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Principles of Multiple Criteria Decision

Observations: @ there is no single optimal solution, but

® some solutions (@) are better than others (9)
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Principles of Multiple Criteria Decision

Observations: @ there is no single optimal solution, but
® some solutions (@) are better than others (9)
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Possible * supply more important than cost (ranking)
Approach:
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Decision Making: Selecting a Solution

Possible * supply more important than cost (ranking)

AWpaE)erroach: » cost must not exceed 2400 (constraint)
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When to Make the Decision

Before Optimization:
"

' ¥ rank objectives,

define constraints, ...
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When to Make the Decision

Before Optimization: After Optimization:
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Focus: learning about a problem
» trade-off surface

» interactions among criteria

= structural information




Multiple Criteria Decision Making (MCDM

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which

concerns about multiple conflicting criteria can be formally incorporated into

the management planning process b CearelpreatE
Biultiple Criterla Delslon Kaking
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Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which

concerns about multiple conflicting criteria can be formally incorporated into

the management planning process e e o
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Evolutionary Multiobjective Optimization

Definition: EMO

EMO = evolutionary algorithms / randomized search algorithms
= applied to multiple criteria decision making (in general)
= used to approximate the Pareto-optimal set (mainly)

water
supply
m

mutation survival

.

Pareto set approximation




Multiobjectivization

Some problems are easier to solve in a multiobjective scenario

example: TSP
[Knowles et al. 2001]

% E 8 > (fi(n,a,b

T

7 € 8, = f(=)

Multiobjectivization
by addition of new “helper objectives” [Jensen 2004]
job-shop scheduling [Jensen 2004], frame structural design

[Greiner et al. 2007], theoretical (runtime) analyses [Brockhoff et al.

2009]
by decomposition of the single objective

TSP [Knowles et al. 2001], minimum spanning trees [Neumann and
Wegener 2006], protein structure prediction [Handl et al. 2008a],
theoretical (runtime) analyses [Handl et al. 2008b]
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Innovization

Often innovative design principles among solutions are found
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[Deb and Srinivasan 2006]
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Innovization

Often innovative design principles among solutions are found
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Innovization [Deb and Srinivasan 2006] "
= using machine learning techniques to find new and
innovative design principles among solution sets

= learning about a multiobjective optimization problem

Other examples:
= SOM for supersonic wing design [Obayashi and Sasaki 2003]
= biclustering for processor design and KP [Ulrich et al. 2007]




The History of EMO At A Glance

first EMO approaches

1984
dominance-based population ranking

Lol dominance-based EMO algorithms with diversity preservation techniques

1995

attainment functions

elitist EMO algorithms  preference articulation convergence proofs

2000 testproblem design quantitative performance assessment

multiobjectivization
uncertainty and robustness running time analyses quality measure design

MCDM + EMO quality indicator based EMO algorithms
statistical performance assessment

2010 many-objective optimization

The History of EMO At A Glance
first EMO. e Distribution ur |||p references by categories

dominance-based population ranking
1990
dominance-based EMO algorithms with diversity preservation techniques
1995
attainment functions
elitist EMO algorithms preference articulation = convergence proofs
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test problem design quantitative performance L
on
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The EMO Community

The EMO conference series:

EMO2001 EMO2003 EMO2005 EMO2007 EMO2009 EMO2011
Zurich Faro Guanajuato  Matsushima Nantes Ouro Peto
Switzerland Portugal Mexico Japan France Brazil

45/87 56 /100 59/115 65/124 39/72 42 /83

Many further activities:
special sessions, special journal issues, workshops, tutorials, ...

Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
» indicator-based EMO
= preference articulation

A Few Examples From Practice




Starting Point

What makes evolutionary multiobjective optimization
different from single-objective optimization?

- ==~a
- ~
- ~

performance

+—'_!f: PR performance

single objective

multiple objectives

A General (Multiobjective) Optimization

A multiobjective oprimization problem is defined by a 5-tuple (X,Z.f. g, <)
where

e X is the decision space,
e 7 =" is the objective space,

o f=(f].....fy) is a vector-valued function consisting of n objective func-
tions fi: X — R,
o g=1(g1,...,2m)is a vector-valued function consisting of m constraint func-

tions g; : X +— R, and
e < C ZxZisabinary relation on the objective space.

The goal is to identify a decision vector a € X' such that (i) forall 1 <i<m
holds g;(a) < 0 and (ii) for all b € X holds f(b) < f(a) = f(a) < f(b).

