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Blackbox Optimization
Cost

power
consumption

Most problems are multiobjective in nature...
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Blackbox Optimization
Cost

Pareto Front

Issues:

objectives

non-differentiable expensive
(e.g. simulations)

non-linear noisy

problem huge search 
spaces

many constraints

many objectives

power
consumption

Most problems are multiobjective in nature...
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Blackbox Optimization
Cost
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Blackbox optimization

Features:
� function f used as an oracle
� only mild locality assumptions

Most problems are multiobjective in nature...
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Blackbox Optimization
Cost

Pareto Front

?

power
consumption

Blackbox optimization

Features:
� function f used as an oracle
� only mild locality assumptions

Most problems are multiobjective in nature...

Evolutionary Multiobjective Optimization (EMO)

EMO =
randomized search heuristics
optimizing on solution sets

“sampling” the Pareto front
to inform decision maker
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� Talk about some of my work
� A subjective list of “hot topics” in the theory of EMO
� Share interesting open questions and ideas

Why?
� build foundation for later discussions this week
� have content for possible collaborations/thesis topics

the GECCO deadline is soon ;-)

Main Purpose of My Talk
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Benchmarking 
“on how to compare sets of solutions”

Indicator-based Search and Preference Articulation
“on how to optimize and steer the search in many-objective problems”

Objective Reduction and Multiobjectivization
“on when to reduce and when to increase the number of objectives”

Overview
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Once Upon a Time...

... multiobjective EAs were mainly compared visually:

ZDT6 benchmark problem: IBEA, SPEA2, NSGA-II
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Attainment function approach:

� Applies statistical tests directly
to the samples of approximation 
sets

� Gives detailed information about 
how and where performance 
differences occur

Two Approaches for Empirical Studies

Quality indicator approach:

� First, reduces each 
approximation set to a single 
value of quality

� Applies statistical tests to the 
samples of quality values

see e.g. [Zitzler et al. 2003]
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Don’t use an arbitrary quality indicator, but a meaningful one...

Problem With Arbitrary Quality Indicators
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Refinements

refines a preference relation iff

A    B ∧ B A ⇒ A     B ∧ B A            (better ⇒ better)

⇒ fulfills requirement

…sought are total refinements!
(such as the hypervolume indicator)
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but still...
� difficult to interpret absolute numbers
� better: relative values: how far from the optimum (as in single-

obj. opt.)

Question:
� what is the optimum?

Optimality in Indicator-Based Search
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Optimal µ-Distributions

When the goal is to maximize the hypervolume…
� this yields sets with only

Pareto-optimal solutions
[Fleischer 2003]

� those sets, if unrestricted in size,
cover the entire Pareto front

� many hypervolume-based EMO
algorithms have a population size µ!

Optimal µ-Distribution:
A set of µ solutions that maximizes a certain (unary) indicator I 
among all sets of µ solutions is called optimal µ-distribution for I.
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Optimal µ-Distributions

Questions:
� how are optimal μ-distributions characterized?

► understand the bias of the indicator (influence on DM)
► what is the influence of the indicator's parameters on optimal 
μ-distributions?

► guidelines for practical usage
� do algorithms converge to optimal μ-distributions?
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Notations for 2-Objective Case [Auger et al. 2009]

hypervolume indicator:

µ-dimensional
optimization problems

Results for 2 objectives only… (except [Auger et al. 2010])
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A Necessary Condition [Auger et al. 2009]

Proof idea:
max      derivative is 0 at each       or       is at the boundary 

of the domain

2-dimensional
optimization problem
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Interpretation of Necessary Condition

Example: equal distances (only) on linear fronts

generalization of results in [Emmerich et al. 2005, Beume et al. 2007]

exact optimal μ-distribution for linear fronts and any choice of reference point 
[Brockhoff 2010]
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A Density Result: When µ Goes to Infinity

Observation:
general front shapes too difficult to investigate for finite µ 

Question:
can we characterize optimal µ-distributions with respect to a 

density                                                   ?

[Auger et al. 2009]
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Result and Interpretation

The resulting density is

How can we interpret this?
� bias only depends on slope of f in contrast to [Deb et al. 2005, Zitzler 

and Thiele 1998]
� density highest where slope = 45° compliant to [Beume et al. 2007]

� experimental results for finite and small µ support the result
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� now we can transform multiobjective benchmarking into a single-
objective problem (where we sometimes know the optimum)

� we can use exactly the same methodology than for single-
objective benchmarking:
� horizontal view (i.e., fixing target values instead of runtime)
� ERT
� performance plots a la BBOB

Observation:
we are not as advanced in EMO as in single-objective optimization

Implications for Benchmarking
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Optimal μ-distributions
� uniqueness proofs
� other test problems & other indicators
� >2D
� efficient calculation/approximation
� ‘numbers’ for practical usage (on web page?)

Linear convergence speed
� what’s the problem in current algorithms?
� how to achieve it?

Others
� “good” test functions
� multiobjective BBOB
� effective restarts in EMO

Open Questions
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Indicator-based Search and Preference Articulation
“on how to optimize and steer the search in many-objective problems”

Overview
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Assume, we have chosen a total refinement and therefore an 
optimization goal
� how to achieve it as fast as possible?

