconds; reduction frequency G in generations;

Output: approximation of Pareto-optimal set A;

Step 1 (Initialization):

Generate an initial (multi-)set of solutions P of size µ uniformly at random

from X; set the current time t0; set generation counter m := 0.

Step 2 (Dimensionality reduction):

If m ≡ 0 mod G: Use the objective vectors of all solutions in P to decide

which objectives to consider in the following G generations while here all

objectives are taken into account.

Step 3 (Environmental Selection):

Iterate the following three steps until the size of the population does no

longer exceed µ:

1. Rank the population using Pareto dominance and determine the set

of individuals P ′ ⊆ P with the worst rank. Here, dominance depth

(Zitzler et al., 2004) is used.

2. For each solution ~x ∈ P ′ determine the loss d(~x) with respect to the

indicator I if it is removed from P ′, i.e., d(~x) := I(P ′)− I(P ′ \ {~x}).

3. Remove the solution with the smallest loss d(~x) from the population

P (ties are broken randomly).

Step 4 (Termination):

If T seconds expired since t0 then set A := P and stop; otherwise set

m := m + 1.
Step 5 (Mating):

Randomly select elements from P to form a temporary mating pool Q of

size µ. Apply recombination and mutation operators to the mating pool Q

which yields Q′. Set P := P + Q′ (multi-set union). Continue with Step 2.

Dynamically Changing the Objective Set Size

To avoid the difficult choice of the objective set size in the methods described
above, the three methods, described in this section, dynamically choose the
number of considered objectives. Two methods choose the objective set
size randomly. More precisely, a geometrically distributed random number
with p = 0.5 is drawn as the number k of considered objectives and set
to the number of original objectives if the drawn k exceeds the number of
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original objectives. Thus, the expected objective set size is approximately13

2. We consider two different versions where the objectives are either chosen
randomly or according to the greedy Algorithm 6 for k-EMOSS. Also here,
other methods to reduce the number of objectives could be used. The third
method chooses the objective set (and its size) according to a given δ-error
by applying Algorithm 5 on the current population. A drawback of this
reduction method is the δ-error as additional parameter since it is not clear
how to choose δ in advance. While the current population is scaled to [0, 1]k

before the objective vectors are used as input for Algorithm 5, preliminary
experiments suggested to use δ-values not too low, e.g., δ = 0.8 or δ = 0.9.

Adaptively Increasing Objective Sets

Starting with one objective, we increase in this type of objective reduction
the objective set size adaptively every G generations, dependent on a hy-
pervolume improvement. If and only if the hypervolume indicator of the
entire population increased within the last G generations in at most G/10
generations, the objective set size is increased by one. The idea behind this
is that SIBEA can optimize the selected objectives as long as it can improve
the population’s hypervolume indicator easily. If the algorithm gets stuck,
we increase the number of considered objectives to improve the hypervol-
ume of the population and guarantee that high-dimensional Pareto fronts
can be found by the algorithm. In contrast to the PCA-based objective re-
duction method in (Deb and Saxena, 2006) where the objective sets become
only smaller while converging to the Pareto-optimal front, here the opposite
happens.

We distinguish between one random version which chooses the larger
objective sets always randomly and a second version which uses Algorithm 6
to compute the new objective set. Note, that the objective set is not changed
unless the number of objectives is increased.

A similar idea of increasing the number of objectives during search in-
crementally has been already proposed by Chen and Guan (2004) where
the order in which the objectives are added is independent of the problem
characteristics. Here, the choice which objective to additionally optimize
depends on the Pareto dominance relation between the population’s indi-
viduals. Furthermore, in the last phase of the approach in (Chen and Guan,
2004), always all objectives are optimized which is not necessarily the case
in the adaptive method described here.

13In case we would not restrict k to be smaller than or equal to the number of original

objectives, the expected value of k would be exactly 2.
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4.4.2 Experimental Validation of Objective Omission

During Search

4.4.2.1 Setup

For an experimental comparison of the different objective reduction meth-
ods, the hypervolume indicator values, obtained in the first generation after
a time limit of T = 20 minutes has been reached, are compared. In addi-
tion to the algorithm versions of SIBEA described in the previous section,
the basic SIBEA without any objective reduction as well as NSGA-II (Deb
et al., 2002) and SPEA2 (Zitzler et al., 2002) have been used in the com-
parison. As a baseline, random search space samples of size µ have been
performed as well. Table 5 gives an overview over all algorithms used in the
comparison.

For each combination of algorithm and problem, 21 runs have been per-
formed on identical linux machines (4 cores, 64bit architecture, 2.6GHz). As
test problems, we use a modified version of the DTLZ2 problem, denoted by
DTLZ2BZ and defined in the following section, as well as the original DTLZ7
problem of Deb et al. (2005). We use n = 200 decision variables and prob-
lem instances with 5, 7, and 9 objectives. The implementation of SIBEA is
based on the hypervolume indicator in the PISA framework (Bleuler et al.,
2003) and, thus, uses only an asymptotically slow hypervolume algorithm,
instead of state-of-the-art approaches like in (Beume and Rudolph, 2006).
The reason is that the study at hand should justify the usage of objec-
tive reduction techniques during the search only. Using a faster algorithm
would not conceptually change the results but might only make it necessary
to use problems with a higher number of objectives to show similar effects.
Moreover, the actual implementation in the PISA framework turned out to
be faster than the asymptotically faster but more complicated algorithm of
Beume and Rudolph (2006) for reasonable instances in a preliminary study.
As to the implementations of NSGA-II and SPEA2, the versions from the
PISA framework has been used as well. All algorithms are used with stan-
dard settings, whereas the population size is always set to µ = 50 and the
objective reduction frequency G equals 50.

To analyze the quality of the produced Pareto front approximations, we
compute for all runs the hypervolume indicator of the first generation after
the predefined time of T = 20 minutes elapses. Note, that the hypervolume
indicator values are computed with respect to all original objectives. Note
further that for some of the algorithms, e.g., SIBEA without any objective
reduction on the high-dimensional problems, the time needed for the hy-
pervolume computation in one generation was rather a day than about 20
minutes. The reference points for the hypervolume computation are chosen
as (50, . . . , 50) for DTLZ2BZ and (100, . . . , 100) for DTLZ7 and the hyper-
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Table 5: All algorithms used in the experimental comparison of different ob-

jective reduction approaches during search.

algorithm objective set size
objective reduction

method

SIBEA complete —

SIBEA k = 3 fix k-EMOSS

SIBEA k = 4 fix k-EMOSS

SIBEA k = 3 fix random

SIBEA dynamic 0.8-MOSS

SIBEA dynamic 0.9-MOSS

SIBEA dynamic random

SIBEA dynamic k-EMOSS

SIBEA adaptive random

SIBEA adaptive k-EMOSS

NSGA-II complete —

SPEA2 complete —

volume is to be maximized14. The restriction of the running times to T = 20
minutes is arbitrary and similar results can be obtained for similar T .

For comparing the different algorithms, hypotheses have been derived
from preliminary experiments which are tested on the performed 21 inde-
pendent runs. As statistical test, we use the non-parametric Kruskal-Wallis
test followed by the Conover-Inman procedure for multiple testing (see pages
288–290 of (Conover, 1999)) to support the hypothesis that one algorithm
“systematically” produces larger hypervolume indicator values than another
one by ranking all values and comparing the rank sums. The significance
level has been set to p = 0.05. When reporting the results, we both show the
ranking of the median values for different algorithms as well as the ranking
obtained by the statistical tests. If no statistical difference in the median
value can be detected by the Conover-Inman procedure, the two algorithms
get the same ranking; otherwise, the algorithm with the higher median in
the hypervolume indicator values gets the smaller rank. Smaller values and
therefore higher hypervolume indicator values are always better.

14The reference points are chosen in a way that all possible objective vectors for all

chosen numbers of objectives have a positive hypervolume contribution. This choice

corresponds to selecting the reference point’s objective values strictly larger than the

maximally attainable objective function values for all choices of the number of objectives.
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4.4.2.2 Modified DTLZ Test Problems

To compare the different objective reduction methods, we use test problems
based on the DTLZ test suite of Deb et al. (2005)15. Many functions within
the original test function suite, especially the often used DTLZ2 function,
have the properties that

1. the projection of the Pareto front to fewer than k objectives collapses
to one optimal point, i.e., when omitting arbitrary objectives, the
search will always converge to one solution. Every multiobjective
function has this property if all objectives except one are omitted.
For the DTLZ function suite, however, this property even holds for
every subset of objectives. The second drawback is that

2. when optimizing only a subset of fewer than k objectives, the neglected
objectives are also optimized at the same time. The reason is the
scaling of all objectives by a function g(~xM), indicating the distance
to the real Pareto front.

We believe that real-world problems do not show these two properties and
that eliminating them for the experimental study to follow will better show
the usefulness of the proposed objective reduction methods in practical ap-
plications.

To eliminate the mentioned properties, we modify the original DTLZ2
function in two ways. First, we limit the range of the decision variables
xi, i.e., we cut the corners of the non-dominated fronts to circumvent prop-
erty 1). In detail, we use xi/2 + 1/4 instead of the decision variables xi

directly as in the original version. Figure 45 shows the changes on the re-
sulting Pareto front exemplary for the 3-objective DTLZ2 problem together
with a projection to 2 objectives.

