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Main Interests

single-objective
blackbox optimization
algorithm design stochastic algorithms
Theory
P N

Algorithms <— Applications

© Dimo Brockhoff, LIX, Ecole Polytechnique Sel. Research Topics in Stochastic BB Optimization, IITK, December 3, 2010 3



Blackbox Optimization: The Big Picture

° ° ° o . A b t. f t.
Optimization problems occur frequently in practice... |[* oo

min f(z) = (f1(2), -, fu(x)) XJ\x— Sty
where x € X — f(z) € R” .

single-objective: total order
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Blackbox Optimization: The Big Picture

Optimization problems occur frequently in practice... cost

min f(z) = (f1(2), -, fu(x)) XJ\x— Sty
where x € X — f(z) € R” -
» power

consumption
multiple objectives:

dominance relation (partial order)
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Blackbox Optimization: The Big Picture

Optimization problems occur frequently in practice...

: X
min f(2) = (f1(2), .., fu() X 1y
re X X %
where x € X — f(z) € R” X
» power
consumption
multiple objectives:

dominance relation (partial order)
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Blackbox Optimization: The Big Picture

' cost
Pareto Front

min f(z) = (f1(2), . fil)) X)QX XX//X < /

where x € X — f(z) € R”

Optimization problems occur frequently in practice...

» power

consumption
multiple objectives:

dominance relation (partial order)
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Blackbox Optimization: The Big Picture

' cost
Pareto Front

R R S O o/

where x € X — f(z) € R”

Optimization problems occur frequently in practice...

» power
consumption
Issues:

non-linear noisy many objectives

uncertain
huge search

spaces

objectives

problem

expensive
non-differentiable (integrated simulations) many constraints
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Blackbox Optimization: The Big Picture

. e . . . ' cost
Optimization problems occur frequently in practice... Pareto Front

min f(z) = (f1(2), . fil)) X)QX XX//X < /

where x € X — f(z) € R”

Black box optimization many objectives

vex— [ = (@), fi(@)

» power
consumption

huge search

problem
spaces

—> I ;
no assumptions many constraints
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Blackbox Optimization: The Big Picture

Optimization problems occur frequently in practice... cost

Pareto Front

R R S O o/

where x € X — f(z) € R”

» power
consumption

Black box optimization many objectives

reX— f — (fi(z),..., fr(x))

huge search
spaces

problem
—> I ;
no assumptions many constraints

Evolutionary Algorithms (EAs)

Evolutionary algorithms

sets
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Blackbox Optimization: The Big Picture

Optimization problems occur frequently in practice... cost

Pareto Front

R S O o

where x € X — f(z) € R”

» power
consumption

Black box optimization many objectives

reX— f — (fi(z),..., fr(x))

huge search
spaces

problem
—> I ;
no assumptions many constraints

Evolutionary Algorithms (EAs)

Evolutionary algorithms

sets
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General Principle of Evolutionary Algorithms

How these algorithms work...

PP T

create A variation evaluation

offspring black box!

select u to keep

. )
update survival

\ S based on total

order on solutions
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Overview

Obijective Reduction
Hypervolume-based search

Mirroring and Sequential Selection
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Overview

Obijective Reduction
>— multiobjective

Hypervolume-based search

\

J

Mirroring and Sequential Selection — single-objective
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Objective Reduction: Motivation

3400

values

1 1 | 1 1 1 1 1 1 L 1 1 L
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
objectives

" Which objectives are the most important ones?

* What is the relationship between the objectives!?
" Are all objectives necessary or can objectives be omitted?
" Are additional objectives always bad!?
* Can efficient methods be developed!?
* How can user preferences be incorporated into the search!?
—> Learning about the problem
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Recall: Multiobjective Optimization

3 X
= w.lo.g i“ei}%f(x) = (f1(z),..., fr(z)) w\f f(X)

where v € X — f(z) € RF

* weak Pareto dominance relation wrtset 7= {f,..., fi} of
objectives: z <y y < Vf;, € F: fi(z) < fi(y) f2 1

