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Abstract. To simultaneously optimize multiple objective functions, several evo-
lutionary multiobjective optimization (EMO) algorithms have been proposed.
Nowadays, often set quality indicators are used when comparing the performance
of those algorithms or when selecting “good” solutions during the algorithm
run. Hence, characterizing the solution sets that maximize a certain indicator is
crucial—complying with the optimization goal of many indicator-based EMO al-
gorithms. If these optimal solution sets are upper bounded in size, e.g., by the
population size μ, we call them optimal μ-distributions. Recently, optimal μ-
distributions for the well-known hypervolume indicator have been theoretically
analyzed, in particular, for bi-objective problems with a linear Pareto front. Al-
though the exact optimal μ-distributions have been characterized in this case, not
all possible choices of the hypervolume’s reference point have been investigated.
In this paper, we revisit the previous results and rigorously characterize the op-
timal μ-distributions also for all other reference point choices. In this sense, our
characterization is now exhaustive as the result holds for any linear Pareto front
and for any choice of the reference point and the optimal μ-distributions turn out
to be always unique in those cases. We also prove a tight lower bound (depend-
ing on μ) such that choosing the reference point above this bound ensures the
extremes of the Pareto front to be always included in optimal μ-distributions.

Keywords: multiobjective optimization, hypervolume indicator, optimal μ-dis-
tributions, theory

1 Introduction

Many evolutionary multiobjective optimization (EMO) algorithms have been proposed
to tackle optimization problems with multiple objectives. The most recent ones employ
quality indicators within their selection in order to (i) directly incorporate user prefer-
ences into the search [1, 16] and/or to (ii) avoid cyclic behavior of the current population

� This is an updated author version of the SEAL’2010 paper published by Springer Verlag which
corrects the following errors. The final publication is available at www.springerlink.com.
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[15, 18]. In particular the hypervolume indicator [17] is of interest here and due to its
refinement property [18] employed in several EMO algorithms [4, 6, 14]. The hyper-
volume indicator assigns a set of solutions the “size of the objective value space which
is covered” and at the same time is bounded by the indicator’s reference point [17].
Although maximizing the hypervolume indicator, according to its refinement property,
results in finding Pareto-optimal solutions only [10], the question arises which of these
points are favored by hypervolume-based algorithms. In other words, we are interested
in the optimization goal of hypervolume-based algorithms with a fixed population size
μ, i.e., in finding a set of μ solutions with the highest hypervolume indicator value
among all sets with μ solutions. Also in performance assessment, the hypervolume is
used quite frequently [19]. Here, knowing the set of points maximizing the hypervolume
is crucial as well. On the one hand, it allows to evaluate whether hypervolume-based
algorithms really converge towards their optimization goal on certain test functions. On
the other hand, only the knowledge of the best hypervolume value achievable with μ
solutions allows to compare algorithms in an absolute manner similar to the state-of-
the-art approach of benchmarking single-objective continuous optimization algorithms
in the horizontal-cut view scenario, see [12, appendix] for details.

Theoretical investigations of the sets of μ points maximizing the hypervolume in-
dicator—also known under the term of optimal μ-distributions [2]—have been started
only recently. Although quite strong, i.e., very general, results on optimalμ-distributions
are known [2, 7], most of them are approximation or limit results in order to study a
wide range of problem classes. The only exact results consider problems with very spe-
cific Pareto fronts, namely linear fronts that can be described by a function f : x ∈
[xmin, xmax] �→ αx + β where α < 0 and β ∈ R in the bi-objective case [2, 5, 9] or
fronts that can be expressed as f : x ∈ [1, c] �→ c/x with c > 1 [11].

The main scope of this paper is to revisit the results on optimal μ-distributions for bi-
objective problems with linear Pareto fronts and to consider all conditions under which
the exact optimal μ-distributions have not been characterized yet. The result is both
exact and exhaustive, in the sense that a single formula is proven that characterizes the
unique optimal μ-distribution for any choice of the hypervolume indicator’s reference
point and for any μ ≥ 2, covering also the previously known cases. It turns out that the
specific case of μ = 2 complies with a previous results of [2] and that for all linear front
shapes, the optimal μ-distributions are always unique.