A Single-Objective Optimization Problem
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| — total preorder where
(X, prefrel) a prefrel b < f(a) rel f(b)




A Single-Objective Optimization Problem

Example: Leading Ones Problem

X, Z,: X >Z,rel cZ x2)

RS
Naw

({011}n1 {0’11 21 reny n}, fLO’ 2) Where fLO(a) = E*'-(HJ‘SJ‘- (I.J:)

Preference Relations

decision space objective space objective functions

/ —— partial order

X, Z,: X >Z,rel cZ x2)

preorder where
( fT/a prefrel b : < f(a) rel f(b)
X, prefre

()(,jﬁpar)

weak
a Spar b1 f(a) <par f(D) Pareto dominance

A Multiobjective Optimization Problem

Example: Leading Ones Trailing Zeros Problem
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A Multiobjective Optimization Problem

Example: Leading Ones Trailing Zeros Problem
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A Multiobjective Optimization Problem

Example: Leading Ones Trailing Zeros Problem

trailing Os
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Pareto Dominance

(u1,...,u,) weakly Pareto dominates (v1,...,vp):
(U, tn) Spar (V1,...,0p) VI <i<n:u <y
water (u1,...,u,) Pareto dominates (vy,...,v,):
Supply (Ul,...,un) gpar (Ul,...,’l)n) A (vla“-avn) %\par (U],...,Un)
Q
20 dominating Q
o incomparable
15— Q Q o
Q Q
10 — Q .
° Q QO
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Q@ I cost
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Different Notions of Dominance The Pareto-optimal Set

The minimal set of a preordered set (Y, <) is defined as

water
sypply . Min(Y,S) :={acY|VWeY :bSa=a<b}
f—&\ Q
20 — Q . . Y .
€ Q Pareto-optimal set Min(X, <par) Pareto-optimal front
e-dominance non-optimal decision vector QO  non-optimal objective vector
15— decisi ; biecti
Q Pareto dominance w2 sgglcséon : © JeCsI;\)/aece
10 Q
° Q QO
5 - Q :
Q cone dominance
B | T | | T cost
500 1000 1500 2000 2500 3000 3500

Visualizing Preference Relations Remark: Properties of the Pareto Set

Computational complexity:
multiobjective variants can become NP- and #P-complete

(eost) (water supply) Size: Pareto set can be exponential in the input length
(e.g. shortest path [Serafini 1986], MST [Camerini et al. 1984])
f, f,
@ o dir voint
- Q 77777777 O X nadir poin
wr, ‘:0:' ¢ Q QQ§
(feosts fwater supply) R Q o © ‘
X I optima - Q Range
QL
:.%:\Q\O p O ZHG _ . A o9
. ideal point
ok fi f




Approaches To Multiobjective Optimization

A multiobjective problem is as such underspecified
...because not any Pareto-optimum is equally suited!

Additional preferences are needed to tackle the problem:

Solution-Oriented Problem Transformation:
Induce a total order on the decision space, e.g., by
aggregation.

Set-Oriented Problem Transformation:

First transform problem into a set problem and then define
an objective function on sets.

Preferences are needed in any case, but the latter are weaker!

Problem Transformations and Set Problems

single solution problem set problem

search space

©
L

f@) = (fi(2), fo(2), s ful@))  f7(A) = {f(2) |z € A}

objective space

12
&

rry:eVifi(x)> fily AX*B:&Vyepear>y

(partially) ordered set @ @

(totally) ordered set

Solution-Oriented Problem Transformations

. parameters ,
multiple single
objectives | objective

(fy, fp ..., fi) —transformation — f

A scalarizing function s is a function s : Z — IR that maps each objective vector
(u,...,u,) € Z to areal value s(uy, ... u,) c R

Aggregation-Based Approaches

. parameters ,
multiple single
objectives | objective

(fy, fp ..., fi) —transformation — f

f2 Example: weighting approach

(Wy, Wy, ...y W)

TY S WYt WY T

Other example: Tchebycheff
Q y= max wi(u; - z;)




Set-Oriented Problem Transformations

For a multiobjective optimization problem (X, 7, f, g, <),
the associated set problem is given by (U, ), F, G, <) where

e U = 2% i5 the space of decision vector sets,
i.e., the powerset of X,

) = 27 is the space of objective vector sets,
i.e., the powerset of Z,

e F'is the extension of f to sets, i.e.,
F(A):={f(a) :ac A} for Ac U,

G = (Gy,...,G,,) is the extension of g to sets,
ie., Gi(A) :=max{g;(a) rac A} for1 <i<mand A€ V¥,

e < extends < to sets where
AZB:VbeBdacA:a<bh.

Pareto Set Approximations

Pareto set approximation (algorithm outcome) =
set of (usually incomparable) solutions

performance

A weakly dominates llB
= not worse in all objectives
and sets not equal

@@ dominates ID
= better in at least one objective

Al strictly dominates @8
= better in all objectives

B3 is incomparable to i€8
= neither set weakly better

What Is the Optimization Goal (Total Order)?

= Find all Pareto-optimal solutions?
» Impossible in continuous search spaces
» How should the decision maker handle 10000 solutions?

= Find a representative subset of the Pareto set?
» Many problems are NP-hard

» What does representative actually mean?