.-

better

" incomparable/comparable/indifferent

= s*e X Pareto-optimal: fz € X iz <ra*Na" Zrw

Goal (without decision maker):
* find or approximate set of Pareto-optimal solutions (Pareto set)
" in practice: as close as possible & as diverse as possible
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Set Problem View and Refinements

set problem: generalize Pareto dominance on sets o
A<rB&sVbeB:dacA:a=<f£b °

Sought: total refinement
i.e. a total order on sets that is compliant with dominance

Definition 2.4: Given a set ‘Y. Then the preference relation
<ref refines < 1f for all A, B € ¥ we have

(A < B) A (B % A) = (A <ref B) A (B #ref A)-
from [ztb2010a in IEEETEC’ 0]
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Many-Objective Optimization

Main Problem
weak Pareto dominance gives no search direction with many objectives

Needed:
“more total” order

One ldea:
Reduce the number of objectives automatically

— omitting objectives results in a refinement!
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Automated Objective Reduction

Related Work:
= MCDM approaches: [¢l1977a, agre1997a, mali2006a, mt2007a, mt2008a, mali2008a]
= for linear objectives only
= PCA-based: Deb and Saxena [ds2006a, sd2007a, sd2008b]
" no control over dominance relation (“what happens!?”)

MOSS: The Minimum Objective Subset Problem

Given a set A of solutions with relations =<;,C Ax A,
Find minimum objective set 7' C F preserving the relation (27 ==r)

MOSS is NP-complete
= Reduction from SETCOVER

" As aresult, consideration of objective sets of fixed size is not
sufficient
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An Example

] L2 ]
L)
(-]
[
o
values values
A A
omit cost 2
A ® . .-"'—'.
o et ®
' T e
| | | - | | -
cost 1 cost 2 performance cost 1 performance

.

still the same relations
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Algorithms for the Moss Problem 20074

Exact algorithm

= Correctness proof
= Runtime: O(|A|?-k-2F)

= Worst case:

Q(A]? - 28/3)

Simple greedy heuristic

* Correctness proof
= Runtime: O(k-|AJ?)

" Best possible approximation ratio

of ©(log |A])

© Dimo Brockhoff, LIX, Ecole Polytechnique

[feig| 998a]

S =10

for each pair x,y € A of solutions do
Se={{it[i € {l,....k} AXx 2y Ay Zi x}
Sy ={{i}lie{l,... .k} ANy ZixAx Ay}
Szy 1= Sz U S, where

S U Sy = {81U82|81 €51 N sy €Sy
N(Ap1 € S1,p2 € S2 : p1 Upa C s1Us2)}

if S;y = 0 then S,, :={1,...,k}
S:=5US,y

end for

Output a smallest set s, in S

E := <% where <% := (A x A)\ <r
I:=0
while F # () do
choose an i € ({1,...,k}\ 1)
such that | <¢ NE| is maximal
B = B\ <€
I:=TU/{i}
end while

Sel. Research Topics in Stochastic BB Optimization, IITK, December 3, 2010



Generalizations

O Exactly conserving dominance structure sometimes too strict

— O-error versions (based on e-dominance) [bz2006d]
0 = 0 5

\ d-conflict
e oo o
—
T : : :><: all  only {fs, f1)

1 I I | > {fSa f4} 1S 05—1111111111&1

® Omitting Objectives during search might yield bad objective values
—> Aggregation of objectives [bz2010a]

— Interestingly: also a refinement for weighted sum
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Objective Reduction Results (Excerpts)

—
B

AE200 < ' greedy X
||AI|=150 X X X 5@?33% exact ()
121 jAE=100 X % X o 1X 1t o
polE I ;
g 10 X X % i . . Q%l’f@) WW@%M
g £ % g
i ° : XX % 2 sl =
E 6 X XX X X % < E
: X g4 reedy vs. exact
E Ll y E g y Vs.
c . . c sl
N random objectives
| | | | | | | | vl | | | | | | | | |
2 4 8 8 10 12 14 18 207 5 10 15 20 25 %0 3 40 45 50
number of cbisctives

number of objectives ﬂi

|A| = 200 for k = 25
|A] =200 for & = 25

20

Number of objectives in minimal set

»

DTLZ2 DTLZ5 DTLZ7 KPI0OO KP250 KP500

problems
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Objective Reduction: Open Problems