Before we present our results in Sec. 5–7, we introduce basic notations and defi-
nitions in Sec. 2, define and discuss the problem of finding optimal μ-distributions in
Sec. 3 in more detail, and give an extensive overview of the known results in Sec. 4.

2 Preliminaries

Without loss of generality (w.l.o.g.), we consider bi-objective minimization problems
where a vector-valued function F : X → R2 has to be minimized with respect to the
weak Pareto dominance relation �. We say a solution x ∈ X is weakly dominating
another solution y ∈ X (x � y) iff F1(x) ≤ F1(y) and F2(x) ≤ F2(y) where
F = (F1,F2). We also say x ∈ X is dominating y ∈ X (x ≺ y) if x � y but y 	� x.
The set of nondominated solutions is the so-called Pareto set Ps = {x ∈ X | �y ∈ X :
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y ≺ x} and its image F(Ps) in objective space is called Pareto front. Note that, to keep
things simple, we make an abuse of terminology throughout the paper and use the term
solution both for a point x in the decision space X and for its corresponding objective
vector F(x) ∈ R2. Moreover, we also define the orders � and ≺ on objective vectors.

In order to optimize multiobjective optimization problems like the bi-objective ones
considered here, several recent EMO algorithms aim at optimizing the hypervolume in-
dicator [17], a set quality indicator IH(A, r) that assigns a set A the Lebesgue measure
λ of the set of solutions that are weakly dominated by solutions in A but that at the
same time weakly dominate a given reference point r ∈ R2, see Fig. 1:

IH(A, r) = λ
({z ∈ R2 | ∃a ∈ A : f(a) � z � r}) (1)

The hypervolume indicator has the nice property of being a refinement of the Pareto
dominance relation [18]. This means that maximizing the hypervolume indicator is
equivalent to obtaining solutions in the Pareto set only [10]. However, it is more in-
teresting to know where the solutions maximizing the hypervolume lie on the Pareto
front if we restrict the size of the sets A to let us say, the population size μ. This set of μ
points maximizing the hypervolume indicator among all sets of μ points is known under
the term optimal μ-distribution [2] and finding an optimal μ-distribution coincides with
the optimization goal of hypervolume-based algorithms with fixed population size.

To investigate optimal μ-distributions in this paper, we assume the Pareto front to
be given by a function f : R → R and two values xmin, xmax ∈ R such that all
points on the Pareto front have the form (x, f(x)) with x ∈ [xmin, xmax]. In case of a
linear Pareto front, f(x) = αx + β for α, β ∈ R, see Fig. 1 for an example. W.l.o.g,
we assume that xmin = 0 and β > 0 in the remainder of the paper—otherwise, a
simple linear transformation brings us back to this case. Moreover, α < 0 follows from
minimization. Note also that under not too strong assumptions on the Pareto front, and
in particular for linear fronts, optimal μ-distributions always exist, see [2].

3 Problem Statement

In case of a linear Pareto front described by the function f(x) = αx+β (α < 0, β ∈ R),
finding the optimal μ-distribution for the hypervolume indicator with reference point
r = (r1, r2) can be written as finding the minimum of the function

IH(x1, . . . , xμ) =

μ∑
i=1

(xi+1 − xi) (f(x0)− f(xi)) =

μ∑
i=1

(xi+1 − xi) (αx0 − αxi)

= α

μ∑
i=1

[
(xi)

2
+ x0xi+1 − x0xi − xixi+1

]
(2)

with xmin ≤ xi ≤ xmax for all 1 ≤ i ≤ μ

where we define xμ+1 = r1 and x0 = f−1(r2) [2], Fig. 1. According to [2], we denote
the x-values of the optimal μ-distribution, maximizing (2), as xμ

1 . . . x
μ
μ. Although the

term in (2) is quadratic in the variables x0, . . . , xμ+1, and therefore, in principle, solv-
able analytically, the restrictions of the variables to the interval [xmin, xmax] makes it
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difficult to solve the problem. In the following, we therefore investigate the minima of
(2) depending on the choice of r1 and r2 with another approach: we use the necessary
condition for optimal μ-distributions of [2, Proposition 1] and apply it to linear fronts
while the restriction of the variables to [xmin, xmax] are handled “by hand”.