» Find a good approximation of the Pareto set?
» What is a good approximation?
» How to formalize intuitive
understanding:
O close to the Pareto front
0 well distributed

Quality of Pareto Set Approximations

A (unary) quality indicaror I is a function I : ¥ — R that assigns a Pareto set
approximation a real value.

f, % f
Q
Q S0
reference setf %
Q |~ /,Q
X7 9
v .
Q >§
Q
u_\{_)
fy fy

hypervolume indicator epsilon indicator




General Remarks on Problem

Idea:
Transform a preorder into a total preorder

Methods:
» Define single-objective function based on the multiple criteria

= Define any total preorder using a relation

Question:

Is any total preorder ok resp. are there any requirements
concerning the resulting preference relation?

= Underlying dominance relation rel should be reflected

Refinements and Weak Refinements

ref
O < refines a preference relation < iff

ref ref

ASBABAA=ASBABAA (better = better)

= fulfills requirement
ref

® < weakly refines a preference relation < iff

ref
A<XBA B£AA=A<B (better = weakly better)

ref
= does not fulfill requirement, but < does not contradict <

...sought are total refinements...

Example: Refinements Using Indicators

ref ref

A S B:=I(A) 21(B) A S B:<I(A,B) <I(B,A)

I(A) = volume of the
weakly dominated area
in objective space

I(A,B) = how much needs A to
be moved to weakly dominate B

. , !

Ay 0 '~._" | % i
|

|

unary hypervolume indicator binary epsilon indicator

Evolutionary Multiobjective Optimization, GECCO 2011, July 12, 2011

Example: Weak Refinement / No Refinement

ref ref

A< B:=I(AR) <I(B,R) A< B:=I(A) <I(B)

I(A,R) = how much needs A to I(A) = variance of pairwise
be moved to weakly dominate R distances

weak refinement no refinement

J

unary epsilon indicator

© Dimo Brockhoff, LIX, Ecole Polytechnigue

unary diversity indicator

Evolutionary Multiobjective Optimization, GECCO 2011, July 12, 2011




Algorithm Design: Particular Aspects

The Big Picture representation 1 fitness assignment mating selection

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
» performance assessment

. 0011
Selected Advanced Concepts Q _‘

= indicator-based EMO :
= preference articulation P T

0111

_ 2 environmental selection 3 variation operators
A Few Examples From Practice

aggregation-based  criterion-based =~ dominance-based select shuffle [Schaffer 1985]
according to

2 y2 2 . f1 T1
f
/5 o 2 T,
)/ Va fy
Q ._'.-{'/ Q T3
.Q'f"/'-f. .......... o. M
° o/ ¥ s ° o
Q E Q fk-1 T
% yi yi ; k-1
k Tk
parameter-oriented set-oriented

scaling-dependent scaling-independent population k separate selections mating pool




General Scheme of Dominance-Based EMO

mating selection (stochastic)

fitness assignment

4

popula-tion (archiv) offspring

o),
o o
X o

H

partitioning into
dominance classes

rank refinement within

environmental selection (greedy heuristic)

dominance classes

Ranking of the Population Using Dominance
... goes back to a proposal by David Goldberg in 1989.
... Is based on pairwise comparisons of the individuals only.

f2
» dominance rank: by how

many individuals is an .
individual dominated? S
dominance
» dominance count: how many o rank
individuals does an individual . 9
dominate? o .
N
- dominance depth: at which | oomnance 0%9”0
front is an individual located? e"%% LI

f

f,  dominance depth

Refinement of Dominance Rankings

Goal: rank incomparable solutions within a dominance class

© Density information (good for search, but usually no refinements)

Kernel method k-th nearest neighbor Histogram method

density = density = density =
function of the function of distance number of elements

distances to k-th neighbor within box

Q Q
f
o0 ° o ©
S Q

® Quality indicator (good for set quality): soon...

© Dimo Brockhoff, LIX, Ecole Polytechnigue
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Example: SPEA2 Dominance Ranking

Basic idea: the less dominated, the fitter...

Principle:  first assign each solution a weight (strength),
then add up weights of dominating solutions
f2
-.Qo
2
o 0
" Qe 0 Q S (strength) =
4 9. #dominated solutions @
° 4+3QO ’ R (raw fitness) =
2+1+4+3+2 2. strengths of
Q4+3+2 ; dominators o
1

Example: SPEA2 Diversity Preservation

Density Estimation
k-th nearest neighbor method:

