
Selected Research Topics in
Stochastic Blackbox Optimization

Dimo Brockhoff

KanGAL, IIT Kanpur, December 8, 2010



2Sel. Research Topics in Stochastic BB Optimization, IITK, December 3, 2010© Dimo Brockhoff, LIX, Ecole Polytechnique 2

Dimo Brockhoff

2000-2005
study of CS (Dipl. inform.) in
Dortmund, Germany

2005-2009
Dr. sc. ETH at
ETH Zurich, Switzerland

2009- 2010
postdoc at
INRIA Saclay---Ile-de-France

since November 2010
postdoc at
Ecole Polytechnique



3Sel. Research Topics in Stochastic BB Optimization, IITK, December 3, 2010© Dimo Brockhoff, LIX, Ecole Polytechnique 3

Main Interests

blackbox optimization

algorithm design

theory of EAs Multiobjective
single-objective

stochastic algorithms

Theory

Algorithms Applications



4Sel. Research Topics in Stochastic BB Optimization, IITK, December 3, 2010© Dimo Brockhoff, LIX, Ecole Polytechnique 4

Blackbox Optimization: The Big Picture
objective function

single-objective:  total order

Optimization problems occur frequently in practice…
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Blackbox Optimization: The Big Picture
cost

power 
consumption

multiple objectives: 
dominance relation (partial order)

Optimization problems occur frequently in practice…
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Blackbox Optimization: The Big Picture
cost

power 
consumption

multiple objectives: 
dominance relation (partial order)

Pareto FrontOptimization problems occur frequently in practice…
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Blackbox Optimization: The Big Picture
cost

power 
consumption

Pareto Front

Issues:

objectives

non-differentiable
expensive

(integrated simulations)

non-linear noisy

problem
uncertain

huge search 
spaces

many constraints

many objectives

Optimization problems occur frequently in practice…
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Blackbox Optimization: The Big Picture
cost

power 
consumption

Pareto Front

Black box optimization

→ no assumptions

Optimization problems occur frequently in practice…

problem huge search 
spaces

many constraints

many objectives
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Blackbox Optimization: The Big Picture
cost

power 
consumption

Pareto Front

Evolutionary Algorithms (EAs)

Evolutionary algorithms = 
randomized search algorithms
optimizing on solution sets

Optimization problems occur frequently in practice…

problem huge search 
spaces

many constraints

many objectivesBlack box optimization

→ no assumptions
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Evolutionary Algorithms (EAs)

Evolutionary algorithms = 
randomized search algorithms
optimizing on solution sets

Blackbox Optimization: The Big Picture
cost

power 
consumption

Pareto Front

robust
multimodal problems
“sampling” the (Pareto-) optimal
solutions to inform DM

Optimization problems occur frequently in practice…

problem huge search 
spaces

many constraints

many objectivesBlack box optimization

→ no assumptions
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General Principle of Evolutionary Algorithms

How these algorithms work…

black box!

select μ to keep

create λ
offspring

evaluationvariation

x2

x1

f

survivalupdate
based on total 

order on solutions

select μ to keep
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Overview

Objective Reduction

Hypervolume-based search

Mirroring and Sequential Selection
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Overview

Objective Reduction

Hypervolume-based search

Mirroring and Sequential Selection

multiobjective

single-objective
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Objective Reduction: Motivation

Which objectives are the most important ones?
What is the relationship between the objectives?
Are all objectives necessary or can objectives be omitted?
Are additional objectives always bad?
Can efficient methods be developed?
How can user preferences be incorporated into the search?

→ Learning about the problem            
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Recall: Multiobjective Optimization

w.l.o.g. 

weak Pareto dominance relation wrt set                           of 
objectives: 

incomparable/comparable/indifferent

Pareto-optimal: 

Goal (without decision maker):
find or approximate set of Pareto-optimal solutions (Pareto set)
in practice: as close as possible & as diverse as possible

better

worse
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Set Problem View and Refinements

set problem: generalize Pareto dominance on sets

Sought: total refinement
i.e. a total order on sets that is compliant with dominance

from [ztb2010a in IEEETEC’10]
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Many-Objective Optimization

Main Problem
weak Pareto dominance gives no search direction with many objectives

Needed:
“more total” order

One Idea:
Reduce the number of objectives automatically

→ omitting objectives results in a refinement!
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Automated Objective Reduction

Related Work:
MCDM approaches: [gl1977a, agre1997a, mali2006a, mt2007a, mt2008a, mali2008a]

for linear objectives only
PCA-based: Deb and Saxena [ds2006a, sd2007a, sd2008b]

no control over dominance relation (“what happens?”)