Online objective reduction

fast algorithms

objective aggregation

objective decomposition

one idea: using multi-armed bandits

Decision Making

what are the most important objectives!?
what can we learn more about the objective relations!?
incorporation of decision space

© Dimo Brockhoff, LIX, Ecole Polytechnique Sel. Research Topics in Stochastic BB Optimization, IITK, December 3, 2010 25



Overview

Obijective Reduction
>— multiobjective

Hypervolume-based search

\

J

Mirroring and Sequential Selection — single-objective
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A “Classical” Algorithm: NSGA-II

Selection: NSGA-Il [dapm2002a] mutation

m  |st criterion: Pareto dominance
= 2" criterion: crowding distance

=  Optimizing crowding distance introduces cycles! recombination ' mating
h DT g
f, f,

| dominance depth crowding distance

Q9

di) = ¥ |fmli=1)=fulit1)
o obj.m
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A “Classical” Algorithm: NSGA-II

Selection:

NSGA-Il [¢ .0

m  |st criterion: Pareto dominance 4000

= 2" criterion: crowding distance 3500

* Optimizing crowding distance introd **

f2

A

dominance depth

Q9

Q

Q
Q

3400

3200

T T T
NSGA-IT Pareto set
u Archive elements after t=5.000.000 < -
Archive elements after t=10,000.000 0o
> R - 3 4

- B9y Q{E

a
<
L a
1 1 1 1 1 1
3200 3400 3600 3800 4000 400 £,
I I I I I I
SPEA
_I 1 1 1 1 1 ]
3200 3400 3600 3800 4000 4200 f
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Hypervolume-Based Evolutionary Algorithms

State-of-the-art algorithms (SMS-EMOA, MO-CMA-ES, HypE, ...)
use hypervolume indicator as 2" selection criterion: no cycles!

Main idea
Delete solutions with
the smallest
hypervolume loss

d(s) = Iu(P.r)-1u(P / {s}, r)

iteratively

minimize

a(2)=0 fitness of point: \

refinement!

.......................... .......,...........-...-,...,...,.-nv--.vn---nX ref.ereDCe
. point 7

Hypervolume of A:

i(A) = [a(2)dZ

R I a(z) =1

\

contribution to
hypervolume
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Optimal p-Distributions

When the goal is to maximize the hypervolume... . |
refinement!

" this yields sets with only Pareto-optimal solutions [flei2003a @ EMO’03]

" those sets, if unrestricted in size, cover the entire Pareto front

* many hypervolume-based EMO algorithms have a population size p!

Optimal p-Distribution:
A set of p solutions that maximizes the hypervolume indicator among all
sets of y solutions is called optimal p-distribution.
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Optimal p-Distributions

Questions:
* how are optimal U-distributions characterized?
» understand the bias of the indicator (influence on DM)
» how can it be changed!?
* what is their indicator value?
» helpful for performance assessment (target values)

» what is the influence of the indicator's parameters on optimal [-
distributions?

» guidelines for practical usage
" do algorithms converge to optimal JU-distributions!?
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Optimal p-Distributions

Questions:
" how are optimal P-distributions characterized!?
» understand the bias of the indicator (influence on DM)
» how can it be changed!
* what is their indicator value?
» helpful for performance assessment (target values)

» what is the influence of the indicator's parameters on optimal [-
distributions?

» guidelines for practical usage
" do algorithms converge to optimal JU-distributions!?

© Dimo Brockhoff, LIX, Ecole Polytechnique Sel. Research Topics in Stochastic BB Optimization, lITK, December 3, 2010 32



Notations for 2-Objective Case [ab72009]

Results for 2 objectives only. .. (except [abb2010a])

flag )

flzy)
flag)

© Dimo Brockhoff, LIX, Ecole

BN N §\\§\§ = oy )

......... NN

.
f:éa:eDéHf(a:) | |

Polytechnique
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A Necessary Condition [abb22009]

ProprosITION 1. (Necessary condition for optimal
p~distributions) If f is continuous, differentiable and
(zf,...,2l;) denote the z-coordinates of a set of p points
maximazing the hypervolume indicator, then for all T,:in <

‘T:b < Tmazx
fr@f) (e —af) = f@f) = fl@fiy), i=1...p (3)

where f' denotes the derivative of f, f(xzf) = ra and iﬂﬁ+1 =
r1.

