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Principles of Multiple Criteria Decision Analysis

A hypothetical problem: all solutions plotted

water
supply
Q
20 — Q
Q
15 — Q Q O
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Principles of Multiple Criteria Decision Analysis

A hypothetical problem: all solutions plotted
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Principles of Multiple Criteria Decision Analysis

Observations: @ there is no single optimal solution, but
® some solutions (@) are better than others (9)

water
supply
Q
20 — o
Q
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15 — Q Q
° Q
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Principles of Multiple Criteria Decision Analysis

Observations: @ there is no single optimal solution, but
® some solutions (®) are better than others (9)

water
supply
. @
Pareto-optimal front--.. o
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Principles of Multiple Criteria Decision Analysis

Observations: @ there is no single optimal solution, but
t ® some solutions (@) are better than others ( Q)
waler
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20 ] i . . @O o0 0000O0CO0 ’. (N
soluton | = - z o
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Decision Making: Selecting a Solution

Approaches: « supply more important than cost (ranking)

water
supply

20 — o
15 — Q®

10 —

| | | | | > COst
500 1000 1500 2000 2500 3000 3500
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Decision Making: Selecting a Solution

Approaches: « supply more important than cost (ranking)

water « cost must not exceed 2400 (constraint)

supply

20 —

V3

5 ‘ °
too expensive
10 -

| | | | | > COst
500 1000 1500 2000 2500 3000 3500
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When to Make the Decision

Before Optimization:
& ,

\4

ranks objectives,
defines constraints,...

searches for one '
(blue) solution

\4
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When to Make the Decision

Before Optimization:
Ta A

v

“* ranks objectives,
defines constraints,...

> COSt

A
. - L—f . water
o supply -
searches for one Q >
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When to Make the Decision

Before Optimization: After Optimization:
& ,

v

ranks objectives;

defines constraints, ...

searches for a set of
(blue) solutions

(blue) solution considering constraints, etc.

v

\ searches for one‘ ’E 1 selects one solution
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When to Make the Decision

Before Optimization:
N

searches for on
(blue) solution

© Dimo Brockhoff and Eckart Zitzler

ranks objectives;
defines constraints, ...

A

v

v

INRIA Saclay and ETH Zurich

After Optimization:
a

{ searches for a set of

(blue) solutions

o

¥

| selects one solution
1 considering constraints, etc.

Focus: learning about a problem
» trade-off surface
= interactions among criteria

=  structural information

An Introduction to EMO, Ecole des Ponts, December 3, 2009



Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which
concerns about multiple conflicting criteria can be formally incorporated into

the management planning process ' International Society on
@’ B "":'Multiple Criteria Decision Making
e
model
g(z) <0
et (exact) optimization
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Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which
concerns about multiple conflicting criteria can be formally incorporated into
the management planning process ﬂ

International Society on
" Multiple Criteria Decision Making

noise

uncertaint i iecti
y integrated simulations many constraints / objectives

non-linear objectives

non-differentiable objectives multiple objectives huge search spaces
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Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which
concerns about multiple conflicting criteria can be formally incorporated into
the management planning process ﬁ

International Society on
Multiple Criteria Decision Making

Black box optimization

_ noise
uncertainty

. . integrate
non-linear objectives reX f s (£(2),. .., fu(@))
non-differentiable objectives
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Evolutionary Multiobjective Optimization (EMO)

Definition: EMO

EMO = evolutionary algorithms / randomized search algorithms
- applied to multiple criteria decision making (in general)
- used to approximate the Pareto-optimal set (mainly)

water

supply
P ahhhts 4

. | Pareto set approximation
mutation survival

recombination mating o .2

&
¥ +*
w *

» COSt
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The History of EMO At A Glance

1984 first EMO approaches
dominance-based population ranking
1990 dominance-based EMO algorithms with diversity preservation techniques
1995 attainment functions
elitist EMO algorithms preference articulation convergence proofs
2000 test problem design quantitative performance assessment multiobjectivization
uncertainty and robustness running time analyses quality measure design
MCDM + EMO EMO algorithms based on set quality measures
high-dimensional objective spaces statistical performance assessment
2009
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The History of EMO At A Glance