4 Overview of Recent and New Results

Characterizing optimal μ-distributions for the hypervolume indicator has been started
only recently but the number of results is already quite extensive, see for example [1–
5, 7, 9–11]. Here, we restate, to the best of our knowledge, all previous results that relate
to linear Pareto fronts and point out which problems are still open.

Besides the proof that maximizing the hypervolume indicator yields Pareto-optimal
solutions [10], the authors of [5] and [9] were the first to investigate optimal μ-distribu-
tions for linear fronts. Under the assumption that the extreme points (0, β) and (xmax, 0)
are included in the optimal μ-distribution, it was shown for linear fronts with α = −1
that neighbored points within a set maximizing the hypervolume are equally spaced.
However, the result does not state where the leftmost and rightmost point of the optimal
μ-distribution have to be placed in order to maximize the hypervolume and it has been
shown later [2] that the assumption about the extreme points does not always hold.

The first results without assuming the positions of the leftmost and rightmost point
have been proven in [2] where the result is based on a more general necessary condition
about optimal μ-distributions for the hypervolume indicator. In particular, [2] presents
the exact distribution of μ points maximizing the hypervolume indicator when the ref-
erence point is chosen close to the Pareto front (region I in Fig. 1, cp. [2, Theorem 5])
or far away from the front (region IX in Fig. 1, cp. [2, Theorem 6]). In the former case,
both extreme points of the front do not dominate the reference point and the (in this
case unique) optimal μ-distribution reads

xμ
i = f−1(r2) +

i

μ+ 1
· (r1 − f−1(r2)) . (3)

In the latter case, the reference point is chosen far enough such that—independent of the
reference point and μ—both extreme points are included in an optimal μ-distribution 1

and the (again unique) optimal μ-distributions can be expressed as

xμ
i = xmin +

i− 1

μ− 1
(xmax − xmin) . (4)

Note that the region IX, corresponding to choices of the reference point within Theo-
rem 6 of [2] does not depend on μ but on a lower bound on the reference point to ensure
that both extremes are included in the optimal μ-distribution. Recently, a limit result
has been proven [3] which shows that the lower bound of [2, Theorem 6] converges
to the nadir point2 if μ goes to infinity but the result does not state how fast (in μ) the
nadir point is approached. Clearly, choosing the reference point within the other regions

1 Which is proven to be true for r1 > 2xmax and r2 > 2β in another general theorem [2].
2 In case of a linear front as defined above, the nadir point equals n = (xmax, f(xmin)).
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Fig. 1. Left: Illustration of the hypervolume indicator IH(A, r) (gray area). Right: Optimal μ-
distributions and the choice of the reference point for linear fronts of shape y = αx + β. Up-
to-now, theoretical results are only known if the reference point is chosen within the regions I
and IX [2]. Exemplary, the optimal 2-distribution (circles) is shown when choosing the reference
point (cross) within region IV.

II–VIII in Fig. 1 is possible and the question arises how the reference point influences
the optimal μ-distributions in these uninvestigated cases as well. The answer to this
question is the main focus of this paper.

5 If the Reference Point is Dominated by Only the Right Extreme

As a first new result, we consider choosing the reference point within the regions II or
III of Fig. 1. Here, the left extreme cannot be included in an optimal μ-distribution as
it is never dominating the reference point and thereby always has a zero hypervolume
contribution. Thus, the proof of the optimal μ-distribution has to consider only the re-
strictions of the μ points at the right extreme. Moreover, the uniqueness of the optimal
μ-distribution in the cases II and III follows directly from case I.