» Fitness=R+1/(2+ D)
-

<1

= Dk = distance to the k-th
nearest individual

= Usually used: k=2

Example: NSGA-II Diversity Preservation

Density Estimation

crowding distance:

sort solutions wrt. each
objective

crowding distance to neighbors: | (i)

d(@) = Y |fm(i—=1) = fm(i+1)|

obj. m

Selection in SPEA2 and NSGA-II can result in

deteriorative cycles

non-dominated
solutions already
found can be lost

f

4200 -

P

3800 -

3600 -

3400 -

3200 |- |

‘\"S’GA-III ! " Parctoset -
Archive elements after t=5,000,000 ©

Archive elements after =10,000.000 o




Hypervolume-Based Selection

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...)
use hypervolume indicator to gwde the search: reflnement'

Main idea puntr
Delete solutions with Rypenoiume of &: :
the smallest : rH(A):j_a(f)az
hypervolume loss —‘ '
d(s) = lu(P)}-1(P /{s}) - o -
iteratively e
mi~ Irize |

But: can also result W@)=0 fimess Dmomt ﬁ

in cycles [Judt et al. 2011] gggg;egfﬂem

and is expensive [Bringmann and Friedrich 2009]

Moreover: HypE [Bader and Zitzler 2011]
Sampling + Contrlbutlon if more than 1 solutlon deleted

Variation in EMO

= At first sight not different from single-objective optimization
» Most algorithm design effort on selection until now
= But: convergence to a set # convergence to a point

Open Question:
* how to achieve fast convergence to a set?

Related work:
= multiobjective CMA-ES [igel et al. 2007] [VoR et al. 2010]
= set-based variation [Bader et al. 2009]
» set-based fitness landscapes [Verel et al. 2011]

Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
» indicator-based EMO
= preference articulation

A Few Examples From Practice

Once Upon a Time...

.. multiobjective EAs were mainly compared visually:

4.25 -




Two Approaches for Empirical Studies

Attainment function approach:

Applies statistical tests directly
to the samples of approximation
sets

Gives detailed information about
how and where performance
differences occur

Quality indicator approach:

= First, reduces each
approximation set to a single
value of quality

= Applies statistical tests to the
samples of quality values

A attains

B attains

ot " Indicator A B

e |= ‘ St |= Hypervolume indicator | 6.3431  7.1924

Tl @ | R eindicator | 12000  0.12722
| 4 ™ | ) ™ Ry indicator | 0.2434  0.1643
e i :E.’.i"J.‘n'.'.:‘.:. ﬁ. Ry indicator | 0.6454  0.3475

mimimize

minimize

see e.g. [Zitzler et al. 2003]

Empirical Attainment Functions

three runs of two multiobjective optimizers

RN/

X

% s wm
i3 . .*
L

' . o H); ' . i . L L

: L]
A b |

[ ] 5 -

' 113 '

@ -
T 1_,'.. S e e e e e

frequency of attaining regions

Attainment Plots

50% attainment surface for IBEA, SPEA2, NSGA2 (ZDT6)

i A attains B attains
1.35 = “wooa
- ] { 2 ! ;
& R ] g T T R ¥ ¥
1.3 ° E [N | erand worst E N le-{ grand worst
R 2 [ attamment | g 2 | T L attainment | g
{ = surface 2 i surface -
i Bl ~ m ¢ > -
1.5 : I - |m | R
£ |- . | |- |
f s 4 | L
1.2 « 1 X s /d L |_| _ i
i arand best grand best g
1, . attamment attainment -, 9
1.15 - ‘ - :
- minimize minimize
‘ ‘ ‘ T, _ ‘
1.2 1.4 1.6 1.8 “AM‘Z

latest implementation online at
http://eden.dei.uc.pt/~cmfonsec/software.html
see [Fonseca et al. 2011]

Evolutionary Multiobjective Optimization, GECCO 2011, July 12, 2011

Quality Indicator Approach

Goal: compare two Pareto set approximations A and B

hypervolume 432.34 420.13

distance 0.3308 0.4532 “ »
diversity 0.3637 0.3463 A better
spread 0.3622 0.3601

cardinality 6 5

A B

quality Boolean
measure function
| statement
reduction interpretation

Comparison method C = quality measure(s) + Boolean function




Example: Box Plots

epsilon indicator  hypervolume R indicator

IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2
0.008-

0.08; == ; 8:96013
: 0.006:
0.06: ; : a 0.0001 i ==
: : 0.00008 -
D122 .00 e mm S
0.02: 0.002: 0200002
p— 0 —
1 2 3 1 2 3 2 3
0.6~ T  — 0.8 0.4
0.5
0.6 0.3
Knapsacko.4 ﬁ ﬁ ﬁ
0.3 0.4 0.2
0.2 0.2 0.1
0.1 — - - - _
1 2 3 1 2 3 1 2 3

035! 0.35! 0.12
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Statistical Assessment (Kruskal Test)
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Overall p-value = 6.22079e-17. Overall p-value = 7.86834e-17.
Null hypothesis rejected (alpha 0.05) Null hypothesis rejected (alpha 0.05)

Knapsack/Hypervolume: HO = No significance of any differences
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What Are Good Set Quality Measures?