To come up with a problem where all single objectives have to be opti-
mized simultaneously to reach the Pareto front, i.e., avoiding drawback 2),
we, secondly, introduce one scaling function gi(~x) for each objective, instead
of one single scaling function g(~xM). Figure 46 shows the definition of the
modified DTLZ2 problem that we will call DTLZ2BZ in the following. Fig-
ure 47 shows the formulation of the modified version of DTLZ3 that we
denote by DTLZ3BZ.

Since the original DTLZ7 problem has both a Pareto front which does
not collapse to a single point when projected and objective functions to
which independent decision variables are associated with, we use the original
version from (Deb et al., 2005) as a third test function in the following
experiments. Figure 48 shows the formal definition of DTLZ7.

15Here, we already introduce all three test problems that will be used in the remainder

of this chapter, although only two of them will be used for the comparison in this section.
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Figure 45: Visual comparison between the Pareto fronts of original DTLZ2

(left) and modified DTLZ2BZ (right). The first row shows the Pareto fronts for

the three-dimensional problems, whereas the second row shows the same fronts

projected to the f1/f3 plane: if objective f2 is omitted during optimization, the

front collapses to a single point, depicted in black, for DTLZ2 (left) and to a

one-dimensional trade-off front (black) for the modified DTLZ2BZ (right). Note

that the surfaces of the Pareto fronts are textured for illustration purpose.

In addition, we finally scale the objective values for the three test func-
tions, since in general not all objectives are equally scaled in practical prob-
lems. With the scaling

f ′
i(~x) :=











maxValue ·
(

fi(~x)

maxValue

)i

if i is even

maxValue ·
(

fi(~x)

maxValue

)1/i

if i is odd
,

we change the ratio between the different objective values to account for
those differences in practice, whereas maxValue = 1 + ((n − k + 1)/4) for
DTLZ2BZ, maxValue = 1+125(n−k+1) for DTLZ3BZ, and maxValue = 11k
for DTLZ7 are the maximum objective values for the original problems.
Near the Pareto front, objectives with even number have larger variances
than objectives with odd number. Far from the Pareto front, odd and even
objectives invert their behavior.
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Min f1(x) = (1 + g1(~x)) cos(θ1) · · · cos(θk−2) cos(θk−1),

Min f2(x) = (1 + g2(~x)) cos(θ1) · · · cos(θk−2) sin(θk−1),
...

...

Min fk−1(x) = (1 + gk−1(~x)) cos(θ1) sin(θ2),

Min fk(x) = (1 + gk(~x)) sin(θ1),

where gi(~x) =
∑k+i·⌊n−k+1

k ⌋−1

j=k+(i−1)·⌊n−k+1
k ⌋ (xj − 0.5)2

for i = 1, . . . , k − 1,

gk(~x) =
∑n

j=k+(k−1)·⌊n−k+1
k ⌋ (xj − 0.5)2 ,

θi = π
2
·
(
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)

for i = 1, . . . , k − 1

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

Figure 46: Definition of the modified DTLZ function DTLZ2BZ with n decision

variables and k objectives.

Min f1(x) = (1 + g1(~x)) cos(θ1) · · · cos(θk−2) cos(θk−1),

Min f2(x) = (1 + g2(~x)) cos(θ1) · · · cos(θk−2) sin(θk−1),
...

...

Min fk−1(x) = (1 + gk−1(~x)) cos(θ1) sin(θ2),

Min fk(x) = (1 + gk(~x)) sin(θ1),

where gi(~x) = 100 ·
[

⌊

n−k+1
k

⌋

+
k+i·⌊n−k+1

k ⌋−1
∑

j=k+(i−1)·⌊n−k+1
k ⌋

(xj − 0.5)2−cos(20π(xj − 0.5))

]

for i = 1, . . . , k − 1,

gk(~x) = 100 ·
[

n− (k + (k − 1) ·
⌊

n−k+1
k

⌋

)

+
n
∑

j=k+(k−1)·⌊n−k+1
k ⌋

(xj − 0.5)2 − cos(20π(xj − 0.5))

]

,

θi = π
2
·
(

xi

2
+ 1

4

)

for i = 1, . . . , k − 1

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

Figure 47: Definition of the modified DTLZ function DTLZ3BZ with n decision

variables and k objectives.

4.4.2.3 Results

Figures 49–54 show boxplots of the hypervolume indicators for the popu-
lation obtained after the first generation that is completed after T = 20
minutes for all algorithms in Table 5 on the DTLZ2BZ and the DTLZ7
problems—only the results for all SIBEA versions with dynamic objective
reduction have been omitted. The reason is the high running time of these
algorithms, such that not for all test problem instances 21 runs could be
performed in reasonable time. We discuss this in more detail in the follow-
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Min f1(x) = x1,

Min f2(x) = x2,
...

...

Min fk−1(x) = xk−1,

Min fk(x) = (1 + g(~xM))h(f1, f2, . . . , fk−1, g),

where g(~xM) = 1 + 9
|~xM |

∑

xi∈~xM
xi,

h(f1, f2, . . . , fk−1, g) = k −∑k−1
i=1

[

fi

1+g
(1 + sin(3πfi))

]

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

Figure 48: Definition of the non-modified DTLZ7 function with n decision

variables and k objectives. As in the original definition, ~xM is defined as the last

n− k + 1 decision variables xk, . . . , xn.
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Figure 49: Boxplot comparing selected algorithms on DTLZ2BZ with 5 objec-

tives. The hypervolume is upper bounded by 3.125 · 108.

ing paragraphs. These SIBEA versions have been also excluded from the
statistic test procedure for the same reason of incomplete results due to the
high running times. The results of the statistical test, however, can be found
in Table 6 where the ranking of the medians of the hypervolume indicator
values (in brackets) and the number of algorithms that significantly produce
higher hypervolume values are shown. In both cases, a lower rank is better.
In the following, we present the results of the comparison in detail.
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Figure 50: Boxplot comparing selected algorithms on DTLZ2BZ with 7 objec-

tives. The hypervolume is upper bounded by 7.8125 · 1011.

SIBEA vs. NSGA-II vs. SPEA2

The experiments with SIBEA confirm, that hypervolume-based evolution-
ary algorithms are sensitive to the number of objectives, i.e., the running
time for the hypervolume indicator computation highly depends on the num-
ber of objectives. Up to four objectives are manageable with the used pop-
ulation size of 50, whereas the computation time explodes to more than a
day per generation for the 9-objective problems. In the allowed time inter-
val of 20 minutes for example, SIBEA managed to reach not more than 16,
5, and 1 generations for DTLZ2BZ with 5, 7, and 9 objectives respectively.
Nevertheless, the improvement in the hypervolume indicator values in the
first generations is high compared to NSGA-II or SPEA2, cf. Fig. 55 and 56.
This is mainly due to the fact that NSGA-II and SPEA2 do not optimize
the hypervolume indicator.

This observation underpins that the hypervolume indicator provides ad-
ditional information on the search space; the information gain per objective
vector evaluation is increased compared to the usage of the weak Pareto
dominance relation within NSGA-II and SPEA2. If the hypervolume com-
putation can be accelerated, one may expect that an improvement is pos-
sible also with respect to a predefined running time as it is the case for
our comparison. Since the baseline hypervolume algorithm used within
SIBEA is not state-of-the-art, we cannot expect that SIBEA can compete
with NSGA-II and SPEA2 compared with respect to a given time interval.
However, a realistic comparison of SIBEA with NSGA-II and SPEA2 was
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Figure 51: Boxplot comparing selected algorithms on DTLZ2BZ with 9 objec-

tives. The hypervolume is upper bounded by 1.954 · 1015.
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Figure 52: Boxplot comparing selected algorithms on DTLZ7 with 5 objectives.

The hypervolume is upper bounded by 1 · 1010.

never intended to be the focus here; in fact, we would like to emphasize the
difference between the basic SIBEA without and the new versions with ob-
jective reduction strategies. That some of the objective reduction variants of
SIBEA even outperformed NSGA-II and SPEA2 with respect to the Pareto-
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Figure 53: Boxplot comparing selected algorithms on DTLZ7 with 7 objectives.

The hypervolume is upper bounded by 1 · 1014.
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Figure 54: Boxplot comparing selected algorithms on DTLZ7 with 9 objectives.

The hypervolume is upper bounded by 1 · 1018. Note, that SIBEA without ob-

jective reduction needed 6435 minutes or more than 4 days to complete the first

generation such that we decided to perform only one run.
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Table 6: Ranking of the hypervolume indicator values for all algorithms in the

comparison based on the Kruskal-Wallis test with subsequent Conover-Inman

procedure. All SIBEA versions with dynamically changing objective set size are

excluded (see text). The shown rank corresponds to the number of algorithms

that significantly produce better hypervolume indicator values. The ranking of

the medians is given in brackets. Lower values are always better.
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compliant hypervolume indicator only shows again that it makes sense to
consider hypervolume indicator based algorithms if the number of objectives
is high—if the drawback of the high running time can be bypassed.