Theorem 1. Given μ ∈ N≥2, α ∈ R<0, β ∈ R>0, and a linear Pareto front f(x) =
αx+ β within [0, xmax = − β

α ]. If r2 ≤ β and r1 ≥ xmax (cases II and III), the unique
optimal μ-distribution (xμ

1 , . . . , x
μ
μ) for the hypervolume indicator IH with reference

point (r1, r2) can be described by

xμ
i = f−1(r2) +

i

μ+ 1

(
min

{
r1,

μ+ 1

μ
xmax − f−1(r2)

μ

}
− f−1(r2)

)
. (5)

Proof. According to (3) and assuming no restrictions of the solutions on the linear front
αx + β with x ∈ R, the optimal μ-distribution would be given by xμ

i = f−1(r2) +
i

μ+1 · (r1 − f−1(r2)) where the xμ
i are possibly lying outside the interval [0, xmax].

However, as long as r1 is chosen such that xμ
μ ≤ xmax, we can use (3) for describing
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Fig. 2. When choosing the reference point within regions II and III, we prove that the right ex-
treme is included in optimal μ-distributions if the reference point is chosen within the gray shaded
area right of the line y = −αμx− μβ, see Corollary 1. The picture corresponds to μ = 2.

the optimal μ-distributions, i.e., in the case that

xμ
μ = f−1(r2) +

μ

μ+ 1
· (r1 − f−1(r2)) ≤ xmax ⇔ f−1(r2)

μ+ 1
+

μ

μ+ 1
r1 ≤ xmax

⇔ r1 ≤ μ+ 1

μ
xmax − f−1(r2)

μ

(
=

−r2 − βμ

αμ

)
. (6)

With larger r1, the optimal μ-distribution does not change any further (only the hyper-
volume contribution of xμ

μ increases linearly with r1), i.e., we can rewrite (3) as (5). �

The previous theorem allows us also a more precise statement of when the right

extreme is included in optimal μ-distributions than the statement in [2].

Corollary 1. In case that r2 ≤ β and r1 ≥ μ+1
μ xmax− f−1(r2)

μ , the right extreme point
(xmax, 0) is included in all optimal μ-distributions for the front αx+ β. �

Note that the choice of r1 to guarantee the right extreme in optimal μ-distributions
depends both on μ and r2 here whereas the (not so tight) bound for r1 to ensure the
right extreme proven in [2] equals 2xmax. This is independent of μ and coincides with
the new (tighter) result if μ = 2 and r2 = β. Figure 2 illustrates the region for which, if
the reference point is chosen within, the right extreme is always included in an optimal
μ-distribution. Compare also to the old result of [2] which states this inclusion of the
right extreme only in case the reference point is chosen in region IX of Fig. 1. The
description of the line y = −αμx − μβ where choosing the reference point to the
right of it ensures the right extreme in the optimal μ-distribution results from writing r 2

within r1 = μ+1
μ xmax − f−1(r2)

μ as a function of r1.

6 If the Reference Point is Dominated by Only the Left Extreme

Obviously, the two cases IV and VII of Fig. 1 are symmetrical to the cases II and III
where mainly the left extreme and the reference point’s coordinate r 2 take the roles of
the right extreme and the coordinate r1 respectively from the previous proof.
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Theorem 2. Given μ ∈ N≥2, α ∈ R<0, β ∈ R>0, and a linear Pareto front f(x) =
αx+β within [0, xmax = − β

α ]. If r1 ≤ xmax and r2 ≥ β (cases IV and VII), the unique
optimal μ-distribution (xμ

1 , . . . , x
μ
μ) for the hypervolume indicator IH with reference

point (r1, r2) can be described by

xμ
i =f−1

(
min

{
r2,

μ+1
μ β− f(r1)

μ

})
+

i

μ+ 1

(
r1−f−1

(
min

{
r2,

μ+1
μ β− f(r1)

μ

}))
. (7)

Proof. The proof is similar to the one of Theorem 1: As in case I, we can write the op-
timal μ-distribution according to (3) except that we have to ensure that xμ

1 ≥ xmin = 0.