There are three aspects [thzler et al. 2000]

ni ]1L|tn||u111u In the case nl |||u]url11|LL(|\L upnlmnum; rlu Lthnmnn of quality is | fo
substantially more complex than for single-objective optumization problems, because the
optimization goal iself consists of mul(i])lu objectves:

o The distance of the resulting nondominated set to the Parcto=optimal front should be
minimized.

o A good (in most cases uniform) distribution of the solutons found is desirable. The
assessment of this eriterion might be based on 2 certain diseance merric,

o The extent of the obwained nondominated front should be masimized, Lo, for cach
objective, a wide range of values should be covered by the nondominated solutions,

In the lirerarnre sonme areenes can b fnnd o formalize che aliove definivion (or nares f1

Wronaq! [zitzler et al. 2003]

An infinite number of unary set measures is needed to detect
in general whether A is better than B




Set Quality Indicators

Open Questions:
= how to design a good benchmark suite?

= are there other unary indicators that are (weak)
refinements?

= how to achieve good indicator values?

Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
» indicator-based EMO
» preference articulation

A Few Examples From Practice

Indicator-Based EMO: Optimization Goal

When the goal is to maximize a unary indicator...
= we have a single-objective set problem to solve
= but what is the optimum?

» important: population size u plays a role!

Multiobjective Indicator Single-objective
Problem i Problem

Optimal p-Distribution:
A set of p solutions that maximizes a certain unary
indicator | among all sets of p solutions is called
optimal u-distribution for I.

[Auger et al. 2009a]

Optimal p-Distributions for the Hypervolume

Hypervolume indicator refines dominance relation
—> most results on optimal p-distributions for hypervolume

Optimal p-Distributions (example results)

[Auger et al. 2009a]:
= contain equally spaced points iff front is linear
= density of points « \/—f/(z) with f’ the slope of the front

[Friedrich et al. 2011]:

optimal p-distributions for the opr g lelmnld/e BB
hypervolume correspond to HYP L YA ;/B—,b
g-approximations of the front NN Ky )

n—2




Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
» indicator-based EMO
= preference articulation

A Few Examples From Practice

Articulating User Preferences During Search

What we thought: EMO is preference-less

TIVEI Uy U VL,

Search before decision making: Optimization is performed without any pref-
erence information given. The result of the search process is a ser of
(ideally Pareto-optimal) candidate solutions from which the final choice
1s made by the DM.

Docicion making duving seaveh: The DM can articuilate nrafersnces diring

What we learnt: EMO just uses weaker preference
information

[Zitzler 1999]

environmental Q preferable?
selection
3 out of 6 s °)
IIIIIIIIIIIIIIII*’—\

Incorporation of Preferences During Search

Nevertheless...
= the more (known) preferences incorporated the better

» in particular if search space is too large
[Branke 2008], [Rachmawati and Srinivasan 2006], [Coel]lo Coello 2000]
2

@ Refine/modify dominance relation, e.g.:|™

= using goals, priorities, constraints
[Fonseca and Fleming 1998a,b]

» using different types of cones
[Branke and Deb 2004]

@® Use quality indicators, e.g.: g

= based on reference points and directions [Deb and Sundar
2006, Deb and Kumar 2007]

= based on binary quality indicators [zitzler and Kiinzli 2004]
= based on the hypervolume indicator (now) [Zitzler et al. 2007]
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Example: Weighted Hypervolume Indicator

[Zitzler et al. 2007]

i ?é_?,
14 = [ w(Z)alz +@§g@,
weightec

hyparvolume

goenera
weignt |
weight 1 ¢

[




Weighted Hypervolume in Practice

IBEA ‘ IBFA

|
Tl 0 s
I f, f, f f f i,
weightec
Fypervclume weighled
Fyrevcl.me tw pre‘erence
1 peitls
~ ™~

f; f, fs fa f, f; f;
[Auger et al. 2009b]

Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
» performance assessment

Selected Advanced Concepts
= indicator-based EMO
» preference articulation

A Few Examples From Practice

Application: Design Space Exploration

! |

Specification — Optimization — Evaluation — Implementation
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Application: Design Space Exploration

Truss Bridge Design
[Bader 2010]

— Implementation




Application: Design Space Exploration

Truss Bridge Design
[Bader2010]

il tridge meren s
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no robustness

Network Processor Design
[Thiele et al. 2002]

Application: Design Space Exploration

Truss Bridge Design
[Bader2010]

el bridge wten mas

A
/ \//\f' \’f\\/\ /

Network Processor Architecture
[Thiele et al. 2002]

Tl o2 o
20[ Water resource
no robustness xi0’
management G g ?