2198

dominance-based population ranking
1990
dominance-based EMO algorithms with diversity preservation techniques
1494
1995
attainment functions
elitist EMO algorithms preference articulation convergence proofs
2000
test problem design quantitative performance assessment e e 556
uncertainty and robustness running time analyses quality measure design
224
MCDM + EMO EMO algorithms based on set quality measures 46 37 3 - 87 ]
2009 high-dimensional objective spaces statistical performance assessment E— — e

Journal Books In_ Conference Masters Miscella- ph.D. Technical Unpub-
papers collactions papers theses neous theses reports lished

1984 first EMO approaches Distribution of the references by categories

Distribution of the references by year

Overall: 4646 references by 22/11/2009

70

1967 | 1983 | 1984 | 1985 (1989 (19901991 | 1992 (1993 | 1994 | 1995 (1996|1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010

http://delta.cs.cinvestav.mx/~ccoello/EMOO/EMOOQOstatistics.html
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The EMO Community

The EMO conference series:

EMO2001 EMO2003 EMO2005 EMO2007 EMO2009
Zurich Faro Guanajuato  Matsushima Nantes
Switzerland Portugal Mexico Japan France

45/ 87 56 /100 59 /115 65/ 124 39/72

Many further activities:
special sessions, special journal issues, workshops, tutorials, ...
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
Algorithm Design Principles and Concepts
Performance Assessment

A Few Examples From Practice
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Starting Point

-~ performance performance
VI N =
L=

single objective multiple objectives
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A General (Multiobjective) Optimization Problem

A mulriobjective optimization problem is defined by a 5-tuple (X,Z.f.g, <)
where

e X is the decision space,
e 7/ = [R" is the objective space,

o f=1(f1.....fn) is a vector-valued function consisting of n objective func-
tions fi: X — R,
e g=(g,...,2n,)1s avector-valued function consisting of m constraint func-

tions g; : X — IR, and
e < C /xZis abinary relation on the objective space.

The goal is to identify a decision vector a € X such that (1) forall 1 <7 <m
holds g;(a) < O and (ii) for all b € X holds f(b) < f(a) = f(a) < f(b).
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A Single-Objective Optimization Problem

decision space objective space objective function

\ )‘//M///,total order

(X, Z, . X >Z,rel cZ x2Z)
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A Single-Objective Optimization Problem

decision space objective space objective function

\ )‘////,total order

(X, Z, . X >Z,rel cZ x2Z)

.+ total preorder where
(X, prefrel) | 5 prefrel b 1= f(a) rel f(b)
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A Single-Objective Optimization Problem

Example: Leading Ones Problem

(X, Z, . X >Z,rel cZ x2Z)

\

refrel)

\\

({0,1}", {0,1, 2, ..., n}, f 5, ) where f 5(a) = >_:(I1;<; a5)
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Simple Graphical Representation

Example: > (total order)

a,beX
I\
/ \
/ A
b a

O«—-O«—-O«—-O«@-O«—O optimum  totally ordered
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Preference Relations

decision space objective space objective functions

\ Mﬂial order
e

(X, Z, . X >Z,rel cZ x2Z)

preorder where

.+ aprefrel b :=f(a) rel f(b)
(X, prefrel)

(X, ?par)

weak
a <pa7“ b S f(a') <pa7° f(

b) Pareto dominance
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A Multiobjective Optimization Problem

Example: Leading Ones Trailing Zeros Problem

trailing Os

(X,Z, . X >Z,rel cZ x2) fzﬁ_“,_,.....lo|o|o|o|o|o|o|

(X, prefrel)

[111]1]1]0lo]0]

) .O. . .O. .