Proof idea:

Iy max = derivative is 0 at each z' or z!' is at the boundary of the
domain
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Interpretation of Necessary Condition

Example: equal distances (only) on linear fronts A

f:x€ [xminaznmax] — ax + 3

f_li’"g} ’;11
generalization of results in [ebn2005a,bne20073]
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Previous Belief About the Hypervolume

“Belief’ about Bias:

“biased towards the boundary solutions” [dmm2005a]

focuses on knee points; points

less dense on extremes [bne2007a]

“convex regions might be preferred

to concave regions’” [zt1998b]
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A Density Result: When p Goes to Infinity

Observation:
general front shapes too difficult to investigate for finite p

Question:
can we characterize optimal J-distributions with respect to a density

0x) = limyes (5 Ty Tpeaig (5))) ?
[abbz20093]
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Result and Interpretation

The resulting density is

5(.’1‘) _ V _ff(m)
fnmmm \/T(:I?)di?

How can we interpret this?

= bias only depends on slope of f in contrast to [dmm2005a,zt1998b]
= density highest where slope = 45° compliant to [bne2007a]
= experimental results for finite and small y support the result

Conclusion:

only theoretical results make it
possible to understand the bias
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How to Use the Result in Performance Assess.

Problem front description density
bi-objective sphere flz) = ((b —a) — Ilf‘])a 5(z)=C- ‘\/[b —a— V) 25T
3
ZDT1, ZDT4 [24] flz)=1- = o(x) = ymz!
ZDT2 [24] flz)=1—2* for z € [0,1] d(z) = %\/E
ZDT3* [24] flz)=1-+/z — x.sin(107zx) d(x) = 1.5609- \/2\1/_ +sin(107rz) 4+ 107z cos(107mz)
T

for all * € F where
F = [0,0.0830015349] U ]0.1822287280, 0.2577623634] U ]0.4093136748, 0.4538821041] U
10.6183967944, 0.6525117038] U ]0.8233317983, 0.8518328654]

flzy=1-2" 5(z)=C- VT
ZDT6 [24 ‘ o 32y 1
- for ¢ € [2<20097) 9] ~ [0.08146, 1] with ' = 3 (1 -~ arctantom ¥/ ) ~ 1.53570
DTLZ1 [8] f(x) = % —x d(z)=1
DTLZ2, DTLZ3, DTLZ4 B T
DTLZ7* [8] f(z) =4 — z(1 + sin(3rzx)) 8(xz) = 0.6566 - /1 + sin(37x) + 37wz cos(3mx)

for all x € F where
F = [0,0.2514118361] U ]0.6316265307, 0.8594008566] U ]1.3596178368, 1.5148392681] U
]2.0518383519, 2.1164268079]

© Dimo Brockhoff, LIX, Ecole Polytechnique Sel. Research Topics in Stochastic BB Optimization, IITK, December 3, 2010 39



Use the Result in Performance Assess.

Problem front description density

bi-objectivi
1 1 .
ZDT1, 2D %
0.75 027 .
ZDT2 [24] %
0.5 o % ——
ZDT3* [24 0 %cos{lﬂwx]
0.25 ’
0 . . . o 0 . . . -1 . . . . 1041] L
0 025 05 075 1 0 025 0.5 0.7 1 0 0.25 0.5 075 1
(a) ZDT1 and ZDT4 (b) ZDT2 (¢) ZDT3
T ——— P ———
ZDT6 [24] . arctan(9m) 3/2 -1
for ¢ € [2220m) 1] ~ [0,08146, 1] with C' = 3 (1 - = ) ~ 1.53570
DTLZL 8] numerical optimization of | ,(A,r,J) possible!
DTLZ2, DT
8]
DTLZT™ [8] then: plot difference to optimal hypervolume

— should decrease log-linear!

J, 2.1164265074
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How to Change the Bias?