Remarks on the Comparison NSGA-II vs. SPEA2

Since NSGA-II and SPEA2 are not optimizing the hypervolume indicator
directly, the fact that the indicator values can decrease during the search is
not astonishing. While the algorithms themselves improve their population
permanently, e.g., with respect to diversity, the populations of consecutive
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generations will often be incomparable. Therefore, the hypervolume indi-
cator can decrease over time as can be seen in Fig. 55 and 56.

That NSGA-II obtains significantly better results than SPEA2 for all
problems except DTLZ7 with 7 and 9 objectives is not surprising if we re-
call the conditions of the comparison: the available time is the same for
all algorithms. Due to more complex computations within SPEA2, it takes
more time to perform an entire step of SPEA2 than a generation lasts within
NSGA-II. That means, NSGA-II is able to perform more generations than
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SPEA2 within the same time interval. As NSGA-II is, e.g., able to reach
generations of 1500 and more within 20 minutes on DTLZ2BZ, SPEA2 can-
not process more than 860 generations within the same time. Note that
in usual comparisons with respect to the number of generations, SPEA2
yields better distributions of points than NSGA-II if the number of objec-
tives is larger than 2 whereas NSGA-II runs much faster. Here, the stopping
criterion results in better results for NSGA-II than for SPEA2.

Dynamic Objective Reduction

The dynamic objective reduction strategies show mixed performance. What
we can conclude is that the dynamic SIBEA versions show a high variance:
with the randomly chosen objective set sizes, the dynamic strategies can at
any time choose too many objectives such that the hypervolume computa-
tion will last too long to achieve competitive indicator values. This results
in a ranking that is inferior in comparison to the strategies with a fixed
objective set size. Thus, we advise against using the dynamic objective
reduction strategies and prefer the k-EMOSS based strategies with fixed size
and therefore predictable running time.

Objective Reduction with Fixed and Adaptively Chosen Objective

Set Sizes

The objective reduction strategies with fixed k based on the k-EMOSS al-
gorithm turn out to be the best algorithms in the comparison (always sig-
nificantly better than SPEA2, NSGA-II, and SIBEA without objective re-
duction except for DTLZ2BZ with 9 objectives and the comparison between
NSGA-II and SIBEA with fixed k = 3; nearly always better than the other
methods). Comparing the random version and the one based on the greedy
heuristic for k-EMOSS, the latter is always significantly better on DTLZ2BZ

where the random version cannot compete against NSGA-II and SPEA2.
Between the two SIBEA variants with k = 3 and k = 4, no trend is visible
and the statistical tests are not significant except for two examples. This
indicates that both algorithms are the winner in this comparison and are
recommended to be used in practice. The following more extensive compar-
ison in the next section will, however, show that the omission algorithms
with fixed k cannot compete against aggregation methods.

4.4.3 Aggregating Objectives During Search

If only a subset of objectives is optimized as proposed in the last section,
the omitted objectives are, in general, not optimized simultaneously, i.e.,
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the objective values of the neglected objectives can be arbitrary poor. We
expect that the values of neglected objectives are kind of randomly chosen
due to the fact that they are not considered within selection. In order to
avoid this behavior, we suggested in an earlier work to aggregate the omit-
ted objectives and optimize this aggregated objective simultaneously with
the other objectives chosen by the objective reduction approach Brockhoff
and Zitzler (2007b). Using this additional aggregated objective turned out
to be inferior to the approaches presented in the previous section. The
main reason was the huge impact of an additional objective on the compu-
tational effort needed for the hypervolume computation. However, the idea
of aggregating objectives during hypervolume-based search to reduce the
running time of the hypervolume calculation built the basis of the more ad-
vanced aggregation heuristics presented in the last chapter. Here, we show
what can be gained by aggregating objectives within a hypervolume-based
algorithm. To this end, we perform additional experiments by using the
aggregation heuristics of Chapter 3 within SIBEA.

4.4.3.1 Basic Algorithms

In addition to SIBEA with fixed objective set size and the greedy k-EMOSS
heuristic to reduce the number of objectives, we consider two SIBEA ver-
sions that use the aggregation heuristics for the OAPmax and OAPavg problems
proposed in Sec. 3.6.2. Similar as before, every G = 50 generations, we
compute the best objective subset (for the k-EMOSS based SIBEAk-EMOSS)
or the best aggregation (versions denoted by SIBEAmax and SIBEAavg) on
the current population and consider only the computed objectives for the
next 50 generations of SIBEA. We use only the greedy k-EMOSS algorithm
based SIBEAk-EMOSS version for the comparison with the new aggregation
approach since it showed the best performance among the objective omis-
sion variants in the previous section. Due to the fact that the running time
for SIBEAk-EMOSS can be controlled by fixing a certain k which is not the
case for the other dynamic or random SIBEA variants, it is expected that
this outperformance is the case also for similar problem instances from the
DTLZ test suite that are used here.

4.4.3.2 Settings

The comparison of the three SIBEA versions is performed with the following
settings. 11 runs for each combination of problem (scaled DTLZ2BZ, scaled
DTLZ3BZ, and DTLZ7 as in Sec. 4.4.2.2 with 5, 10, and 15 objectives)
and objective set size (k = 2, 3, 4) are performed where the computation
time is set to T = 15 minutes on a 64bit AMD linux machine with 4
cores. Afterwards, the hypervolume indicator values of the populations after
the time T has been reached are computed with respect to all objectives
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and the non-parametric Kruskal-Wallis test followed by the Conover-Inman
procedure is used as in the previous comparison, i.e., with a confidence
level of 0.05. The reference points of the hypervolume computation are
chosen as rDTLZ2 = (50, . . . , 50), rDTLZ3 = (25000, . . . , 25000), and rDTLZ7 =
(170, . . . , 170) to ensure that all possible objective vectors have a positive
hypervolume indicator contribution. Table 7 shows both the ranking of
the median values (in brackets) and a ranking given by the outcomes of
the statistical tests: for each algorithm A, the number of other algorithms
that statistically outperform A is shown similar to Table 6 in the previous
section. For both rankings, lower numbers are again better. Figures 57–59
shows, in addition, the box plots of the achieved hypervolume values. Most
interesting here is the case of 15 objectives for all investigated problems
where the statistical tests do not support the hypothesis of differences in
the median values, as can be seen in Table 7.

To also compare the runs with different numbers of aggregated objec-
tives against each other, we decided to run the algorithms again for 11 runs
with different random seeds and compare all algorithms for all objective
subset sizes against each other for each of the three problems and each
number of original objectives. The same statistical Conover-Inman test af-
ter the mandatory Kruskal-Wallis test has been performed with a confidence
level of 0.05; test problem instances and reference points are the same as
before. Table 8 shows the rankings of the median of the hypervolume indi-
cator values (again in brackets) and the number of algorithms that produce
significantly higher hypervolume values as before—now by comparing all 9
different algorithms for each number of original objectives.

4.4.3.3 Results

The results of the statistical tests support the main conclusion that the
aggregation has some advantages over the omission of objectives especially if
the objective set is reduced to only two objectives. However, the advantage
diminishes when more objectives are involved during the search. Except
for the DTLZ3BZ problem with 10 objectives, the omission heuristic always
performs better with respect to the median values than the aggregation
heuristics if the objective set is reduced to 4 objectives. In addition, we can
observe from the box plots in Fig. 57–59 that the omission heuristic becomes
better with increasing k whereas both aggregation heuristics become better
when the size of the reduced objective set is decreased. One explanation
for that is the high running time of the aggregation heuristics: the running
time of 15 minutes is mainly used for deriving the aggregation in every 50th
generation. For example on the DTLZ3BZ problem with 15 objectives, most
of the aggregation runs are performing 200 to 350 generations only whereas
almost all SIBEAk-EMOSS runs (except the ones running with four objectives)
are able to run for 1000 generations or more.
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Figure 57: Boxplots of hypervolume indicator values for the SIBEA variants

with objective omission and objective aggregation heuristics on the DTLZ2BZ

problem: (top) 5 objectives; (middle) 10 objectives; (bottom) 15 objectives.
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Figure 58: Boxplots of hypervolume indicator values for the SIBEA variants

with objective omission and objective aggregation heuristics on the DTLZ3BZ

problem: (top) 5 objectives; (middle) 10 objectives; (bottom) 15 objectives.
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Figure 59: Boxplots of hypervolume indicator values for the SIBEA variants

with objective omission and objective aggregation heuristics on the DTLZ7 prob-

lem: (top) 5 objectives; (middle) 10 objectives; (bottom) 15 objectives.
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Table 7: Ranking of the hypervolume indicator values for the SIBEA versions

with greedy k-EMOSS heuristic (IH,k-EMOSS) and the aggregation heuristics with

maximum (IH,max) and average δ-error (IH,avg) based on the Kruskal-Wallis test

with subsequent Conover-Inman procedure when the three algorithms are com-

pared for each pair of original objective number and the number of aggregated

objectives (confidence level: 0.05). The rank corresponds to the number of al-

gorithms that significantly produce better hypervolume indicator values. The

ranking of the medians is given in brackets. Lower values are always better.