KKK ENENEY

....Q.
:..Q°.
...Q,:
...O'o
'...O'o

° .oo po .o,° .O..
e

leading 1s
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A Multiobjective Optimization Problem

Example: Leading Ones Trailing Zeros Problem

trailing Os

(X,Z, . X >Z,rel cZ x2) fzﬁ_“,_,.....lo|o|o|o|o|o|o|

(X, prefrel)

[111]1]1]0lo]0]

KKK EIENEY

....Q.
:..Q°.
...Q,:
...O'o
'...O'o

° .oo po .o,° .O..
e

) .O. . .O. .

leading 1s

(10,1}",
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A Multiobjective Optimization Problem

Example: Leading Ones Trailing Zeros Problem

trailing Os

(X,Z, . X >Z,rel cZ x2) fzﬂ_,.....lo|o|o|o|o|o|o|

(X, prefrel)

[111]1]1]0lo]0]

KKK EIENEY

....Q.
:..Q°.
...Q,:
...O'o
'...O'o

° .oo po .o,° .O..
e

) .O. . .O. .

leading 1s

({0,213, {0,1, 2, ..., n} x {0,1, 2, ..., n},
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A Multiobjective Optimization Problem

Example: Leading Ones Trailing Zeros Problem

trailing Os

(X, Z, f: X %Z, rel _CZ XZ) fzf_‘__“_,...|o|o|0|0|o|0|o|

N

[l1l1]1]o]o]o]
( , refrel)
. 0.
KKK

leading 1s

{0,1}", {0,1, 2, ..., n} x {0,1, 2, ..., n}, (f o, T12),

fio(@) =>_:(11<; a5) f-(a) = >i(Ili<i (1 —ay))
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A Multiobjective Optimization Problem

Example: Leading Ones Trailing Zeros Problem

trailing Os

(X, Z, f: X %Z, rel _CZ XZ) fz.ﬁ_‘__“_,...|o|o|0|o|0|o|o|

N

[l1l1f1lo]o]o]
( , refre
. 0.
L af]1]1]

leading 1s

{0,211, {0,1, 2, ..., n} x {0,1, 2, ..., n}, (f, 5, T12), 7)

fo@="i0Lwa)  f(@) =2ill<i(l—a))
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Pareto Dominance

(w1, ...,u,) weakly Pareto dominates (v1,...,Un):
(U1, .oy Un) <par (V1,...,0,) & V1I<i<n:u <wv

(u1,...,uy) Pareto dominates (vy,...,v,):

water
supply (U1, -y Un) <par (V1,-+,00) A (V1,-++,Un) Lpar (U1, -+, Up)
Q
dominating Q
20 —
9 incomparable
15 — o o 2
Q Q
10 Q Q
Q Q Q
o Q |
Q dominated
< | | | | | | > cost
900 1000 1500 2000 2500 3000 3500
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Different Notions of Dominance

water
supply
A 8
/_/\‘ﬁ Q
20 — Q
0 Q
3 .
- g-dominance
15 — Q Q
Q Q Pareto dominance
10 Q >
o Q Q
5— Q :
Q cone dominance
< | | | | | | > cost
500 1000 1500 2000 2500 3000 3500
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The Pareto-optimal Set

The minimal set of a preordered set (Y, <) is defined as

Min(Y,S):={acY |VbeY :b=a= a=b}

Pareto-optimal set Min(X, <par) ® Pareto-optimal front
non-optimal decision vector @ non-optimal objective vector

X2 decision f2 objective
t  space 1 space
O ......................................................... nR ‘:
.« i e = i -
> X1 > f
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Visualizing Preference Relations

(feost) (fwater supply)
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Remark: Properties of the Pareto-optimal Set

Computational complexity:
multiobjective variants can be become NP- and #P-complete

Size: Pareto set can be exponential in the input length
(shortest path [Serafini 1986], MSP [Camerini et al. 1984] )

b ?
00 Q i ooint o O Q
___________________________ nadir poin
? 5 OQ)E( 0" O“"O""E)Qx
Q @ © : Q 9
o Q Range
Q S
Shape
) T © SECN | | A s Q
ideal point
:fl :fl
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Approaches To Multiobjective Optimization

A multiobjective problem is as such underspecified...
...because not any Pareto-optimum is equally suited!

Additional preferences are needed to tackle the problem:

= Solution-Oriented Problem Transformation:
Induce a total order on the decision space, e.g., by aggregation.

= Set-Oriented Problem Transformation:

First transform problem into a set problem and then define an
objective function on sets.