Goal: Incorporate user preferences into search (interactive optimization)
" (p)reference points, stressing extremes
= simulate classical scalarizing function approaches
= while keeping the refinement property

Idea: [zbt20073]

g
(A = [ w(Z)az SES
i

weighted
hypervolume

general
weight :
weight 1 :
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Examples of Weight Functions

preference point

10 1 -1

w(;?.} — (Qﬂ)kK2|C|1IE€ 0.8

stressing one objective

—1
(Mgt 1)) A=) € B 12

w(z1, -y 2k) =
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Results in 2D

'I.E{ 12 1 12
104 1.0 | 1.0 ;
8 7, : N
8 "’-\' 6 6 \
4 h\ 4 4 ., /@
2 2 1 2
0 e 0 i . ) : '--~- /i 0 \\fjff N
o 2 4 6 8 10 12 0 2 4 &8 B 1{] 12 0 . 8 1{] 12 0 & 8 10 12
stress f, preference point Tchebycheff deS|rab|I|ty function

uniform g-constraint | SPEA2 o NSGA-II

| | ||| I| II|
1.2 1 12 ||||||' 12 .
1.0 1.0 |||I 1.0 108
\ I s |
8 87 || 81, 8%
| !i_’ '\.
b 61 || 6 " 6 .
. 4 '4‘ .,
4 : 41 e, | - '0.- 4 t\q\
e, r'l‘,l, .I|| ] 'l‘ I %
2 e, 2 i 2 2
L/ g} .,
0 'T* 0 . I“H \\ . 0 . . . .‘.."= . 0 . . . ":"-._H=

o 2 4 6 8 10 12 o 2 4 6 8 10 12 o 2 4 6 8 10 12 -_|} 2 4 & B 10 12
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Results in 3D

.‘\
N,
1.0 4
'..\'-l
%
4
5 3
0
.0
5 5
1.0 1.0

1.0 4

stress f,

desirability function

A,

1.0 1.0

~ i,
i
A0
5 A
1.0 1.0
preference point
uniform
1.0 4
0l
.0
5 -5
1.0 1.0

0 0
0
5 5
1.0 1.0

Tchebycheff

s-constm

1.0 L
s
'-
-
%,
5 3,
L]
L ]
5
-
H
0
» i}
0
5 .
1.0 10
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Results in 7D

ol stress f; | preference point
08 T minimize aE T
06 06 |
04l 04| hx'f““
02T 2T preference point
D L' — : 5 L D 1 1 1 1 w 1
1 2 3 4 5 G 7 1 2 3 4 5 =] T
objective objective

i Tchebycheft | desirability function
RS 08 L
06 | 0E L
0.4 I 0l
%27 ideal .'pn::mr "“=\/\ / 02
" . . p : . ;o ! . ; : : :

objective objective
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Results in 7D

uniform e-constraint

Tr ~ uniform constraint = 05 |
0e /. hyperrectangle

_-----.-- "r UE‘ :J; J J J
h_""--.___ __.-J pmm T - R
06 | et 0.6

SPEA2 5 NSGA-II
oe| Question:
| How do optimal p-distributions for the
L . . ~ weighted hypervolume indicator look like?

objective [abeZOOQC,abeZO1 1 a]
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A New ldea of How to Articulate Preferences

Idea: [abbz2009¢]
" compute theoretical result for weighted case

v -z ())
olx) =
(z) fwm“” \/ f’ Yw(z, f(x))dz

= yse ,inverse*:

* define a desired density
= compute the corresponding weight
" optimize with hypervolume-based algorithm

Problems:
* theoretical result for weight on front only
* front in practice not known
= efficient calculation of the hypervolume
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A New ldea of How to Articulate Preferences

Idea:
" compute theoretical result for weighted case

v —f(z ())
olx) =
(z) fwm“” \/ f’ Yw(z, f(x))dz

= yse ,inverse‘:

* define a desired density
= compute the corresponding weight
" optimize with hypervolume-based algorithm

Problems:
* theoretical result for weight on front only (extend with const. w)
* front in practice not known (assume expected front)
= efficient calculation of the hypervolume (dynamic programming)
" define density as function of angle ¢ instead of x