problem
# original

objectives

# aggregated

objectives
IH,k-EMOSS IH,max IH,avg

scaled DTLZ2BZ 5 2 2(3) 0(2) 0(1)

scaled DTLZ2BZ 5 3 0(1) 1(2) 1(3)

scaled DTLZ2BZ 5 4 0(1) 2(3) 1(2)

scaled DTLZ2BZ 10 2 2(3) 1(2) 0(1)

scaled DTLZ2BZ 10 3 2(3) 0(1) 0(2)

scaled DTLZ2BZ 10 4 0(1) 1(2) 2(3)

scaled DTLZ2BZ 15 2 2(3) 0(2) 0(1)

scaled DTLZ2BZ 15 3 2(3) 0(2) 0(1)

scaled DTLZ2BZ 15 4 0(1) 0(3) 0(2)

scaled DTLZ3BZ 5 2 2(3) 0(2) 0(1)

scaled DTLZ3BZ 5 3 0(1) 2(3) 0(2)

scaled DTLZ3BZ 5 4 0(1) 1(3) 1(2)

scaled DTLZ3BZ 10 2 2(3) 0(2) 0(1)

scaled DTLZ3BZ 10 3 2(3) 0(1) 1(2)

scaled DTLZ3BZ 10 4 1(2) 2(3) 0(1)

scaled DTLZ3BZ 15 2 1(3) 0(1) 0(2)

scaled DTLZ3BZ 15 3 0(1) 0(2) 0(3)

scaled DTLZ3BZ 15 4 0(1) 2(3) 1(2)

DTLZ7 5 2 2(3) 0(2) 0(1)

DTLZ7 5 3 0(1) 2(3) 1(2)

DTLZ7 5 4 0(1) 2(3) 1(2)

DTLZ7 10 2 2(3) 0(2) 0(1)

DTLZ7 10 3 2(3) 1(2) 0(1)

DTLZ7 10 4 0(1) 1(2) 2(3)

DTLZ7 15 2 2(3) 0(2) 0(1)

DTLZ7 15 3 2(3) 0(1) 0(2)

DTLZ7 15 4 0(1) 0(2) 2(3)
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reduced to

k = 2 objectives

reduced to

k = 3 objectives

reduced to

k = 4 objectives
problem instance IH,k-EMOSS IH,max IH,avg IH,k-EMOSS IH,max IH,avg IH,k-EMOSS IH,max IH,avg

scaled DTLZ2BZ, 5 objectives 3(4) 0(1) 0(2) 0(3) 4(5) 4(6) 5(7) 8(9) 7(8)

scaled DTLZ2BZ, 10 objectives 8(9) 1(4) 0(2) 6(8) 0(1) 1(3) 4(5) 4(6) 5(7)

scaled DTLZ2BZ, 15 objectives 7(9) 0(3) 1(4) 7(8) 0(1) 0(2) 4(6) 4(5) 4(7)

scaled DTLZ3BZ, 5 objectives 7(9) 0(3) 0(1) 3(6) 1(4) 0(2) 3(5) 5(8) 3(7)

scaled DTLZ3BZ, 10 objectives 5(8) 0(3) 0(2) 1(3) 5(7) 0(1) 5(7) 4(6) 6(9)

scaled DTLZ3BZ, 15 objectives 1(6) 0(1) 0(2) 0(4) 1(5) 1(7) 0(3) 7(9) 7(8)

DTLZ7, 5 objectives 5(7) 0(3) 0(4) 0(1) 5(6) 2(5) 0(2) 7(9) 7(8)

DTLZ7, 10 objectives 6(8) 1(3) 0(1) 4(5) 1(4) 0(2) 4(6) 6(7) 8(9)

DTLZ7, 15 objectives 5(8) 0(4) 0(3) 2(7) 0(2) 0(1) 1(5) 7(6) 7(9)
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When comparing the algorithms over all possible numbers of desired
objectives (Table 8), it turns out that, except for the DTLZ2BZ with 15
objectives, no other algorithm produces significantly higher hypervolume
values than SIBEAavg that reduces the number of objectives to k = 2.
However, with respect to the median hypervolume indicator values, this
aggregation heuristic is assigned only twice the best rank and 4 times the
second best. Nevertheless, we can also conclude in this comparison that
the aggregation heuristics are often performing better and overall not worse
than the greedy omission heuristic.

Although the experiments are extensive and the outperformance of the
hypervolume-based algorithms with objective reduction and aggregation are
producing significantly better results in the tests, one has to keep in mind
that the results might highly depend on the selected test functions and
that further experiments are needed to argue in favor of those algorithms
in practice. However, other studies on objective reduction during search
have been published recently, e.g., (López Jaimes et al., 2008, 2009) which
indicate that objective reduction, including the approach presented here, is
also helpful on other problems such as the 0-1-knapsack problem and can
be used within other algorithms.

4.5 Summary

Indicator-based evolutionary algorithms have been shown to be very suc-
cessful for dealing with multiobjective optimization in the past. Of partic-
ular interest is the hypervolume indicator—an indicator that preserves the
Pareto dominance relation among solution sets if applied as an optimization
criterion. This chapter contributed to a better understanding of the hyper-
volume indicator in terms of the first theoretical running time analysis of a
hypervolume-based MOEA. Moreover, we increased the relevance and us-
ability of the hypervolume indicator for performance assessment and search
by presenting a generalized version of the hypervolume indicator that can
incorporate different user preferences, such as preference points, to guide
the search. Finally, we applied the objective reduction techniques proposed
in the previous chapter within a hypervolume-based algorithm to decrease
the running time needed for the hypervolume computation.

These three contributions can only be seen as a first step towards a
general understanding of the hypervolume indicator, its properties and its
application to many-objective problems. Several tasks can be identified for
future work which have in part already been tackled recently.

Further running time analyses of hypervolume-based MOEAs are neces-
sary to identify certain problem properties that allow for an efficient opti-
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mization with hypervolume-based MOEAs. A problem instance where one
can show that hypervolume-based search is disadvantageous compared to
dominance relation based approaches has also not been presented so far.
Presenting an according running time analyses for this could also help to
understand why and when hypervolume-based MOEAs are successfully ap-
plied to real-world problems.

With respect to the weighted hypervolume, most issues that needed to
be obviously tackled have been considered in recent studies. First of all,
the weight distribution for articulating directions towards preference points
needed to be generalized to an arbitrary number of objectives. Second,
the efficient computation of the weighted hypervolume indicator is an issue,
especially if it is hard to obtain a function for the integral in closed form
or if the number of objectives is large. Tackling both problems at the same
time, Auger et al. (2009a) proposed an approach to sample the weighted
hypervolume indicator efficiently for an arbitrary number of objectives and
weight distribution functions that allow to include the decision maker’s
preference in terms of preference points and the stress of extremes.

In terms of objective reduction within hypervolume-based search, open
questions for future research can be identified as well. Except in (López
Jaimes et al., 2008) it has not been investigated how classical dimensionality
reduction techniques, i.e., feature selection and feature extraction methods,
compare to the specialized objective reduction approaches presented in this
thesis. In the light of this discussion, more efficient objective reduction
algorithms need to be developed in order to increase the applicability of
objective reduction to real-world many-objective problems further.





5
Conclusions

5.1 Key Results

Multiobjective problems occur frequently in practice and multiobjective
evolutionary algorithms (MOEAs) have been applied successfully in many
application areas to approximate the set of Pareto-optimal solutions. How-
ever, if the number of objectives is high, most state-of-the-art MOEAs have
difficulties to find good approximations of the Pareto front. This thesis
made a first step towards understanding what causes these difficulties for
MOEAs in terms of investigating what happens with the Pareto dominance
relation if additional objectives are considered. We also proposed an ob-
jective reduction approach to deal with many-objective problems with re-
spect to both decision making and search. Furthermore, we investigated
hypervolume-based multiobjective evolutionary algorithms—a special type
of MOEAs that turn out to be better suited for many-objective problems in
practice than other well-established algorithms such as NSGA-II or SPEA2.
In particular, we presented the following key results.

Effects of Additional Objectives

Adding objectives to a multiobjective optimization problem has been known
to change the behavior of multiobjective evolutionary algorithms in prac-
tice. In this thesis, we investigated the effects of additional objectives on
the Pareto dominance relation from a theoretical perspective. These results
built the basis for rigorous running time analyses of a multiobjective evo-
lutionary algorithm answering two previously open questions. On the one
hand, we showed that one and the same problem can be made both harder
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and easier—depending on the objective that is added and in contrast to
previous belief that the effect of additional objectives is caused by proper-
ties of the problem itself. On the other hand, we showed theoretically that
there are problems where multiobjective search is highly beneficial, i.e., that
the combination of two equally complex problems to a biobjective problem
is easier to solve than solving the two problems independently. Note here
that, although the investigated problems only have two or three objectives
to keep the proofs readable, the results could be generalized to problems
with many objectives.

Objective Reduction

In the third chapter, we proposed a general framework for objective reduc-
tion based on the effects of adding and omitting objectives on the dominance
structure. To this end, we proposed a generalized measure for changes in
the dominance structure, the so-called δ-error. Based on this measure, we
gave a general definition of objective conflicts and defined the objective re-
duction problems δ-MOSS and k-EMOSS. For both problems, we proved the
NP-hardness and proposed exact and greedy algorithms. Furthermore,
we generalized the approach to aggregating objectives and compared the
algorithms experimentally to show the potentials of this approach for sev-
eral test problems. The proposed objective reduction algorithms have also
been applied to a radar waveform optimization problem showing that the
approach can reveal underlying problem characteristics that might help to
learn about a problem in practice in order to specify or simplify a first rough
problem formulation.