Example: hypervolume indicator
� SMS-EMOA (changing the reference point might be bad?!)
� Even with fixed reference point, greedy selection might be bad
� HypE (?!)
� Something else?
� Isn’t the variation operator even more important?

Needed:
� better understanding of what’s happening in search
� (first) examples of runtime analyses/convergence speed

Indicator-Based Search
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Idea of Hypervolume-Based Selection

Main Idea (SMS-EMOA, MO-CMA-ES, HypE, …)
use hypervolume indicator to guide the search: refinement!

Delete solutions with
the smallest
hypervolume loss
d(s) = IH(P)-IH(P / {s})
iteratively

But: can result
in cycles [Judt et al. 2011]

is expensive [Bringmann and Friedrich 2008]

and can result in arbitrarily bad sets compared to the optimal one
[Bringmann and Friedrich 2009]
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A Simple Algorithm: SIBEA

Properties:
� No worsenings of IH
� Duplicated solutions removed first
� Selection similar to SMS-EMOA [Emmerich et al. 2005] and MO-CMA-

ES [Igel et al. 2007]
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Theorem [Brockhoff et al. 2008]:
If μ≥n+1, the (μ+1)SIBEA
optimizes LOTZ in O(μn2)
generations.

Sketch of Proof:
� 2k mutations increase IH (prob.                          )
� Total increase  
� Exp. increase for 1 mutation              ; with Markov: i.e., in 8k 

good mutations         w.h.p.
� Exp. runtime for increase by        is 
� By induction, O(n) such increases sufficient to reach front, then 

O(μn) time enough to find all other n points

Runtime Analysis of SIBEA on LOTZ
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A More Involved Selection Scheme: HypE

opt. dist better
new 59.7% 0.00109 30.2%
standard 44.5% 0.00261 3.2%

Idea [Bader and Zitzler 2011]

Solution quality = expected loss, when removing the point and 
(randomly) k-1 others 

Comparison HypE/standard:

example with 
k=3

Question:
can we show the improvement 
also theoretically?
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Articulating User Preferences

What if user wants something else than finding the optimal μ-
distribution for the hypervolume indicator? E.g.
� (p)reference points
� stressing extremes
� simulate classical scalarizing function approaches

Idea:
[Zitzler et al. 2007]
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Examples of Weight Functions

preference point

stressing one objective

Question:
Does this work also interactively?
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Preliminary results shows yes:

Some Experimental Results

interaction every 100 iterations:

choose alternatively
leftmost/rightmost point

Observation:
Very difficult to assess those 
interactive methods in a decent way
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HypE
� why is HypE better than normal HYP-based selection?
� and when? (Is there an example where it’s provably better?)
� by how much (convergence speed?)
� greedy vs. oneShot: advantages and disadvantages
� a more advanced scheme than assuming uniform deletion?

SMS-EMOA: does algo becomes faster if HYP worsenings are not 
allowed (eg. by keeping old population if new one is worse)?

Convergence to optimal μ-distribution
� do other algorithms converge to optimal μ-distribution for other 

indicators?
Others
� more runtime analyses of indicator-based EMO
� weighted hypervolume Æ reduced pop size of SEMO?

� preferences: how to evaluate/compare algos objectively?

Open Questions
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Objective Reduction and Multiobjectivization
“on when to reduce and when to increase the number of objectives”

Overview
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Adding Objectives: Common Belief…

problems may become harder

� [Fonseca and Fleming 1995], 
[Deb 2001], [Coello et al. 
2002], and others:
� conflicts between 

objectives
� Pareto front size   
� # incomparable 

solutions   
� [Winkler 1985]:
� theoretical work for 

random objectives

problems may become easier

� [Knowles et al. 2001]:
� multiobjectivization

� [Jensen 2004]:
� helper-objectives

� [Scharnow et al. 2002], 
[Neumann and Wegener 
2006]:
� theoretical investigations
� 2D faster than 1D
� decomposition

Statements are contradictory: some studies say that…
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Adding Objectives: Runtime Analysis

Add
Faster:

Add
Slower:
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Conclusions When Adding Objectives

Additional objectives can:
� turn a region with direction into a plateau of incomparable 

solutions
� add direction to a plateau of indifferent solutions

Contrary, removing objectives can do the opposite
� and therefore might also reduce the optimization time
� interesting: removing objectives results in a refinement !

Several works on automated objective reduction
� for reducing the runtime of hypervolume-based methods in 

many-objective optimization
� for giving insights into the problem for the decision maker
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� faster aggregation heuristics
� what happens exactly when aggregating objectives?
� which orders can be generated by e.g. a weighted sum?

� test problems with changing conflict
� GUI for decision support (incl. innovization?)
� online reduction:
� when to delete, when to add objectives? (MAB problem)

� more examples of multiobjectivization:
� both with runtime analysis + experimental

Open Questions
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� Three aspects of Theory in EMO
� benchmarking
� indicator-based search and preference articulation
� objective reduction and multiobjectivization

� Many open questions
� Lots of ideas for future work

...let’s do it ☺

Conclusions
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French Summer School in Evolutionary Algorithms

June 12-15, 2012
Quiberon (Bretagne)

organizers: D. Brockhoff, L. Jourdan, A. Liefooghe, S. Verel

Announcement

Questions?
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