© Dimo Brockhoff, LIX, Ecole Polytechnique Sel. Research Topics in Stochastic BB Optimization, IITK, December 3, 2010 48



Results |

1.5 1
Pareto ,
\ front o Solution
I I desired \ obtained
1-25 T J ;‘ --"‘h.,‘* deﬂﬂgzty jf dEHSity
' - \ o 8p(e) v .
/ direction
of rays

weight

0 0.25 0.5 0.75 1 1.25 1.5
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Results Il
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Hypervolume: Open Questions

Optimal p-distributions
" uniqueness
" more objectives
» other indicators
" exact results
* faster algorithms to compute them
= convergence (greedy approach, HypE)
" linear convergence

Articulating User Preferences
* changing preferences over time
" simulating other classical approaches (from Al?)
" interactive
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Overview

Obijective Reduction
>— multiobjective

Hypervolume-based search

\

J

Mirroring and Sequential Selection [— single-objective
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The CMA-ES [ro1992,h020014]

The “best” single-objective blackbox algorithm:
= Covariance Matrix Adaptation Evolution Strategy and variances
" continuous optimization

create A
offspring =" A
variation evaluation

by means of a

normal distribution:
x=m+cN(0,C)

, , take best u
update survival

m,C,o ) SO
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The CMA-ES: Equations

Input: m e R", 0 e R, A
Initialize: C =1, andp. =0, p, = 0,
Set: c. ~4/n,c; =4/n, c| = 2/n?, Cp Ly /12, € +c, < 1l,d, =1+ .\f—?‘?‘ ,

and w;—, _, such that x,, = %ﬂ ~ 0.3 \
While not terminate
xi=m+oy, yi ~ Ni(0,C), fori=1,... A sampling
m <> wixi\ =m+oy, wWherey, =S w;yi, update mean
pe (1 —co)pe + U p<1symv/ 1 — (1 —co)/iwyw  cumulation for C
Po (1= co)po + V1= (1 = co)2\/w C 2y, cumulation for o
Ce—(1—-c—c,)C + C1PePer + Cp D f Wiy A_}g N update C
T 4 0 X exp ( ( IIHF;}HI ETV.DT 1)) update of o

Not covered on this slide: termination, restarts, useful output, boundaries
and encoding

© N.Hansen & A.Auger
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The CMA-ES: Ideas

R E P e m w a : e e m m ':
: ¢ ! : ’ ! ) '
T I : Wad, .o : !
: A P OGN R ; e i :
T e ' ﬁ. ! +* :
R . Tt P ! 15y A ! i
: AT vl : S | !
| * R T, 1 I e . 1 I |
A B¢ : | : : ’
| e T, ! : i :
I H 1 I H i
] 1 1 ] I 1
1 . H [ 1 ! 1
. S PO — N i . n . O S S, S ¥
xpi = m+toy, yi~N(0/C) C, = i SO YAV Mpew +— m+ %, DoViiA

© N.Hansen & A.Auger
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Mirrored Mutation and Sequential Selection

Two Independent Ideas to Make Local (CMA-)ES Faster
* Jlocal: only a few children (A small) [baha2010a,abh201 I 2]
* derandomized mutations
" stopping generations whenever better than parent

: ' constant o]
10° A S ——— e ——
|
® ;
(_:E 10_3 : H
: _ 2
5 convergence rate  f(®¥) =2
O . i=1
g -6 : step~size ¢ : "
y— 10 RRRREEEEEEEREERREEEL N 1o RR) RS LAY T ............................... | in [—0208]
: ' forn =10
optimal step-siz adaptive
(scale invariant) : step—size o:
10°° : i .
0 500 1000 1500

function evaluations

© N.Hansen & A.Auger
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Mirrored Mutations

--------------
-
-
-

Idea T
use one random vector ____________ T
to generate two ;
offspring

——> mutation vector
independent

< mirrored vector

(dependent)
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Mirrored Mutations

Idea R
use one random vector ____________ T
to generate two ;
offspring

Reasoning ——> mutation vector

often "good" independent

and "bad" in
opposite
directions

< mirrored vector

(dependent)
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Sequential Selection