Overall, it turned out that when objective reduction is applied during
search, objective reduction algorithms that guarantee an upper bound on
the resulting objective set size are favorable over strategies that dynamically
adjust the resulting number of objectives. Due to the high computation
time of the exact algorithms, we advise to use the greedy heuristics the
computed objective set sizes and resulting errors of which are comparable
to the exact algorithm whereas their computation time is still feasible for
reasonable input instances.

Hypervolume Indicator Based Search

With respect to hypervolume-based optimization, the contributions of this
thesis were threefold. First, we provided the first running time analysis of a
hypervolume-based MOEA. Results on a simple test problem showed that
a simple MOEA using a popular steady-state selection scheme based on the
hypervolume indicator can find the Pareto set in polynomial time although
the selection scheme does not allow for a convergence to the Pareto set in



5.2. Open Questions and Future Work 155

general. Second, we generalized the hypervolume indicator to a weighted
version. This allows a user to articulate her preferences within a Pareto-
compliant indicator. Three weight distribution functions showed the ap-
plicability of the approach exemplary for biobjective problems. Third, we
applied the proposed objective reduction techniques within a hypervolume-
based search algorithm. Automatically reducing the number of objectives
during search has been shown to be one way to circumvent the high running
time of the hypervolume computation. The proposed MOEA with objective
reduction has been shown to be efficient in experiments for problems with
up to 15 objectives.

5.2 Open Questions and Future Work

Regarding many-objective optimization in terms of the investigated top-
ics objective reduction and hypervolume-based search, several questions re-
mained open after this thesis project. However, some of them are tackled
in current research or have been already solved in the meantime.

Objective Reduction

Although the objective reduction approach has been shown to be beneficial
in terms of search and reducing the amount of data that has to be considered
after the search, reducing the number of objectives might also help in other
scenarios. For example, the aggregation heuristics might be helpful if an ini-
tial weighting of the objectives within the well-known weighted sum method
is sought. In this scenario, the aggregation heuristics could be applied to
a randomly chosen set of solutions before the search process to automati-
cally find a set of weights. Since the weighted sum method is known to be
unable to find Pareto-optimal solutions in regions where the Pareto front
is non-convex, such an approach should use multiobjectivization in a later
stage of the search process to find a good approximation of the Pareto front.
The decision how the objective function should be decomposed could also
be done here via the objective reduction approach. The objective reduction
approach in general can also be helpful in many-objective scenarios where
the evaluation times for the single objective functions vary highly. In both
application areas, practical studies would be highly interesting.

The usage of state-of-the-art machine learning techniques for feature se-
lection and feature extraction in the same manner than in (López Jaimes
et al., 2008) is another interesting area of future research which is expected
to make the reduction of objectives even more applicable to real-world prob-
lems with many objectives.
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As to the objective reduction approach in general, several generalizations
could be the basis of future work. Examples include the consideration of
other error measures, e.g., with respect to the multiplicative ε-dominance or
the investigation of the effects of objective reduction to arbitrary dominance
structures, e.g., induced by specific unary indicators. Other questions, espe-
cially in terms of decision making, remain open. Of high practical value for
a human decision maker would be, for example, if one could automatically
detect which objectives are the most important ones or which objectives are
equivalent and interchangeable.

Hypervolume Indicator Based Search

In contrast to the small number of researchers working in the field of ob-
jective reduction, many publications are dealing with the hypervolume in-
dicator. Current research in hypervolume-based search is therefore char-
acterized by a high dynamic and some questions that have been open for
years have been recently solved or are going to be solved in the near future.
Some examples are the generalization of the weighted hypervolume to more
than 2 objectives (Auger et al., 2009a), the incorporation of Monte Carlo
sampling (Bader and Zitzler, 2009), or the computational complexity of the
hypervolume indicator (Bringmann and Friedrich, 2008, 2009b,a). Also the
general question of how a finite set of µ solutions that is maximizing the
hypervolume indicator is distributed on the Pareto front has been tackled
recently (Auger et al., 2009c,b).

However, some interesting questions remain open. The most fundamen-
tal one is whether unary quality indicators that are a refinement of the
Pareto dominance relation exist that cannot be defined via the hypervol-
ume indicator and its weighted version. Related to that is the question
whether there are other unary quality indicators that are Pareto-compliant
and easier to compute than the hypervolume indicator.

Although many rigorous running time analyses of multiobjective evolu-
tionary algorithms have been performed in recent years (Neumann and We-
gener, 2006; Friedrich et al., 2007; Neumann and Reichel, 2008; Friedrich
et al., 2008), also here, further studies, especially with respect to hyper-
volume-based algorithms, are necessary. First of all, the question whether
the second result in (Brockhoff et al., 2008) on a large Pareto front is fully
correct needs to be answered. Further running time analyses of hypervolume-
based MOEAs should then try to identify certain problem properties that
allow for an efficient optimization with hypervolume-based MOEAs. For
example, a problem instance for which one can show that hypervolume-
based search is disadvantageous compared to algorithms that only rely on
the Pareto dominance relation has not been presented so far. Presenting
an according running time analyses for this—or showing that this scenario
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cannot happen—could also help to understand why and when hypervolume-
based MOEAs can be successfully applied to real-world problems. Also
the new idea of finding combinatorial optimization problems for which
(hypervolume-based) MOEAs are fully polynomial-time randomized ap-
proximation schemes (FPRAS) needs to be further developed. Formulated
in the terms of hypervolume-based algorithms, the question is here whether
multiobjective evolutionary algorithms can efficiently find solution sets that
yield good approximations of the optimal hypervolume indicator value as
given by the optimal µ-distribution defined in (Auger et al., 2009c).

We can conclude that the field of many-objective optimization has still
many interesting questions to offer for future research. Especially the the-
oretical investigation of hypervolume indicator based search is still in its
infancies and, from my point-of-view, will yield fruitful results in the fu-
ture.
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Slav́ık, P. 1996. A Tight Analysis of the Greedy Algorithm for Set Cover.
In: Symposium on Theory of Computing (STOC 1996). ACM Press,
pages 435–441.

Srinivas, N. and Deb, K. 1994. Multiobjective Optimization Using Non-
dominated Sorting in Genetic Algorithms. Evolutionary Computation,
2(3):221–248.

Sülflow, A., Drechsler, N., and Drechsler, R. 2007. Robust Multi-
Objective Optimization in High Dimensional Spaces. In: Conference
on Evolutionary Multi-Criterion Optimization (EMO 2007). Springer,
4403:715–726.



172 References

Tan, K. C., Khor, E. F., and Lee, T. H. 2005. Multiobjective Evolutionary
Algorithms and Applications. Springer, London, UK.

Vafaie, H. and de Jong, K. 1993. Robust Feature Selection Algorithms.
In: Tools with Artificial Intelligence (TAI ’93). pages 356–363.

Van Veldhuizen, D. A. 1999. Multiobjective Evolutionary Algorithms:
Classifications, Analyses, and New Innovations. PhD thesis, Graduate
School of Engineering, Air Force Institute of Technology, Air University.

Wagner, T., Beume, N., and Naujoks, B. 2007. Pareto-, Aggregation-,
and Indicator-based Methods in Many-objective Optimization. In:
Obayashi, S. et al. (Editors), Conference on Evolutionary Multi-Criterion
Optimization (EMO 2007). Springer, 4403:742–756.

While, L. 2005. A New Analysis of the LebMeasure Algorithm for Cal-
culating Hypervolume. In: Conference on Evolutionary Multi-Criterion
Optimization (EMO 2005). Springer, 3410:326–340.

While, L., Hingston, P., Barone, L., and Huband, S. 2006. A Faster Algo-
rithm for Calculating Hypervolume. IEEE Transactions on Evolutionary
Computation, 10(1):29–38.

Winkler, P. 1985. Random Orders. Order, 1(1985):317–331.

Witt, C. 2005. Worst-Case and Average-Case Approximations by Simple
Randomized Search Heuristics. In: Symposium on Theoretical Aspects
of Computer Science (STACS 2005). Springer, 3404:44–56.

Zitzler, E. 1999. Evolutionary Algorithms for Multiobjective Optimiza-
tion: Methods and Applications. PhD thesis, ETH Zurich, Switzerland.

Zitzler, E., Brockhoff, D., and Thiele, L. 2007. The Hypervolume In-
dicator Revisited: On the Design of Pareto-compliant Indicators Via
Weighted Integration. In: Obayashi, S. et al. (Editors), Conference
on Evolutionary Multi-Criterion Optimization (EMO 2007). Springer,
4403:862–876.

Zitzler, E., Deb, K., and Thiele, L. 2000. Comparison of Multiobjective
Evolutionary Algorithms: Empirical Results. Evolutionary Computa-
tion, 8(2):173–195.

Zitzler, E., Deb, K., Thiele, L., Coello Coello, C. A., and Corne, D.
(Editors) 2001. Evolutionary Multi-Criterion Optimization (EMO 2001),
volume 1993 of LNCS. Springer.