MOSS: The Minimum Objective Subset Problem
Given a set     of solutions with relations                    ,
Find minimum objective set             preserving the relation (              )    

MOSS is NP-complete
Reduction from SETCOVER
As a result, consideration of objective sets of fixed size is not 
sufficient
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An Example

values values

omit

still the same relations
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Exact algorithm
Correctness proof
Runtime:
Worst case:

Simple greedy heuristic
Correctness proof
Runtime:
Best possible approximation ratio 
of

Algorithms for the MOSS Problem [bz2007d]

[feig1998a]
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Generalizations

Exactly conserving dominance structure sometimes too strict
→ δ-error versions (based on ε-dominance) [bz2006d]

Omitting Objectives during search might yield bad objective values
→ Aggregation of objectives [bz2010a]

→ Interestingly: also a refinement for weighted sum

1

2
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Objective Reduction Results (Excerpts)

greedy vs. exact
random objectives
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Objective Reduction: Open Problems

Online objective reduction
fast algorithms
objective aggregation
objective decomposition
one idea: using multi-armed bandits
…

Decision Making
what are the most important objectives?
what can we learn more about the objective relations?
incorporation of decision space
…
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Overview

Objective Reduction

Hypervolume-based search

Mirroring and Sequential Selection

multiobjective

single-objective
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A “Classical” Algorithm: NSGA-II

Selection:
1st criterion: Pareto dominance
2nd criterion: crowding distance
Optimizing crowding distance introduces cycles!

f2

f1

dominance depth

1

2

3

survivalmutation

x2

x1

f

matingrecombination

crowding distance

NSGA-II [dapm2002a]

f2

f1

i-1

i+1
i
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A “Classical” Algorithm: NSGA-II

Selection:
1st criterion: Pareto dominance
2nd criterion: crowding distance
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Hypervolume-Based Evolutionary Algorithms

State-of-the-art algorithms (SMS-EMOA, MO-CMA-ES, HypE, …)
use hypervolume indicator as 2nd selection criterion: no cycles!

Main idea
Delete solutions with
the smallest
hypervolume loss
d(s) = IH(P,r)-IH(P / {s},r)
iteratively

refinement!
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Optimal µ-Distributions

When the goal is to maximize the hypervolume…
this yields sets with only Pareto-optimal solutions [flei2003a @ EMO’03]

those sets, if unrestricted in size, cover the entire Pareto front
many hypervolume-based EMO algorithms have a population size µ!

Optimal µ-Distribution:
A set of µ solutions that maximizes the hypervolume indicator among all 
sets of µ solutions is called optimal µ-distribution.

refinement!
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Optimal µ-Distributions

Questions:
how are optimal μ-distributions characterized?
►understand the bias of the indicator (influence on DM)
►how can it be changed?
what is their indicator value?
►helpful for performance assessment (target values)
what is the influence of the indicator's parameters on optimal μ-
distributions?
►guidelines for practical usage
do algorithms converge to optimal μ-distributions?
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Notations for 2-Objective Case [abbz2009a]

hypervolume indicator:

µ-dimensional
optimization problems

Results for 2 objectives only… (except [abb2010a])
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A Necessary Condition [abbz2009a]

Proof idea:
max      derivative is 0 at each       or       is at the boundary of the 

domain

2-dimensional
optimization problem
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Interpretation of Necessary Condition

Example: equal distances (only) on linear fronts

generalization of results in [ebn2005a,bne2007a]
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Previous Belief About the Hypervolume

“Belief” about Bias:

“biased towards the boundary solutions” [dmm2005a]

focuses on knee points; points
less dense on extremes [bne2007a]

“convex regions might be preferred
to concave regions” [zt1998b]
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A Density Result: When µ Goes to Infinity

Observation:
general front shapes too difficult to investigate for finite µ 

Question:
can we characterize optimal µ-distributions with respect to a density

?
[abbz2009a]
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Result and Interpretation

The resulting density is

How can we interpret this?
bias only depends on slope of f in contrast to [dmm2005a,zt1998b]

density highest where slope = 45° compliant to [bne2007a]

experimental results for finite and small µ support the result

Conclusion:
only theoretical results make it 
possible to understand the bias
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How to Use the Result in Performance Assess.
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How to Use the Result in Performance Assess.

numerical optimization of IH(A,r,μ) possible!

then: plot difference to optimal hypervolume
→ should decrease log-linear!
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How to Change the Bias?