Idea e .. if all worse:

stop generation of new offspring . selection

as soon as a solution, better than
the parent, is found

i as usual

) ® parent
.— better offspring

~—.worse offspring
X evaluation saved

#
L]
-
-
-
-
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Sequential Selection

Idea e .. if all worse:

stop generation of new offspring . selection

as soon as a solution, better than 1 as usual

the parent, is found '
Reasoning

if sublevel sets convex ® parent

one better is enough . — better offspring

~—.worse offspring
X evaluation saved

#
L]
-
-
-
-

in particular with mirroring
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Results: Theory

Theoretical Results on Convergence Rates

for several variants of scale-invariant (o, = c|X,|) Evolution Strategies

Theorem 4. Fora (1.2 )-ES with scale-invariant step-size (o, = || X[ > 0) on the

T I
sphere function g(||x||), for g € M, linear convergence holds and

! ln | X > ! ; x E[In (1= 20|[N]q| + o [|N )] a.s.

Q

N

— 1 e ’O/a’h
1. ||XL].|| k—oo 22— pSI[rf:l

where 1, is the random variable for the number of function evaluations until iteration
k, N is a random vector following a multivariate normal distribution, and ps(o) =
Pr(2(N] + o||N||? < 0) is the probability that the first offspring is successful.

can be estimated via Monte Carlo Sampling
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Results: Estimated Convergence Rates

scale-invariant (1,27,)-ES dimension 20
. R
-0.2

dimension

.03} = dim=
0.4} g

c(o

7 23
. A : : .
sigma - dim¢nsion sigma - dimension
[

Jextract minima

=005 T T o
=00 e
-0.5p

=005 T T T ™ T T T
S OSSN SO SO
-{.'rIS ..... ..... : g
NP e o s
oW e (LA)ES
st b (] A)-ES)
) g : : : Lo [Pv=(1,47)-ES
-0_4..55.. : ..... : ...... : ...... :. ...... : ...... : ..é.. +{I+|}—ES H
_D.45.;. ..:.....:......:_.....:.......:......;..E.. +{Il4rsn}-ES_

2 3 5 10 20 40 100 200 400 1000

1
o
P

OB T TS|
~O-35 g e (1,2°)-ES |
_.D_4..:I...é.....é......é.......é......é......é..é.. +{|+|}|—ES H
_¢r45.,;§....§.....§ ...... i.......i......i ...... E,E_. +{|,2;}-E5'

2 3 5 10 20 40 100 200 400 1000

1
o
wn

1
=
Loy ]

dimension - best ¢(0)
dimension - best ¢(0)

dimension dimension J
© Dimo Brockhoff, LIX, Ecole Polytechnique Sel. Research Topics in Stochastic BB Optimization, IITK, December 3, 2010




Implementation in CMA-ES

results on sphere

PSP = S S SO A R s
ooef LR (1A)-CMA PN O R O ot S

(1,%)-CMA

. wdamw,lz)-cm
™~ (1,A,)-CMA
(1+1)-CMA

-l'.l.lﬁ-:;

H H H H H i (l,?'.-s-n)-CMA 5 - N H : : H H
2 3 5 10 0 40 80 - 2 3 5 10 20 40 BO

dimension dimension

results on BBOB'2010

(1,4;,)-CMA-ES turned out to be fastest
local non-elitist strategy tested
- 3rd best of BBOB2009/10 on Gallagher with _
101 peaks (3x faster than (1+1)-CMA-ES)
- even more competitive on noisy functions

-o0.08/
) | 1] A
20127

_ul,.q...:.:.',.:-..:.., .

convergence rate - dimension

21 Gallagher 101 peaks

| h.}_g.m.ﬁ; — ..........
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Mirroring and Sequ. Selection: Open Questions

* how to implement in p/d,-CMA-ES without bias in step-size!?
* further mirroring (more dependencies)
* does it make sense in multiobjective CMA-ES!?
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Conclusions

O Objective Reduction

" jdea, algorithms
" omission and aggregation of objectives

® Hypervolume-based Search <€

* weighted hypervolume indicator
» optimal p-distributions
" a2 new way to articulate user preferences in 2D

® Mirroring and Sequential Selection

=" jdea, results

" |og-linear convergence ¢
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