Zitzler, E. and Künzli, S. 2004. Indicator-Based Selection in Multiobjec-
tive Search. In: Yao, X. et al. (Editors), Conference on Parallel Problem
Solving from Nature (PPSN VIII). Springer, 3242:832–842.



References 173

Zitzler, E., Laumanns, M., and Bleuler, S. 2004. A Tutorial on Evolu-
tionary Multiobjective Optimization. In: Gandibleux, X. et al. (Editors),
Metaheuristics for Multiobjective Optimisation. Springer, 535.

Zitzler, E., Laumanns, M., and Thiele, L. 2002. SPEA2: Improving the
Strength Pareto Evolutionary Algorithm for Multiobjective Optimiza-
tion. In: Giannakoglou, K. et al. (Editors), Evolutionary Methods for
Design, Optimisation and Control with Application to Industrial Prob-
lems (EUROGEN 2001). International Center for Numerical Methods in
Engineering (CIMNE), pages 95–100.

Zitzler, E. and Thiele, L. 1998a. An Evolutionary Approach for Multi-
objective Optimization: The Strength Pareto Approach. TIK Report 43,
Computer Engineering and Networks Laboratory (TIK), ETH Zurich.

Zitzler, E. and Thiele, L. 1998b. Multiobjective Optimization Using Evo-
lutionary Algorithms - A Comparative Case Study. In: Conference on
Parallel Problem Solving from Nature (PPSN V). pages 292–301.

Zitzler, E. and Thiele, L. 1999. Multiobjective Evolutionary Algorithms:
A Comparative Case Study and the Strength Pareto Approach. IEEE
Transactions on Evolutionary Computation, 3(4):257–271.

Zitzler, E., Thiele, L., and Bader, J. 2008. SPAM: Set Preference Al-
gorithm for Multiobjective Optimization. In: Rudolph, G. et al. (Edi-
tors), Conference on Parallel Problem Solving From Nature (PPSN X).
Springer, 5199:847–858.

Zitzler, E., Thiele, L., and Bader, J. 2009. On Set-Based Multiobjec-
tive Optimization. IEEE Transactions on Evolutionary Computation. to
appear.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and Grunert da
Fonseca, V. 2003. Performance Assessment of Multiobjective Optimizers:
An Analysis and Review. IEEE Transactions on Evolutionary Computa-
tion, 7(2):117–132.





A
Complementary Proofs

In the following, we provide the proofs that have been skipped for clarity
in the previous chapters. Note that all theorems in this appendix are in the
same order they appeared in the previous chapters; also the numbering is
the same as before.

A.1 Relation Between δ-Conflict and δmax

Theorem 8. Let F1,F2 be two objective sets and A ⊆ X a set of so-
lutions. Then, F1 is δ-non-conflicting with F2 with respect to A for all
δ ≥ max{δmax(A,F1,F2), δmax(A,F2,F1)} and no δ < max{δmax(A,F1,F2),
δmax(A,F2,F1)} exists such that F1 is δ-non-conflicting with F2.

Proof. According to the definition of δmax(A,F ′,F) for two objective sets
F ,F ′, we can state that

[~x �F1 ~y ⇒ ∀i ∈ F2 : fi(~x) ≤ fi(~y) + δmax(A,F1,F2)]

∧ [~x �F2 ~y ⇒ ∀i ∈ F1 : fi(~x) ≤ fi(~y) + δmax(A,F2,F1)]

holds for all solutions ~x, ~y ∈ A and implies
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∀δ ≥ max{δmax(A,F1,F2), δmax(A,F2,F1)} :

∀~x, ~y ∈ A :
[

~x �F1 ~y ⇒ ∀i ∈ F2 : fi(~x) ≤ fi(~y) + δ
]

∧
[

~x �F2 ~y ⇒ ∀i ∈ F1 : fi(~x) ≤ fi(~y) + δ
]

⇐⇒ ∀δ ≥ max{δmax(A,F1,F2), δmax(A,F2,F1)} :

∀~x, ~y ∈ A : [~x �F1 ~y ⇒ ~x �δ
F2

~y] ∧ [~x �F2 ~y ⇒ ~x �δ
F1

~y]

⇐⇒ ∀δ ≥ max{δmax(A,F1,F2), δmax(A,F2,F1)} :�F1 ⊆�δ
F2
∧ �F2 ⊆�δ

F1

⇐⇒ F1 δ-non-conflicting with F2 for all δ ≥ max{δ′, δ′′}

As a result of the above implication and the definition of δmax, it is clear that
F1 is δ-conflicting with F2 for any δ < max{δmax(A,F1,F2), δmax(A,F2,F1)}.

A.2 Turing Reduction From MOSS to SCP

In order to prove the approximation ratio of Θ(log |A|) for the greedy δ-MOSS
algorithm in Chapter 3, we used the following result:

Theorem 19. The MOSS problem is Turing reducible to SCP.

Proof. Given an instance for MOSS, consisting of the relations �F⊆ A × A
and �i⊆ A × A with

⋂

1≤i≤k �i=�F , a polynomial time algorithm A can
compute an SCP instance as follows. The set S in the SCP instance contains
one element s~x,~y for each (~x, ~y) 6∈�F . A subset Ci of S in the SCP instance
contains an element s~x,~y iff ¬ (~x �i ~y). The algorithm A can then use a
hypothetical polynomial time bounded exact algorithm for SCP, to compute
the index I as an output for the MOSS problem.

The index I, computed by the SCP algorithm, is always a correct output
for the MOSS problem. To see that, we show ∀1 ≤ i ≤ k : Ci ⊆ S, first. Let
s~x,~y ∈ Ci for any ~x, ~y ∈ A and any 1 ≤ i ≤ k. By definition, ¬ (~x �i ~y),
i. e., ¬(fi(~x) ≤ fi(~y)) ⇐⇒ fi(~x) > fi(~y) holds. But then ¬(~x �F ~y), thus,
s~x,~y ∈ S by definition.

Now, we are able to show that I is always a correct output for the MOSS

problem. We only have to use the rules of deMorgan and the fact that
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Ci ⊆ S holds for all 1 ≤ i ≤ k.

⋃

i∈I

Ci = S ⇐⇒ ∀s~x,~y ∈ S : ∃i ∈ I : s~x,~y ∈ Ci

⇐⇒ ∀~x, ~y ∈ A : [(∃i ∈ I : s~x,~y ∈ Ci)⇔ s~x,~y ∈ S]

⇐⇒ ∀~x, ~y ∈ A : [(∃i ∈ I : ¬ (~x �i ~y))⇔ ¬ (~x �F ~y)]

⇐⇒ ∀~x, ~y ∈ A : [(∀i ∈ I : ~x �i ~y)⇔ ~x �F ~y]

⇐⇒�C
F⇐⇒

⋂

i∈I

�i=�F

By construction, it is clear that a minimum I is always a minimum index
for MOSS.

A.3 Correctness and Running Time Proof

for the Exact Algorithm

Theorem 11. Algorithm 4 solves both the δ-MOSS and the k-EMOSS problem
exactly in time O(m2 · k · 2k).

Proof. To prove the correctness of Algorithm 4, we use Lemma 2 which we
state below. It states that Algorithm 4 computes for each considered set M
of solution pairs a set of pairs (F ′, δ′) of an objective subset F ′ ⊆ F with
the corresponding correct δ′ value (i, ii) that are minimal (iii, iv). Moreover,
the algorithm computes solely minimal pairs (v, vi). With Lemma 2, the
correctness of Algorithm 4 follows directly from the lines 13 and 14.

The upper bound on the running time of Algorithm 4 results from the
size of the set SM . For all of the O(m2) solution pairs, the set S{(~x,~y)}

can be computed in time O(k3) = o(k · 2k), but the computation time
for SM ⊔ S{(~x,~y)} can be exponential in k. As SM contains at most O(2k)
objective subsets of size O(k), the computation of SM ⊔S{(~x,~y)} in line 10 is
possible in time O(k · 2k) and, therefore, the entire algorithm runs in time
O(m2 · k · 2k).

For the following Lemma, we use a new short notation for δ-errors re-
garding a set M of solution pairs.

Definition 17. Let F ′ ⊆ F and M ⊆ A× A. Then

δ(F ′,M) := max
(~x,~y)∈M

{δmax({~x, ~y},F ′,F)} .
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Lemma 2. Given an instance of the δ-MOSS or the k-EMOSS problem. Let
F1 ⊆ F , F1 6= ∅, be an arbitrary objective set and

M := {(~x, ~y) ∈ A× A | (~x, ~y) considered in Algorithm 4 so far} .

Then there exists always a (F2 ⊆ F1, δ2) ∈ SM , such that the following six
statements hold.

(i) δ(F2,M) = δ2

(ii) δ(F1,M) = δ2

(iii) 6 ∃(F3, δ3) ∈ SM : F3 ⊂ F1 ∧ δ3 ≤ δ2

(iv) 6 ∃(F3, δ3) ∈ SM : F3 ⊆ F1 ∧ δ3 < δ2

(v) 6 ∃(F3, δ3) ∈ SM : F3 ⊃ F1 ∧ δ3 ≥ δ2

(vi) 6 ∃(F3, δ3) ∈ SM : F3 ⊇ F1 ∧ δ3 > δ2

Proof. The statements (iii)-(vi) hold for any M due to the definition of the
⊔-union in line 10. We, therefore, prove only (i) and (ii) by mathematical
induction on |M |.
Induction basis: Let |M | = 1, i.e., M := {(~x, ~y)}.