Preferences are needed in any case, but the latter are weaker!
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Problem Transformations and Set Problems

single solution problem set problem

search space

E
'

f(z) = (@), fa(@), ... fule))  fH(A) ={f(z)[z € A}

— —
4—

objective space

e
a5
°
&

T =y \V/z|fz( ) > fily) A=*B:&V LBﬂxeAxty
l j

(partially) ordered set (R¥, =) (28", =*)

(totally) ordered set
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Solution-Oriented Problem Transformations

_ parameters ,
multiple single
objectives l objective

(f1, f2, ..., fk) — 1 transformation > f

A scalarizing function s is a function s : Z — [ that maps each objective vector
(u1,....uy) = Z to areal value s(uy,...,u,) = R.
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Aggregation-Based Approaches

_ parameters ,
multiple single
objectives l objective
(f1, f2, ..., fk) — 1 transformation > f
f2 Example: weighting approach

//‘ (W1, W2, ..., Wk)
Y / l
&/ I T T e T

Other example: Tchebycheff

Q y= max w;(u; — z;)
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Set-Oriented Problem Transformations

For a multiobjective optimization problem (X, Z,f, g, <),
the associated set problem is given by (¥, 2, F, G, <) where

e U = 2<% is the space of decision vector sets,
i.e., the powerset of X,

e () =27 is the space of objective vector sets,
i.e., the powerset of Z,

e [ is the extension of f to sets, i.e.,

F(A):={f(a) : ae€ A} for A € VU,

e G =(Gq,...,G,,) is the extension of g to sets,
ie.,, G;(A) :=max{g;(a) :ac€ Al for1 <i<mand A eV,

e = cxtends < to sets where
Az B:Vbe Bdae A:a<b.
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Pareto Set Approximations

Pareto set approximation (algorithm outcome) =
set of (usually incomparable) solutions

erformance :
P Al weakly dominates il
---- = not worse in all objectives
and sets not equal
................... O :..’. - domlnates D

................... = better in at least one objective

AY strictly dominates HEB
= better in all objectives

= 8B® is incomparable to B€Y

cheapness = neither set weakly better
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What Is the Optimization Goal (Total Order)?

= Find all Pareto-optimal solutions?

» Impossible in continuous search spaces

» How should the decision maker handle 10000 solutions?
* Find a representative subset of the Pareto set?

» Many problems are NP-hard

» What does representative actually mean?
* Find a good approximation of the Pareto set?

» What is a good approximation?

»\
L]
e

» How to formalize intuitive
understanding:

O close to the Pareto front
® well distributed
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Quality of Pareto Set Approximations

A (unary) quality indicator I is a function I : ¥ — IR that assigns a Pareto set
approximation a real value.

f, f,
X 2
Q j’
reference set | ¢’
Q >
X7 o
g
Q D, ¢
L
9 o
3
>, gl
hypervolume indicator epsilon indicator
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General Remarks on Problem Transformations

ldea:
Transform a preorder into a total preorder

Methods:

» Define single-objective function based on the multiple criteria
(shown on the previous slides)

= Define any total preorder using a relation
(not discussed before)

Question:

Is any total preorder ok resp. are there any requirements concerning
the resulting preference relation?

= Underlying dominance relation rel should be reflected
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Refinements and Weak Refinements

ref

O < refines a preference relation = iff

ref ref

A<SB A BAA =A<SBA B£A (better = better)

= fulfills requirement

ref

® < weakly refines a preference relation=s iff

ref

A<B A BAA = ASB (better = weakly better)

ref

— does not fulfill requirement, but < does not contradict <
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© Dimo Brockhoff and Eckart Zitzler

Example: Refinements Using Set Quality Measures

ref

A< B :=I(A) >1(B)

I(A) = volume of the
weakly dominated area
in objective space

»
____________ >

unary hypervolume indicator

INRIA Saclay and ETH Zurich

ref

A< B:=1(AB) <I(B,A)

I(A,B) = how much needs A to
be moved to weakly dominate B

binary epsilon indicator

An Introduction to EMO, Ecole des Ponts, December 3, 2009



Example: Weak Refinement and No Refinement

ref ref
A=< B:<I1(AR) <I(B,R) A B:=I1(A) <I(B)
I(A,R) = how much needs A to I(A) = variance of pairwise
be moved to weakly dominate R distances
weak refinement | no refinement
S
...... .I.T——__—-IA’ -....
| A
| Q
: |
QN
- Q L, | .
unary epsilon indicator unary diversity indicator
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Overview