This is equivalent to f−1(r2)+
1

μ+1

(
r1 − f−1(r2)

) ≥ 0 or r2−β
α + 1

μ+1

(
r1 − r2−β

α

)
≥

0 or r2−β
α +αr1−r2+β

(μ+1)α ≥ 0. Withα < 0, this gives (μ+1)r2−(μ+1)β+αr1−r2+β ≤ 0

and finally r2 ≤ (μ+1)β−(αr1+β)
μ = μ+1

μ β − f(r1)
μ such that (3) becomes (7). �


7 General Result for All Cases I–IX

By combining the above results, we can now characterize the optimal μ-distributions
also for the other cases V, VI, VII, and IX and give a general description of optimal
μ-distributions for problems with bi-objective linear fronts, given any μ ≥ 2 and any
meaningful choice of the reference point 3.

Theorem 3. Given μ ∈ N≥2, α ∈ R<0, β ∈ R>0, and a linear Pareto front f(x) =
αx+ β within [0, xmax = − β

α ], the unique optimal μ-distribution (xμ
1 , . . . , x

μ
μ) for the

hypervolume indicator IH with reference point (r1, r2) ∈ R2
>0 can be described by

xμ
i = f−1(Fl) +

i

μ+ 1

(
Fr − f−1(Fl)

)
(8)

for all 1 ≤ i ≤ μ where

Fl = min{r2, μ+ 1

μ
β − 1

μ
f(r1),

μ

μ− 1
β} and

Fr = min{r1, μ+ 1

μ
xmax − 1

μ
f−1(r2),

μ

μ− 1
xmax} .

Proof. Again, the optimal μ-distribution would be given by (3) if we prolongate the
front linearly outside the interval [xmin, xmax] and therefore, no restrictions on the xμ

i

would hold. However, the points xμ
i are restricted to [xmin, xmax] and therefore (since

we assume xμ
i < xμ

i+1) we have to ensure that both xμ
1 ≥ xmin = 0 and xμ

μ ≤ xmax =
−β/α hold. According to the above proofs, the former is equivalent to

r2 ≤ μ+ 1

μ
β − f(r1)

μ
(9)

3 Choosing the reference point such that it weakly dominates a Pareto-optimal point does not
make sense as no feasible solution would have a positive hypervolume.
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and the latter is equivalent to

r1 ≤ μ+ 1

μ
xmax − f−1(r2)

μ
(10)

however, with restrictions on r1 (r1 ≤ xmax) and r2 ≤ β respectively which we do
not have here. As long as both (9) and (10) hold as in the white area in Fig. 3, i.e., no
constraint is violated, (3) can be used directly to describe the optimal μ-distribution as
in region I. To cover all other cases, we could, at first sight, simply combine the results
for the cases II, III, IV, and VII from above and use

F ∗
l = min

{
r2,

μ+ 1

μ
β − f(r1)

μ

}
and F ∗

r = min

{
r1

μ+ 1

μ
xmax − f−1(r2)

μ

}

as the extremes influencing the set xμ,∗
i = F ∗

l + i
μ+1 (F

∗
r − F ∗

l ). However, r1 and r2

are unrestricted and thus, F ∗
l and F ∗

r can become too large such that the points xμ,∗
i

lie outside the feasible front part [xmin, xmax]. To this end, we compute where the two
constraints (9) and (10) meet, i.e., what is the smallest possible reference point that
results in having both extremes in the optimal μ-distribution. This point is depicted as
the lower left point of the dark gray area in Fig. 3.