(a) ~x and ~y are indifferent: Thus, ∀i ∈ F : fi(~x) = fi(~y) and ∀F ′ ⊆
F ,F ′ 6= ∅ : δ(F ′, {(~x, ~y)}) = 0. By definition of ⊔, Algorithm 4
computes S{(~x,~y)} = {({i}, 0) | 1 ≤ i ≤ k} correctly according to (i)
and (ii).

(b) Without loss of generality ~x �F ~y ∧ ¬(~y �F ~x): We can divide
F into two disjoint sets F=,F< with F= ∪ F< = F , F< 6= ∅,
∀i ∈ F= : ~x �i ~y ∧ ~y �i ~x, and ∀i ∈ F< : ~x �i ~y ∧ ¬ (~y �i ~x), i.e.,
∀i ∈ F= : fi(~x) = fi(~y) and ∀i ∈ F< : fi(~x) < fi(~y). Furthermore,
∀i ∈ F< : δ({i}, {(~x, ~y)}) = 0 and ∀i ∈ F= : δ({i}, {(~x, ~y)}) = δ >
0 with δ := maxj∈F<{fj(~y) − fj(~x)} independent of the choice of
i. Therefore, S{(~x,~y)} contains all pairs ({i}, δi) with 1 ≤ i ≤ k and

δi :=

{

0 if i ∈ F<

δ if i ∈ F=

. (i) and (ii) hold, because for any F ′ ⊆ F ,

F ′ 6= ∅, δ′ := δ(F ′, {(~x, ~y)}) is either 0 or δ, depending on F ′ ⊆ F=

(⇒ δ′ = δ > 0) or F ′ 6⊆ F= (⇒ δ′ = 0).

(c) ~x and ~y are incomparable: We can divide F into three well-defined
disjoint sets F<, F>, and F= with F< ∪ F> ∪ F= = F , F< 6= ∅,
F> 6= ∅, ∀i ∈ F< : fi(~x) < fi(~y), ∀i ∈ F> : fi(~x) > fi(~y), and
∀i ∈ F= : fi(~x) = fi(~y). For all singletons {i} with 1 ≤ i ≤ k,
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δi := δ({i}, {(~x, ~y)}) > 0 holds, i.e., ({i}, δi) ∈ S{(~x,~y)} for all i ∈ F
and

δi :=











δ< := maxj∈F>{fj(~x)− fj(~y)} if i ∈ F<

δ> := maxj∈F<{fj(~y)− fj(~x)} if i ∈ F>

δ= := maxj∈F\{i}{|fj(~x)− fj(~y)|} if i ∈ F=

.

In addition, S{(~x,~y)} contains only those pairs ({i, j}, 0) with i ∈
F< ∧ j ∈ F>. Other pairs ({i, j}, δ) with i 6= j ∧ δ > 0 are not in
S{(~x,~y)} due to the ⊔-union in line 7.

Now, let F ′ ⊆ F . Then F ′
<,F ′

>,F ′
= ⊆ F ′ can be defined similarly

to F>, F>, and F= for F . The statement (i) holds due to the
⊔-union and (ii) holds since δ(F ′, {(~x, ~y)}) can only take a value
δ′ ∈ {0, δ<, δ>, δ=} and a pair (F2 ⊆ F ′, δ′) exists in S{(~x,~y)}:

1. δ(F ′, {(~x, ~y)}) = 0 if F ′
> 6= ∅ ∧ F ′

< 6= ∅. But then, i ∈ F ′
> and

j ∈ F ′
< exist and ({i, j}, 0) ∈ S{(~x,~y)}.

2. Without loss of generality δ(F ′, {(~x, ~y)}) = δ< if F ′
> = ∅ ∧

F ′
< 6= ∅. Then there exists an i ∈ F ′

< and ({i}, δ<) ∈ S{(~x,~y)}

3. δ(F ′, {(~x, ~y)}) = δ= if F ′
> = ∅ ∧ F ′

< = ∅. Then F ′ ⊆ F= and
there exists at least one i ∈ F ′

= such that ({i}, δ=) ∈ S{(~x,~y)}.

Induction step: Let F1⊆F be an arbitrary objective set with error δ(F1,M∪
{(~x, ~y)}). Assume that (i)-(vi) holds for M and {(~x, ~y)}. Thus, ∃(FM , δM) ∈
SM with FM ⊆ F1 and (i)-(vi) and ∃(F~x~y, δ~x~y) ∈ S{(~x,~y)} with F~x~y ⊆
F1 and (i)-(vi). To show that an (F2 ⊆ F1, δ2) exists in SM∪{(~x,~y)} :=
SM ⊔ S{(~x,~y)} that fulfills (i) and (ii), we define F2 := FM ∪ F~x~y ⊆ F1

and δ2 := max{δM , δ~x~y}. Because of δ(FM ,M) = δ(F1,M), δ(FM ,M) =
δ(G,M) holds for any FM ⊆ G ⊆ F1 and because of δ(F~x~y, {(~x, ~y)}) =
δ(F1, {(~x, ~y)}), δ(F~x~y, {(~x, ~y)}) = δ(H, {(~x, ~y)}) holds for any F~x~y ⊆ H ⊆
F1. Together with FM ∪ F~x~y ⊆ F1, this yields δ(FM ∪ F~x~y,M) = δ(F1,M)
as well as δ(FM ∪ F~x~y, {(~x, ~y)}) = δ(F1, {(~x, ~y)}). This follows (i) and (ii):

δ2 = max{δ(FM ∪ F~x~y,M), δ(FM ∪ F~x~y, {(~x, ~y)})}
= δ(FM ∪ F~x~y,M ∪ {(~x, ~y)}) (i)

= max{δ(F1,M), δ(F1, {(~x, ~y)})} = δ(F1,M ∪ {(~x, ~y)}) (ii)
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A.4 Correctness and Running Time Proof of

the Greedy Algorithm on δ-MOSS

Theorem 13. Given the objective vectors f(~x1), . . . , f(~xm) ∈ R
k and a

δ ∈ R, Algorithm 5 always provides an objective subset F ′ ⊆ F , δ-non-
conflicting with F := {f1, . . . , fk} in time O(min{k3 ·m2, k2 ·m4}).

Proof. We prove the theorem with the help of the Lemmata 3 and 4 we
provide below. If we show that the invariant

∀(~x, ~y) ∈ R := (A× A) \R : ~x �F ′ ~y ⇐⇒ ~x �0,δ
F ′,F ~y (I)

holds during each step of Algorithm 5, the theorem is proved, due to
Lemma 4 and the fact that ~x �F ′ ~y ⇐⇒ ~x �0,δ

F ′,F\F ′ ~y holds for all

(~x, ~y) ∈ A × A if Algorithm 5 terminates, i.e., if R = ∅. We proof the
invariant with induction over |R|.

Induction basis: When the algorithm starts, R = (A × A)\ �F , i.e.,
R =�F . For each (~x, ~y) ∈ R =�F with ~x �F ′ ~y, i.e., ~x �∅ ~y with
�∅:= A× A, ~x �F ~y holds and therefore ~x �0,δ

F ′,F\F ′ ~y. The other direction

~x �0,δ
F ′,F\F ′ ~y ⇒ ~x �F ′ ~y always holds trivially. Thus, the invariant is correct

for the smallest possible |R|, after the initialization of the algorithm.

Induction step: Now let |F ′| > 0. Then, the invariant can only become
false, if we change R (and with it R) in line 7 of Algorithm 5. Note, first,
that R becomes only smaller by-and-by, i.e., R contains more and more
pairs (~x, ~y) ∈ A×A. Such a pair (~x, ~y), already contained in R, stays in R
forever and fulfills the implication in the invariant (I) for every F ′′ ⊇ F ′ if
the pair fulfills it for at least one F ′ ⊆ F . If a function fi is inserted into
F ′ to gain F ′′ ⊇ F ′, two possibilities for a pair (~x, ~y) ∈ R exist. First, if
~x 6�F ′ ~y, then ~x 6�F ′′ ~y for any F ′′ ⊇ F ′ and also ~x 6�0,δ

F ′′,F\F ′′ ~y. Second,

if ~x �F ′ ~y, then ~x �0,δ
F ′,F\F ′ ~y by induction hypothesis. Thus, ~x �δ

F\F ′ ~y

and ~x �δ
F\F ′′ ~y for any F ′′ ⊇ F ′. If ~x �F ′′ ~y for any F ′′ ⊇ F ′, then

~x �0,δ
F ′′,F\F ′′ ~y and if ~x 6�F ′′ ~y for any F ′′ ⊇ F ′ then ~x 6�0,δ

F ′′,F\F ′′ ~y. Thus,

a pair (~x, ~y) ∈ R will always fulfill the implication in (I) for any F ′′ ⊇ F ′

if it fulfills it for F ′. Beyond, a pair (~x, ~y) ∈ A × A will only be included
in R during the update of R in line 7 if (i) (~x, ~y) 6∈ (R∩ �i∗) or if (ii)
(~x, ~y) ∈�0,δ

F ′∪{i∗},F\(F ′∪{i∗}). In case (i), the invariant stays true because for

all new pairs (~x, ~y) in R, (~x, ~y) ∈ R ∧ (~x, ~y) 6∈�i∗ holds. Thus, (~x, ~y) 6∈
⋂

i∈(F ′∪{i∗}) �i =�F ′ and, therefore, (~x, ~y) 6∈�0,δ
F ′∪{i∗},F\(F ′∪{i∗}) as well. In

the case (ii), (~x, ~y) ∈�0,δ
F ′∪{i∗},F\(F ′∪{i∗}) and trivially (~x, ~y) ∈�F ′∪{i∗}, i.e.,

the invariant remains true, too.