Goal: Incorporate user preferences into search (interactive optimization)
(p)reference points, stressing extremes
simulate classical scalarizing function approaches
while keeping the refinement property

Idea: [zbt2007a]
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Examples of Weight Functions

preference point

stressing one objective
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Results in 2D

Tchebycheffpreference point desirability functionstress f1

SPEA2ε-constraint NSGA-IIuniform



44Sel. Research Topics in Stochastic BB Optimization, IITK, December 3, 2010© Dimo Brockhoff, LIX, Ecole Polytechnique 44

Results in 3D

Tchebycheffpreference pointstress f1

ε-constraint
uniformdesirability function
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Results in 7D

Tchebycheff

preference point

desirability function

stress f3
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Results in 7D

SPEA2

ε-constraint

NSGA-II

uniform

Question:
How do optimal μ-distributions for the 
weighted hypervolume indicator look like?

[abbz2009c,abbz2011a]
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A New Idea of How to Articulate Preferences

Idea: [abbz2009c]

compute theoretical result for weighted case

use „inverse“:
define a desired density
compute the corresponding weight
optimize with hypervolume-based algorithm

Problems:
theoretical result for weight on front only
front in practice not known
efficient calculation of the hypervolume
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A New Idea of How to Articulate Preferences

Idea:
compute theoretical result for weighted case

use „inverse“:
define a desired density
compute the corresponding weight
optimize with hypervolume-based algorithm

Problems:
theoretical result for weight on front only (extend with const. w)
front in practice not known (assume expected front)
efficient calculation of the hypervolume (dynamic programming)
define density as function of angle φ instead of x



49Sel. Research Topics in Stochastic BB Optimization, IITK, December 3, 2010© Dimo Brockhoff, LIX, Ecole Polytechnique 49

Results I



50Sel. Research Topics in Stochastic BB Optimization, IITK, December 3, 2010© Dimo Brockhoff, LIX, Ecole Polytechnique 50

Results II
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Hypervolume: Open Questions

Optimal μ-distributions
uniqueness
more objectives
other indicators
exact results
faster algorithms to compute them
convergence (greedy approach, HypE)
linear convergence

Articulating User Preferences
changing preferences over time
simulating other classical approaches (from AI?)
interactive
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Overview

Objective Reduction

Hypervolume-based search

Mirroring and Sequential Selection

multiobjective

single-objective
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The CMA-ES [ho1996a,ho2001a]

select μ to keep

evaluationvariation

x2

x1

f

survivalupdate
take best μ

by means of a 
normal distribution: 

xi=m+σN(0,C)

m,C,σ

create λ
offspring

The “best” single-objective blackbox algorithm:
Covariance Matrix Adaptation Evolution Strategy and variances
continuous optimization
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The CMA-ES: Equations 

© N. Hansen & A. Auger
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The CMA-ES: Ideas

© N. Hansen & A. Auger
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Mirrored Mutation and Sequential Selection

Two Independent Ideas to Make Local (CMA-)ES Faster
local: only a few children (λ small)
derandomized mutations
stopping generations whenever better than parent

1

convergence rate

© N. Hansen & A. Auger

[baha2010a, abh2011a]
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Mirrored Mutations
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Mirrored Mutations
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Sequential Selection
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Sequential Selection
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Results: Theory

Theoretical Results on Convergence Rates
for several variants of scale-invariant (σt = σ|Xt|) Evolution Strategies

can be estimated via Monte Carlo Sampling
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Results: Estimated Convergence Rates
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Implementation in CMA-ES
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Mirroring and Sequ. Selection: Open Questions

how to implement in μ/μw-CMA-ES without bias in step-size?
further mirroring (more dependencies)
does it make sense in multiobjective CMA-ES?
…
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Conclusions

Objective Reduction

idea, algorithms
omission and aggregation of objectives 

Hypervolume-based Search

weighted hypervolume indicator
optimal µ-distributions
a new way to articulate user preferences in 2D 

Mirroring and Sequential Selection

idea, results
log-linear convergence
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Announcement
EMO session @ MCDM′2011 in Jyväskylä, Finland

organizers: Dimo Brockhoff and Kalyanmoy Deb
tentative deadline: Jan. 31, 2011 (full papers & abstracts)

http://emoatmcdm.gforge.inria.fr

Questions?
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