By combining the equalities in (9) and (10) which is equivalent to r 2 = −αμr1−βμ
(see end of Sec. 5), we obtain

r2 = μ+1
μ β − f(r1)

μ = μ+1
μ β − αr1+β

μ = −αμr1 − βμ or r1 = − β
α

μ
μ−1 = μ

μ−1xmax

and thus r2 = μ+1
μ β − f( µ

µ−1xmax)

μ = μ
μ−1β. Hence, if we choose the reference point

r = (r1, r2) such that r1 ≥ μ
μ−1xmax and r2 ≥ μ

μ−1β, both extremes will be included

in the optimal μ-distribution xμ
i = F extr

l + i
μ+1 (F

extr
r − F extr

l ) with F extr
l = μ

μ−1β

and F extr
r = μ

μ−1xmax. With this result, we know that, independent of r2, the right
extreme is included if r1 ≥ μ

μ−1xmax (if the leftmost extreme is not included, r2 must

be smaller than μ
μ−1β and in this case r1 ≥ μ+1

μ xmax ensures that it is also greater

or equal to μ+1
μ xmax − f−1(r2)

μ ). The same can be said for the left extreme, which is
included in an optimal μ-distribution whenever r2 ≥ μ

μ−1β. The optimal μ-distribution
for those cases are the same than the optimal μ-distributions if we restrict r1 and r2 to
be at most min{μ+1

μ xmax− 1
μf

−1(r2),
μ

μ−1xmax}, and min{μ+1
μ β− 1

μf(r1),
μ

μ−1β}}
respectively, i.e., to the cases where the reference point is lying on the boundary of the
white region of Fig. 3 and having one or even both extremes included in the optimal
μ-distributions. In those cases, (3) can be used again for characterizing the optimal μ-
distribution as the constraints on the xμ

i are fulfilled. Using the mentioned restrictions
on r1 and r2 results in the theorem. �


Note that the previous proof gives a tighter bound for how to choose the reference
point r = (r1, r2) in order to obtain the extremes in comparison to the old result in [2]:
The former result states that whenever r1 is chosen strictly larger than 2xmax and r2 is
chosen strictly larger than 2β, both extremes are included in an optimal μ-distribution
in the case of a linear Pareto front. This bound holds for every μ ≥ 2 but the previous
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Fig. 3. How to choose the reference point to obtain the extremes in optimal μ-distributions: μ = 2
(left) and μ = 4 (right) for one and the same front y = −x/2 + 1.

theorem precises this bound to r1 ≥ μ+1
μ xmax and r2 ≥ μ+1

μ β for a given μ which
coincides with the old bound for μ = 2 but is the closer to the nadir point (xmax, β),
the larger μ gets—a result that has been previously shown as a limit result for arbitrary
Pareto fronts [3].

Last, we want to note that, though the two equations (8) and (4) do not look the same
at first sight, Theorem 3 complies with the characterization of optimal μ-distributions
given in (4) [2, Theorem 6] for the case IX which can be shown by simple algebra.

8 Conclusions

Finding optimal μ-distributions, i.e., sets of μ points that have the highest quality in-
dicator value among all sets of μ solutions coincides with the optimization goal of
indicator-based multiobjective optimization algorithms and it is therefore important to
characterize them. Here, we rigorously analyze optimal μ-distributions for the often
used hypervolume indicator and for problems with linear Pareto fronts. The results are
exhaustive in a sense that a single formula covers all possible choices of the hypervol-
ume’s reference point, including two previously proven cases. In addition to the newly
covered cases, the new results show also how the choice of μ influences the fact that
the extremes of the Pareto front are included in optimal μ-distributions for the case of
linear fronts—a fact that has been only shown before by a lower bound result of choos-
ing the reference point and not exact as here. The proofs also show that the optimal
μ-distributions for problems with linear Pareto fronts are, given a μ ≥ 2 and a certain
choice of the reference point, always unique.

Besides being the first exhaustive theoretical investigation of optimal μ-distributions
for a specific front shape, the presented results are expected to have an impact in prac-
tical performance assessment as well. For the first time, it is now possible to use the
exact optimal μ-distribution and its corresponding hypervolume when comparing algo-
rithms on test problems with linear fronts such as DTLZ1 [8] or WFG3 [13] for any
choice of the reference point4. It remains future work to theoretically characterize the
optimal μ-distributions for test problems with other front shapes for which the optimal
μ-distributions can only be approximated numerically at the moment [2].

4 Theorem 3 can be applied directly with α = −1 and β = 0.5 (DTLZ1) or β = 1 (WFG3).
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