The running time of Algorithm 5 results mainly from the computation
of the relations in line 6. The initialization needs time O(k ·m2) altogether.
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As the relation �0,δ
F ′∪{i∗},F\(F ′∪{i∗}) is known from line 6, the calculation of

the new R in line 7 needs time O(m2); line 8 needs only constant time.
The computation of the relations �0,δ

F ′∪{i},F\(F ′∪{i}) in line 6 needs time O(k ·
m2) for each i, thus, line 6 needs time O(k2 · m2) altogether. Hence, the
computation time for each while loop cycle lasts time O(k2 ·m2). Because
in each loop cycle, |F ′| increases by one, there are at most k cycles before
Algorithm 5 terminates. On the other hand, Algorithm 5 terminates if
R = ∅, i.e., after at most |A×A| = O(m2) cycles of the while loop, if in each
cycle the value |R| decreases by at least one—what is true due to Theorem 1.
The total running time of Algorithm 5 is, therefore, O(min{k,m2}·k2·m2) =
O(min{k3 ·m2, k2 ·m4}).

Lemma 3. Let F ′ ⊆ F and δ ≥ 0. Then F ′ is δ-non-conflicting with F if
and only if �F ′ ⊆�δ

F .

Proof. Let F ′ ⊆ F . Then for all δ ≥ 0 the relation �F is always a subset of
or equal to�δ

F ′ , because ~x �F ~y implies that fi(~x) ≤ fi(~y) for all fi ∈ F ′ and
also fi(~x) ≤ fi(~y)+δ holds for all fi ∈ F ′, i.e., ~x �δ

F ′ ~y for all ~x, ~y ∈ X. Thus,
F ′ is δ-non-conflicting with F iff �F ′⊆�δ

F ∧ �F⊆�δ
F ′ , i.e., iff �F ′⊆�δ

F .

Lemma 4. Let F ′ ⊆ F and δ > 0. Then

(

∀~x, ~y ∈ A : ~x �F ′ ~y ⇐⇒ ~x �0,δ
F ′,F\F ′ ~y

)

=⇒ F ′ is δ-non-conflicting with F with respect to A.

Proof. Let F ′ ⊆ F , δ > 0, and
(

∀~x, ~y ∈ A : ~x �F ′ ~y ⇐⇒ ~x �0,δ
F ′,F\F ′ ~y

)

,

denoted by (∗). We observe the following two statements:

• Let δ1, δ2, δ
′
1, δ

′
2 ∈ R with δ1 ≤ δ′1 and δ2 ≤ δ′2, and F1,F2,F ′

1,F ′
2 be

objective sets with F ′
1 ⊆ F1 and F ′

2 ⊆ F2. Then both �δ1,δ2
F1,F2

⊆�δ′1,δ′2
F1,F2

and �δ1,δ2
F1,F2

⊆�δ1,δ2
F ′

1,F ′
2

holds.

• Furthermore, �δ1,δ2
F1,F2

=�δ1
F1
∩ �δ2

F2
and �δ,δ

F1,F2
=�δ

F1∪F2
.

With these observations, �F ′
(∗)
= �0,δ

F ′,F\F ′ = (�0
F ′ ∩ �δ

F\F ′) ⊆�δ
F ′ ∩ �δ

F\F ′

=�δ
F , i.e., F ′ is δ-nonconflicting with F according to Lemma 3.
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List of Acronyms

δ-MOSS δ-Minimum Objective Subset Problem

DTLZ Deb, Thiele, Laumanns, and Zitzler’s test problem

DTLZBZ Deb, Thiele, Laumanns, and Zitzler’s test problem, modified by
Brockhoff and Zitzler

EA Evolutionary algorithm

EMO Evolutionary multiobjective optimization

ESP Evolution Strategy with Probabilistic Mutation

FEMO Fair Evolutionary Multiobjective Optimizer

IBEA Indicator-Based Evolutionary Algorithm

ICA Independent Component Analysis

k-EMOSS Minimum Objective Subset of Size k With Minimum Error

KP Knapsack problem

LOTZ Leading Ones Trailing Zeros

MOGA Multi-Objective Genetic Algorithm

MCDM Multicriteria decision making

MO-CMA-ES Multiobjective Covariance Matrix Adaptation Evolution
Strategy
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MOEA Multiobjective evolutionary algorithm

MOSS Minimum Objective Subset Problem

NPGA Niched-Pareto Genetic Algorithm

NSGA Nondominated Sorting Genetic Algorithm

NSGA-II Nondominated Sorting Genetic Algorithm II

OAP Optimal Aggregation Problem

PCA Principal Component Analysis

PESA-II Pareto Envelope based Selection Algorithm II

PISA A Platform and Programming Language Independent Interface for
Search Algorithms

REMO Restricted Evolutionary Multiobjective Optimizer

SBX Simulated Binary Crossover

SCP Set Cover Problem

SEMO Simple Evolutionary Multiobjective Optimizer

SIBEA Simple Indicator-Based Evolutionary Algorithm

SMS-EMOA S-metric Selection Evolutionary Multiobjective Algorithm

SPEA2 Strength Pareto Evolutionary Algorithm 2

TC Threshold cut

WFG Walking fish group test problem

ZDT Zitzler, Deb, and Thiele’s test problem



C
List of Symbols

2A power set of set A

|A| number of elements in set A

|~x|1 number of one bits in bitstring ~x

|~x|0 number of zero bits in bitstring ~x

O(g(n)) set of all functions f(n) : N → R that are asymptotically

not larger than g(n), i.e.,

O(g(n)) =
{

f(n) | ∃c ∈ R : limn→∞
f(n)
g(n)
≤ c
}

Ω(g(n)) set of all functions f(n) : N→ R that are asymptotically not

smaller than g(n), i.e., Ω(g(n)) = {f(n) | g(n) ∈ O(f(n))}
Θ(g(n)) set of all functions f(n) : N → R that are asymptotically

growing as fast as g(n), i.e.,

Θ(g(n)) = {f(n) | f(n) ∈ O(g(n)) ∧ f(n) ∈ Ω(g(n))}
o(g(n)) set of all functions f(n) : N → R that are asymptotically

strictly smaller than g(n), i.e.

o(g(n)) =
{

f(n) | limn→∞
f(n)
g(n)

= 0
}

ω(g(n)) set of all functions f(n) : N → R that are asymptotically

strictly larger than g(n), i.e.,

ω(g(n)) = {f(n) | g(n) ∈ o(f(n))}
1n a bit string consisting of n ones

0n a bit string consisting of n zeros

∅ empty set

⊔ union with simultaneous deletion of not δ-minimal pairs

# number of
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⌊·⌋ floor function

�F weak Pareto dominance relation induced by the objective

functions in F
�ε

F additive weak ε-dominance relation induced by objective

functions in F
�ε1,ε2

F1,F2
generalization of additive weak ε-dominance to two ob-

jective sets F1 and F2

�i short form for �{fi}

≤T Turing reduction

A set of solutions

α, αi weights in weighted sum approach

αA(~z) attainment function

d(~x) hypervolume loss of solution ~x

δ δ-error in terms of ε-dominance relation

δmax maximal δ-error

δavg average δ-error

∆ error function during aggregation

e Euler’s number e ≈ 2.71828

f objective function

fa, fnew aggregated objective

IH hypervolume indicator

Iw
H weighted hypervolume indicator

F set of objective functions, F = {f1, . . . , fk}
F ′,F ′′,F1,F2 set of objective functions, often a subset of F
G number of generations

g1, g2, g(i), g(ii) objective functions

g, gi distance functions in DTLZ test problems

h1, h2, h(i), h(ii) objective functions

I indicator function

k number of objectives in a problem

k desired number of objectives in an objective subset

λ number of offspring

m number of solutions or objective vectors

µ number of parents, population size

n number of bits, input length

N set of all natural numbers

NP class of all problems for which a polynomial nondeter-

ministic Turing machine exists
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P class of all problems for which a polynomial deterministic

Turing machine exists

P population

#P class of all problems of the form “compute the number of

accepting paths of a nondeterministic Turing machine”

~r reference point of hypervolume indicator

R set of all real numbers

R>0 set of all positive real numbers

R≥0 set of all positive real numbers including 0

SP1 short path SP1 = {1i0n−i, 1 ≤ i < n}
SP2 short path SP2 = {0i1n−i

, 1 ≤ i < n}
T time

W set of weight vectors

w(~z) weight distribution function

X decision space

~xM middle block of bitstring ~x, i.e., all entries that are not lead-

ing ones or trailing zeros

Z objective space
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