The Big Picture
Basic Principles of Multiobjective Optimization

Algorithm Design Principles and Concepts

Performance Assessment

A Few Examples From Practice
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Algorithm Design: Particular Aspects

representation 1 fitness assignment mating selection

o ’;‘
2 environmental selection 3 variation operators
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Fithess Assignment: Principal Approaches

aggregation-based criterion-based dominance-based
{2 {2 {7
74,
Q / Z ' o
Q.. 1 Qe
//‘/s ..... °.
Q o Q .
Q o’/ Q Q
'y .
Q Q :
> y1 > y1
parameter-oriented set-oriented
. <OOOOOOOOOOOOOOOO> . .
scaling-dependent scaling-independent
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Criterion-Based Selection: VEGA

select shuffle
according to

f1 > T >
1
f2 > T2 >
f3 > T3 >
M .
ha Ties ’
fi ! T :
population K separate selections mating pool
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Aggregation-Based: Multistart Constraint Method

Underlying concept:
= Convert all objectives except of one into constraints
= Adaptively vary constraints

y2 maximize f,
ﬁ

feasible region
Yy

constraint wmrr——
“cole des Ponts, December 3, 2009




Aggregation-Based: Multistart Constraint Method

Underlying concept:
= Convert all objectives except of one into constraints

= Adaptively vary constraints

y2 maximize f,
ﬁ

.....Q..
Q
O Q
.....O.....

feasible region T
constraint

Yy
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Aggregation-Based: Multistart Constraint Method

Underlying concept:
= Convert all objectives except of one into constraints
= Adaptively vary constraints

y2 maximize f,
ﬁ

feasible region T
constraint

Yy
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A General Scheme of a Dominance-Based MOEA

mating selection (stochastic) —
Y

: \
population (archiv) offspring

environmental selection (greedy heuristic) |—

fitness assignment
partitioning into
dominance classes

rank refinement within
dominance classes

Note: good in terms of set quality = good in terms of search?
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Ranking of the Population Using Dominance

... goes back to a proposal by David Goldberg in 1989.
... IS based on pairwise comparisons of the individuals only.

» dominance rank: by how N
many individualsisan ~ [™-.
individual dominated?

dominance
» dominance count: how many rank
individuals does an individual | < XN@........
dominate? | N>

o
= dominance depth: at which o N

front is an individual located? ST o

f1

G
R
v
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lllustration of Dominance-based Partitioning

f, dominance rank f, dominance depth

‘. O@/ @ ‘.
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Refinement of Dominance Rankings

Goal: rank incomparable solutions within a dominance class

O Density information (good for search, but usually no refinements)

Kernel method K-th nearest neighbor Histogram method
density = density = density =

function of the function of distance number of elements
distances to k-th neighbor within box

Q Q
Y f
_——Q Q Q
)
& @ °

® (Quality indicator (good for set quality): soon...
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Example: SPEA2 Dominance Ranking

Basic idea: the less dominated, the fitter...

Principle: first assign each solution a weight (strength),
then add up weights of dominating solutions

f
“
?
2 -
9 .0
“Qe 0 Q S (strength) =
4 9 #dominated solutions Q
2+1?L4+3+2 4+30 Q R (raw fitness) =
: Y. strengths of dominators o
Q4+3+2 Y .
. f,
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Example: SPEA2 Diversity Preservation

Density Estimation

k-th nearest neighbor method:

» Fitness=R + 1/ (2 + Dx) O
N \v )
<1
» Dk = distance to the k-th O

nearest individual

» Usually used: k =2
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Hypervolume-Based Selection

Problem of many secondary selection criterions: no refinement

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...)
use hypervolume indicator to guide the search: refinement!