[Siegfried et al. 2009]

Application: Trade-Off Analysis

Module identification from biological data [Calonder et al. 2006]

Find group of genes wrt
different data types:

= similarity of gene
expression profiles

= overlap of protein
interaction partners

= metabolic pathway
map distances
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The EMO Community

Links:

» EMO mailing list: http://w3.ualg.pt/lists/emo-list/

= EMO bibliography: http://www.lania.mx/~ccoello/EMOO/

= EMO conference series: http://www.mat.ufmg.br/emo2011/

Books:

= Multi-Objective Optimization using Evolutionary Algorithms
Kalyanmoy Deb, Wiley, 2001

= Evolutionary Algorithms for Solving Multi Evolutionary Algorithms
for Solving Multi-Objective Problems Objective Problems, Carlos A.
Coello Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2™
Ed. 2007

= Multiobjective Optimization—Interactive and Evolutionary
Approaches, J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors,
volume 5252 of LNCS. Springer, 2008 [many open questions!]

= and more...

PISA: http://Iwww.tik.ee.ethz.ch/pisa/

SysTEMS OPTIMIZATION

e B

Download of Selectors, Variators and Performance Assessment
Wvisa This page contans the currently avadable variators (see of PISA) a5 well
s Princigles and assessment tools (see Mo A . This vanators are mandy test snd banchmark problems that -
Doasmentation £an b Lt 1o assess the performance of cfferert cptimizers. EXPO i 3 complen apphcation form the are of (’
BIEA for Computer design thak can be used as a benchmark problem 100, The Selectors ane state-of the-art evokionary
a Bagnners i) chjective SDMEIREN Metods. TF 10U IRt WIRE 7 U 3 Module, FEaRe ko 3t WA nd SBT3
Hole, Links to o can be found
Ji Downloads Anreslay Hajak pointad cut & e WEG ssdectcs, e # your varsion it clder
than 2010/02/03.
A\ Puaformance
Assessment
Wirke and Submit 2
Module Optimization Problems Optimization Algorithms
4§ Publications, Bugs, (variator) (selector)
Contact & License
GWLAB - Multl-Objective Groundwaber Ma) o u ! Preference Al i fox | ——
e e Source:  in
Bersen:
Source: i [ &1V Samgling hiawed bigportafumie ¢ T —
Bnaries: W 1 v i
Weuries:
Sourcer in [ simss - Siemple | T T o _
S h x - Source:  in Java as 1 or
Diaried: 3%, 48 0 66 39
L0777 Javwa Example Variator
Source: in Java [ v  Estjmaion A han fo | dive |
Binaries: ind

Journal of Multi Criteria Decision Analysisj|

Special Issue
“Evolutionary Multiobjective Optimization:
Methodologies and Applications”
guest editors: Dimo Brockhoff and Kalyanmoy Deb
submission deadline: July 31, 2011
http://emoatmcdm.gforge.inria.fr/specialissue.php

Questions?

Additional Slides




Instructor Biography

Dimo Brockhoff

System Modeling and Optimization Team (sysmo)
Laboratoire d'Informatique (LIX)

Ecole Polytechnique

91128 Palaiseau Cedex

France

After obtaining his diploma in computer science (Dipl. Inform.)
from University of Dortmund, Germany in 2005, Dimo
received his PhD (Dr. sc. ETH) from ETH Zurich, Switzerland
in 2009. Between June 2009 and November 2010 he was a
postdoctoral researcher at INRIA Saclay lle-de-France in
Orsay, France. Since November 2010 he has been a
postdoctoral researcher at LIX, Ecole Polytechnique within the
CNRS-Microsoft chair "Optimization for Sustainable
Development (OSD)" in Palaiseau, France. His research
interests are focused on evolutionary multiobjective
optimization (EMO), in particular on many-objective
optimization and theoretical aspects of indicator-based
search.

© Dimo Brockhoff, LIX, Ecole Polytechnigue

Evolutionary Multiobjective Optimization, GECCO 2011 July 12, 2011 97

References

[Auger et al. 2009a] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler. Theory of the Hypervolume Indicator:
Optimal p-Distributions and the Choice of the Reference Point. In Foundations of Genetic Algorithms
(FOGA 2009), pages 87-102, New York, NY, USA, 2009. ACM.

[Auger et al. 2009b] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler. Articulating User Preferences in Many-
Objective Problems by Sampling the Weighted Hypervolume. In G. Raidl et al., editors, Genetic and
Evolutionary Computation Conference (GECCO 2009), pages 555-562, 2009. ACM

[Bader 2010] J. Bader. Hypervolume-Based Search For Multiobjective Optimization: Theory and Methods.
PhD thesis, ETH Zurich, 2010

[Bader and Zitzler 2011] J. Bader and E. Zitzler. HypE: An Algorithm for Fast Hypervolume-Based Many-
Objective Optimization. Evolutionary Computation 19(1):45-76, 2011.