Main idea e e X reference
. . : pointT
Delete solutions with -

Hypervolume of A:
the smallest

(A = [a(2)dZ

hypervolume loss ]
ds) = PP /) |
iteratively R R | w@)=1
e | -
minimize " I

a(2)=0 fitness bfpoint: \
contribution to
hypervolume
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Sampling New Points: Covariance Matrix Adaptation

Concept

» use single-objective mutation of CMA-ES for each individual [ihr20073]
=  Sample multivariate normal distribution m+c N(0,C)

= m, o, and C are updated every generation depending on success

_____________________________________________________

©A. Auger and N. Hansen

c [B™)

Procedure updateCovariance (a =[x, F .0 P, O], Zgep €

1 if ﬁsuﬂc = Pthresh then
Pe — Ll — )P + "./CC(Q — ce) L step
L O — (1 - l':“:-:rv.rj"‘:'r + Ceov - PCI}CT

Procedure updateStepSize(a = [z, Py, 7 Pe. T, Pouce)

1 Pouce — |:,1 - CP:' Pauce + CpPauce

1 — _ target
T« 0 - eXp EP—“’I tf:getwc
2 1-— Pauce

3
1 else
5 Pe — (1 — co)pe

& O — (1 - l':“:-:rv.rj"‘:'f + Ceav * {pcch + ":clig - Cc:l(-'r}
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Articulating User Preferences During Search

What we thought: EMO is preference-less

21veil DY UIC LJIVl.

[Zitzler 1999]

Search before decision making: Optimization is performed without any pref-
erence Information given. The result of the search process is a set of
(1deally Pareto-optimal) candidate solutions from which the final choice
is made by the DM.

Decicion makino durino search: The DM can_articulate nreference< durino

What we learnt: EMO just uses weaker preference information

: Q
environmental S oreferable?

selection 4 .

IIIIIIIIIIIII>

3 out of 6

= (almost) all MOEAs implicitly implement specific preferences
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Example: Weighted Hypervolume Indicator

r @(\Q)Q,
(A = [ w(2) SES
,~ o,
weighted
hypervolume
generali s e /
weight : : il | yp N
weight 1

Moreover: HypE [bz2009d]
- Sampling
- Contribution if >1
solution deleted
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Weighted Hypervolume in Practice

IBEA ‘

weighted
Hypervolume

© Dimo Brockhoff and Eckart Zitzler

INRIA Saclay and ETH Zurich

IBEA

f.- f2 fS f/: fd fa f,

weighted

Hypervolume two preference
points

f f, f3 f4 fs fe f;

An Introduction to EMO, Ecole des Ponts, December 3, 2009



Overview

The Big Picture

Basic Principles of Multiobjective Optimization
Algorithm Design Principles and Concepts
Performance Assessment

A Few Examples From Practice
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Once Upon a Time...

... multiobjective EAs were mainly compared visually:

A" A s M gaa Lt
: e ey
ZDT6 benchmark problem: IBEA, SPEA2, NSGA=IL L "=,
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Two Approaches for Empirical Studies

Attainment function approach:

= Applies statistical tests directly to
the samples of approximation sets

=  Gives detailed information about
how and where performance
differences occur

A attains

LLL L'—L grandW( st

dttammcnl

LN

lgrand best 7
alta nmcm —L,__

minimize

minimize

© Dimo Brockhoff and Eckart Zitzler

minimize

lerand best™) ﬁ
attainment P

B attains

r r
Lr*| grand worsl
analmrflcm

minimize

INRIA Saclay and ETH Zurich

Quality indicator approach:

= First, reduces each approximation
set to a single value of quality

= Applies statistical tests to the
samples of quality values

Indicator A B
Hypervolume indicator | 6.3431  7.1924
e-indicator | 1.2090  0.12722
Ry indicator | 0.2434  0.1643
R3 indicator | 0.6454  0.3475
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Empirical Attainment Functions

three runs of two multiobjective optimizers

/3 3 3/3 AR 323 3/3

20 ¢+ 20
i, i . . .
10 . . . . . 10 .
_| @ ey e . _ ® o
: . ‘ [ . o . 2/3 : [ . .
5 . . Boe 5- . .
- @ v - @ e
_ e 0l 1/3 - A I
_ ® - _ P
_ . . 0/3 - . .
||[||I||1Tl|\||[|||-1'0. III\\II\ITIIIIII\\I\-ff
5 10 15 20 . 5 10 15 20

frequency of attaining regions
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Attainment Plots

50% attainment surface for IBEA, SPEA2, NSGA2 (ZDT6)

1.35 © “woooa s
“““MAAi
AA A AA A
AA A
1-3 “AMAA
A
* > * 5
1.25 e
R ~
1-2 X *ﬂ*ﬂ
%
= A A A A
1-15j A“‘A “A
A “A AAA
I | I I I | I I I | I I \M\AA\AA\
1.2 1.4 1.6 1.8 a
Aaa
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Quality Indicator Approach

Goal: compare two Pareto set approximations A and B

B hypervolume 432.34 420.13

o distance 0.3308 0.4532 ‘ "
o S3Te, T  diversiy 03637 03463 — /\Detter
°% Yo % spread 0.3622 0.3601

B * % cardinality 6 5

Comparison method C = quality measure(s) + Boolean function

quality Boolean
n '
A B measure |R function statement
reduction Interpretation
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Example: Box Plots

epsilon indicator

IBEA NSGA-II SPEA2
0.08
0.06 é
DTLZ2 O =
0.02
1 2 3
0.6 T —
Knapsack  o.4
napsac 0.4
peck ol
0.2
0.1 an —
1 2 3
0632
2DT6 oo —
0 is %
0 05 %
0 1 2 3

IBEA  NSGA-|

-008+
.006;
-004}
-002;
ol

o O O O

hypervolume

SPEA2

o O o O
N B~ OO

R indicator

IBEA  NSGA-Il SPEA2

0.00014
0.00012
0.0001
0.00008
0.00006
0.00004
0.00002
0

0.12
0.1

0.02

0.08
0.06
0-04 %
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Example: Box Plots

epsilon indicator hypervolume R indicator
IBEA NSGA2 SPEA2 IBEA NSGA2 SPEA2 IBEA® " NSGA2 SPEA2
0.08 0.008¢ 0.°00014
0.06 & 0.006; % 2520001 é =
DTLZ2 ... - 0 — 0:0000¢
0.02 0.002; 2-06002
- s e R T
0.6 - f— 028 0.4 o -
Knapsack .4 0-0 v-3
P 0.3 . . 0.4 0.2 -
0.2 0.2 0.1
0.1 1 1 1
1 2 3 1 2 3 1 2 3
0.35 0.3, 0.12
ZDT6 035 % 0035 % % O %
0.2 0.2 0 06
0.15 % G.15 o-o0 %
o(_)éyl, % o(_)éyl, 0.02
0 0 0
1 2 3 1 2 3 1 2 3
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Statistical Assessment (Kruskal Test)

/DT6 DTLZ2
Epsilon R
is better than is better than
P IBEA |NSGA2 |SPEA2 P IBEA |NSGA2 |SPEA2
IBEA ~0 () |~0 () | BEA ~0 © |0 ©
NSGA2 |1 ~0 () | NSGA2 |1 1
SPEA2 |1 1 SPEA2 |1 ~0 ©
Overall p-value = 6.22079e-17. Overall p-value = 7.86834e-17.
Null hypothesis rejected (alpha 0.05) Null hypothesis rejected (alpha 0.05)

Knapsack/Hypervolume: HO = No significance of any differences
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Problems With Non-Compliant Indicators

A A
Indicator A B B +
ﬁ Generational distance | 3.46396  2.37411
ar Spacing (Schott) | 026476  0.19989 i
Max Pareto front error | 3.35489  3.31314
Extent | 3.56039  3.57319
g3 A -
= [k
2 *
E 5L _
A %
JANEE +
1f A + . i
AN +
0 | | ] | |
0 0.2 04 0.6 0.8 1

minimize
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What Are Good Set Quality Measures?

There are three aspects [Zitzler et al. 2000]

COMPATITE TITTCTENT OPUITIZATON TeCTIIUTS CXPCTTIIETITTTY W ays TVOTVeS T TIOTTOTT
of performance. In the case of multiobjective optimization, the definition of quality is
substantially more complex than for single-objective optimization problems, because the
optimization goal itself consists of multiple objectives:

e The distance of the resuldng nondominated set to the Pareto-optimal front should be
minimized.

e A good (in most cases uniform) distribution of the solutions found is desirable. The
assessment of this criterion might be based on a certain distance metric.

e The extent of the obtained nondominated front should be maximized, i.e., for each
objective, a wide range of values should be covered by the nondominated solutions.