[Bader et al. 2009] J. Bader, D. Brockhoff, S. Welten, and E. Zitzler. On Using Populations of Sets in
Multiobjective Optimization. In M. Ehrgott et al., editors, Conference on Evolutionary Multi-Criterion
Optimization (EMO 2009), volume 5467 of LNCS, pages 140-154. Springer, 2009

[Branke 2008] J. Branke. Consideration of Partial User Preferences in Evolutionary Multiobjective
Optimization. In Multiobjective Optimization, volume 5252 of LNCS, pages 157-178. Springer, 2008

[Branke and Deb 2004] J. Branke and K. Deb. Integrating User Preferences into Evolutionary Multi-
Objective Optimization. Technical Report 2004004, Indian Institute of Technology, Kanpur, India,
2004. Also published as book chapter in Y. Jin, editor: Knowledge Incorporation in Evolutionary
Computation, pages 461-477, Springer, 2004

[Bringmann and Friedrich 2009] K. Bringmann and T. Friedrich. Approximating the Least Hypervolume
Contributor: NP-hard in General, But Fast in Practice. In M. Ehrgott et al., editors, Conference on
Evolutionary Multi-Criterion Optimization (EMO 2009),pages 6—20. Springer, 2009

[Brockhoff et al. 2009] D. Brockhoff, T. Friedrich, N. Hebbinghaus, C. Klein, F. Neumann, and E. Zitzler. On
the Effects of Adding Objectives to Plateau Functions. IEEE Transactions on Evolutionary
Computation, 13(3):591-603, 2009

References

[Calonder et al. 2006] M. Calonder, S. Bleuler, and E. Zitzler. Module Identification from Heterogeneous
Biological Data Using Multiobjective Evolutionary Algorithms. In T. P. Runarsson et al., editors,
Conference on Parallel Problem Solving from Nature (PPSN 1X), volume 4193 of LNCS, pages 573—
582. Springer, 2006

[Camerini et al. 1984] P. M. Camerini, G. Galbiati, and F. Maffioli. The complexity of multi-constrained
spanning tree problems. In Theory of algorithms, Colloquium PECS 1984, pages 53-101, 1984.

[Coello Coello 2000] C. A. Coello Coello. Handling Preferences in Evolutionary Multiobjective Optimization:
A Survey. In Congress on Evolutionary Computation (CEC 2000), pages 30-37. IEEE Press, 2000

[Deb and Kumar 2007] K. Deb and A. Kumar. Light Beam Search Based Multi-objective Optimization Using
Evolutionary Algorithms. In Congress on Evolutionary Computation (CEC 2007), pages 2125-2132.
IEEE Press, 2007

[Deb and Srinivasan 2006] K. Deb and A. Srinivasan. Innovization: Innovating Design Principles through
Optimization. In Genetic and Evolutionary Computation Conference (GECCO 2006), pages 1629—
1636. ACM, 2006

[Deb and Sundar 2006] K. Deb and J. Sundar. Reference Point Based Multi-Objective Optimization Using
Evolutionary Algorithms. In Maarten Keijzer et al., editors, Conference on Genetic and Evolutionary
Computation (GECCO 2006), pages 635-642. ACM Press, 2006

[Fonseca and Fleming 1998a] C. M. Fonseca and Peter J. Fleming. Multiobjective Optimization and Multiple
Constraint Handling with Evolutionary Algorithms—Part I: A Unified Formulation. IEEE Transactions
on Systems, Man, and Cybernetics, 28(1):26-37, 1998

[Fonseca and Fleming 1998b] C. M. Fonseca and Peter J. Fleming. Multiobjective Optimization and Multiple
Constraint Handling with Evolutionary Algorithms—Part II: Application Example. IEEE Transactions on
Systems, Man, and Cybernetics, 28(1):38—47, 1998

References

[Fonseca et al. 2011] C. M. Fonseca, A. P. Guerreiro, M. Lépez-Ibafiez, and L. Paquete. On the
computation of the empirical attainment function. In Conference on Evolutionary Multi-Criterion
Optimization (EMO 2011). Volume 6576 of LNCS, pp. 106-120, Springer, 2011

[Friedrich et al. 2011] T. Friedrich, K. Bringmann, T. VoB, C. Igel. The Logarithmic Hypervolume Indicator.
In Foundations of Genetic Algorithms (FOGA 2011). ACM, 2011. To appear.

[Greiner et al. 2007] D. Greiner, J. M. Emperador, G. Winter, and B. Galvan. Improving Computational
Mechanics Optimium Design Using Helper Objectives: An Application in Frame Bar Structures. In
Conference on Evolutionary Multi-Criterion Optimization (EMO 2007), volume 4403 of LNCS, pages
575-589. Springer, 2007

[Handl et al. 2008a] J. Handl, S. C. Lovell, and J. Knowles. Investigations into the Effect of
Multiobjectivization in Protein Structure Prediction. In G. Rudolph et al., editors, Conference on
Parallel Problem Solving From Nature (PPSN X), volume 5199 of LNCS, pages 702—711. Springer,
2008

[Handl et al. 2008b] J. Handl, S. C. Lovell, and J. Knowles. Multiobjectivization by Decomposition of Scalar
Cost Functions. In G. Rudolph et al., editors, Conference on Parallel Problem Solving From Nature
(PPSN X), volume 5199 of LNCS, pages 31-40. Springer, 2008

[Igel et al. 2007] C. Igel, N. Hansen, and S. Roth. Covariance Matrix Adaptation for Multi-objective
Optimization. Evolutionary Computation, 15(1):1-28, 2007

[Judt et al. 2011] L. Judt, O. Mersmann, and B. Naujoks. Non-monotonicity of obtained hypervolume in 1-
greedy S-Metric Selection. In: Conference on Multiple Criteria Decision Making (MCDM 2011),
abstract, 2011.

[Knowles et al. 2001] J. D. Knowles, R. A. Watson, and D. W. Corne. Reducing Local Optima in Single-
Objective Problems by Multi-objectivization. In E. Zitzler et al., editors, Conference on Evolutionary
Multi-Criterion Optimization (EMO 2001), volume 1993 of LNCS, pages 269-283, Berlin, 2001.
Springer




References

[Jensen 2004] M. T. Jensen. Helper-Objectives: Using Multi-Objective Evolutionary Algorithms for Single-
Objective Optimisation. Journal of Mathematical Modelling and Algorithms, 3(4):323-347, 2004.
Online Date Wednesday, February 23, 2005

[Neumann and Wegener 2006] F. Neumann and |. Wegener. Minimum Spanning Trees Made Easier Via
Multi-Objective Optimization. Natural Computing, 5(3):305-319, 2006

[Obayashi and Sasaki 2003] S. Obayashi and D. Sasaki. Visualization and Data Mining of Pareto Solutions
Using Self-Organizing Map. In Conference on Evolutionary Multi-Criterion Optimization (EMO 2003),
volume 2632 of LNCS, pages 796-809. Springer, 2003

[Rachmawati and Srinivasan 2006] L. Rachmawati and D. Srinivasan. Preference Incorporation in Multi-
objective Evolutionary Algorithms: A Survey. In Congress on Evolutionary Computation (CEC 2006),
pages 962-968. IEEE Press, July 2006

[Schaffer 1985] J. D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In
John J. Grefenstette, editor, Conference on Genetic Algorithms and Their Applications, pages 93—-100,
1985.

[Serafini 1986] P. Serafini. Some considerations about computational complexity for multi objective
combinatorial problems. In: Recent advances and historical development of vector optimization,
number 294 in Lecture Notes in Economics and Mathematical Systems. Springer, 1986.

[Siegfried et al. 2009] T. Siegfried, S. Bleuler, M. Laumanns, E. Zitzler, and W. Kinzelbach. Multi-Objective
Groundwater Management Using Evolutionary Algorithms. IEEE Transactions on Evolutionary
Computation, 13(2):229-242, 2009

[Thiele et al. 2002] L. Thiele, S. Chakraborty, M. Gries, and S. Kiinzli. Design Space Exploration of Network
Processor Architectures. In Network Processor Design 2002: Design Principles and Practices. Morgan
Kaufmann, 2002

References

[Ulrich et al. 2007] T. Ulrich, D. Brockhoff, and E. Zitzler. Pattern Identification in Pareto-Set
Approximations. In M. Keijzer et al., editors, Genetic and Evolutionary Computation Conference
(GECCO 2008), pages 737-744. ACM, 2008.

[Verel et al. 2011] S. Verel, C. Dhaenens, A. Liefooghe. Set-based Multiobjective Fitness Landscapes: A
Preliminary Study. In Genetic and Evolutionary Computation Conference (GECCO 2011). ACM, 2010.
To appear.

[VoR et al. 2010] T. VoR, N. Hansen, and C. Igel. Improved Step Size Adaptation for the MO-CMA-ES. In J.
Branke et al., editors, Genetic and Evolutionary Computation Conference (GECCO 2010), pages 487—
494. ACM, 2010

[Zitzler 1999] E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications.
PhD thesis, ETH Zurich, Switzerland, 1999

[Zitzler and Kiinzli 2004] E. Zitzler and S. Kinzli. Indicator-Based Selection in Multiobjective Search. In X.
Yao et al., editors, Conference on Parallel Problem Solving from Nature (PPSN VIII), volume 3242 of
LNCS, pages 832-842. Springer, 2004

[Zitzler et al. 2003] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da Fonseca.
Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions
on Evolutionary Computation, 7(2):117-132, 2003

[Zitzler et al. 2000] E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary Algorithms:
Empirical Results. Evolutionary Computation, 8(2):173—195, 2000