In the literamire some atremnts can be found to formalize the above definition {(or narts

Wrong! [Zitzler et al. 2003]

An infinite number of unary set measures is needed to detect
iIn general whether A is better than B
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
Algorithm Design Principles and Concepts
Performance Assessment

A Few Examples From Practice
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EMO Provides Information About a Problem

The question:

Why at all should one try to approximate the
entire Pareto-optimal set?

An answer:

Because it provides useful information about
the problem...
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Application: Design Space Exploration

’ |

Specificaton —» Evaluaton = — Implementation

Selection

Cost

: Environmental
Mutation Selection Eone Latency
%
e o ,1‘?:\ -
e « Recombination X1 g

GV M G r
problem mapping  architecture
graph set graph
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Application: Design Space Exploration

[ Water resource i
management
[Siegfried et al. 2009]

11—
A

Specificaton —

© Dimo Brockhoff and Eckart Zitzler INRIA Saclay and ETH Zurich An Introduction to EMO, Ecole des Ponts, December 3, 2009



Application: Trade-Off Analysis

Module identification from biological data [Calonder et al. 2006]

Find group of genes wrt
different data types:

= similarity of gene
expression profiles

= overlap of protein
interaction partners

= metabolic pathway
map distances

© Dimo Brockhoff and Eckart Zitzler

distance objective f2 (A.U.)

'1 ............................................................................
N e GEf vs GEf,
09 F e SR A % GEf, vs.PPIf, .
0_8,(% __________ SRR ST + GEf, vs. metabolict, | :
ot E | :
I e SR REERI SEERTETRE
+ | ?
062).<<7LJr ------------ R R R RETEE EEPETTEPREETE
X H- | |
S B S SERLECRERERE S ERRRIEL SLLLLELELLR R
X f + 1 |
041 %g%( """ o Je ey
03l 3 % S TR SO S
. |
: -
0.2 R S REESEE SELEEEETREREES
; X .
% o e L
' | SRV +
0 @ ; i |>< i
0 0.2 0.4 0.6 0.8
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distance objective f1 (A.U.)
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Application: Approximation Set Analysis

Multiple disk clutch brake design [Deb, Srinivasan 2006]

NSGA-II
10 F 1-ob7

Q
xz-l
3 B -

\3-5
6 \z-s

: 5 Z=7 i
:' Z=8
QEI I I I I N 4 F Z=9 -
= :,‘ L B O R |' :?t

9 L L 1 1 1 |
4~‘ ‘ \ ‘ J'D.4 06 08 1 12 14 16 18 2: 22
t 5 - Brake Mass (kg) :

o N

HCM
NSGA-II (r_ 1i=80mm)

Stopping Time (=)

.®
.
o®
00’
..........
.....
.........
.............
.........
ee®
o®

Solution | 1 22 T3 X4 rs | f1 fo
........... »Min. f1 | 70 90 1.5 1000 3 0.4704 11.7617
Min. fo | 80 110 1.5 1000 9 2.0948  3.3505
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Conclusions: EMO as Interactive Decision Support
A modeling

'

adjustment ”

analysis

specification optimization

A

v

visualization

preference
articulation

N

"+ decision making
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The EMO Community

Links:

= EMO mailing list:
http://w3.ualg.pt/lists/emo-list/

= EMO bibliography:
http://www.lania.mx/~ccoello/EMOO/

Events:
= Conference on Evolutionary Multi-Criterion Optimization

Books:

= Multi-Objective Optimization using Evolutionary Algorithms
Kalyanmoy Deb, Wiley, 2001

= Evolutionary Algorithms for Solving Multi Evolutionary Algorithms for
Solving Multi-Objective Problems Objective Problems, Carlos A. Coello
Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2" Ed. 2006

= and more...
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PISA: http://lwww.tik.ee.ethz.ch/sop/pisa/

*J ETH - SOP - PISA - Mozilla Firefox
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