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Pareto-optimal front
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finding the good
solutions
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Observations: there is no single optimal solution, but
some solutions (   ) are better than others (   )
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• supply more important than cost (ranking)

• cost must not exceed 2400 (constraint)

too expensive
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Before Optimization:

rank objectives,
define constraints,…

search for one 
(blue) solution

When to Make the Decision
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When to Make the Decision
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After Optimization:

search for a set of       
(blue) solutions

select one solution
considering
constraints, etc.

When to Make the Decision

Before Optimization:

rank objectives,
define constraints,…

search for one 
(blue) solution
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When to Make the Decision

Focus: learning about a problem
trade-off surface
interactions among criteria
structural information

After Optimization:

search for a set of       
(blue) solutions

select one solution
considering
constraints, etc.

Before Optimization:

rank objectives,
define constraints,…

search for one 
(blue) solution
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Multiple Criteria Decision Making (MCDM)

MCDM can be defined as the study of methods and procedures by which 
concerns about multiple conflicting criteria can be formally incorporated into 
the management planning process 

Definition: MCDM

model

μ3                

μ2μ1

trade-off surface

decision making

(exact) optimization
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Multiple Criteria Decision Making (MCDM)

model

μ3                

μ2μ1decision making

(exact) optimization

MCDM can be defined as the study of methods and procedures by which 
concerns about multiple conflicting criteria can be formally incorporated into 
the management planning process 

Definition: MCDM

objectives

non-differentiable
expensive

(integrated simulations)

non-linear noisy

problem
uncertain huge

search
spaces

many constraints

many objectives
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Multiple Criteria Decision Making (MCDM)

μ3                

μ2μ1

(exact) optimization

huge search spacesmultiple objectives

model objectives

non-differentiable
expensive

(integrated simulations)

non-linear noisy

problem
uncertain

many constraints

many objectives
Black box optimization trad

only mild assumptions

MCDM can be defined as the study of methods and procedures by which 
concerns about multiple conflicting criteria can be formally incorporated into 
the management planning process 

Definition: MCDM
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Evolutionary Multiobjective Optimization (EMO)

water
supply

cost

EMO = evolutionary algorithms / randomized search algorithms
applied to multiple criteria decision making (in general)
used to approximate the Pareto-optimal set (mainly)

Definition: EMO

Pareto set approximation
survivalmutation

x2

x1

f

matingrecombination
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The History of EMO At A Glance

1984

1990

1995

2000

2010

dominance-based EMO algorithms with diversity preservation techniques

elitist EMO algorithms

quantitative performance assessment

attainment functions

preference articulation convergence proofs

test problem design

dominance-based population ranking

first EMO approaches

MCDM + EMO           quality indicator based EMO algorithms

running time analyses quality measure designuncertainty and robustness

statistical performance assessmentmany-objective optimization

multiobjectivization
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1984

1990

1995

2000

2007

first EMO approaches

dominance-based EMO algorithms with diversity preservation techniques

elitist EMO algorithms

quantitative performance assessment

attainment functions

MCDM + EMO                       EMO algorithms based on set quality measures

preference articulation convergence proofs

running time analyses quality measure designuncertainty and robustness

statistical performance assessment

test problem design

high-dimensional objective spaces

multiobjectivization

dominance-based population ranking

1984

2011

The History of EMO At A Glance

http://delta.cs.cinvestav.mx/~ccoello/EMOO/EMOOstatistics.html

Overall: 6105 references by June 15th, 2011
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The EMO Community

The EMO conference series:

EMO2001 EMO2003 EMO2005 EMO2007 EMO2009 EMO2011 EMO2013
Zurich Faro Guanajuato Matsushima Nantes Ouro Peto Sheffield

Switzerland Portugal Mexico Japan France Brazil UK

45/87 56/100 59/115 65/124 39/72 42/83 ?

Many further activities:
special sessions, special journal issues, workshops, tutorials, ...
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A Brief Introduction to EMO
basics: what is the difference between single- and 
multiobjective optimization?
state-of-the-art algorithm design concepts
performance assessment

Advanced Concepts Useful in Practice
objective reduction
multiobjectivization
innovization 

Examples of Applications

Overview
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Starting Point

What makes evolutionary multiobjective optimization
different from single-objective optimization?  

cost

pe
rfo

rm
an

ce

cost

single objective multiple objectives

?
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A General (Multiobjective) Optimization Problem
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(X, Z, f: X → Z, rel ⊆ Z × Z)

Single-Objective Optimization As Special Case

decision space objective space objective function

total order ≤ on



24“A Brief Introduction to EMO” @ TU Dortmund, September 23, 2011© Dimo Brockhoff, LIX, Ecole Polytechnique 24

decision space objective space objective function

total order ≤ on

total preorder where
a prefrel b ⇔ f(a) rel f(b)

(X, Z, f: X → Z, rel ⊆ Z × Z)

Single-Objective Optimization As Special Case

(X, prefrel)
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Preference Relations in the Multiobjective Case

decision space objective space objective functions

partial order

preorder where
a prefrel b :⇔ f(a) rel f(b)

most of the time not total!

Example:
weak
Pareto dominance

(X, Z, f: X → Z, rel ⊆ Z × Z)

(X, prefrel) 
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The Pareto-optimal Set

f2

f1

x2

x1

decision
space 

objective
space 

Pareto-optimal set                        
non-optimal decision vector

Pareto-optimal front
non-optimal objective vector
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Remark: Properties of the Pareto Set

f2

f1

f2

f1

nadir point

ideal point

Computational complexity: 
multiobjective variants can become NP- and #P-complete

Size: Pareto set can be exponential in the input length
(e.g. shortest path [Serafini 1986], MST [Camerini et al. 1984])

Shape

Range
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Approaches To Multiobjective Optimization

A multiobjective problem is as such underspecified
…because not any Pareto-optimum is equally suited!

Additional preferences are needed to tackle the problem: 

Solution-Oriented Problem Transformation:
Induce a total order on the decision space, e.g., by aggregation.

Set-Oriented Problem Transformation:
First transform problem into a set problem and then define an 
objective function on sets.

Preferences are needed in any case, but the latter are weaker!
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Problem Transformations and Set Problems

search space

objective space

(partially) ordered set

(totally) ordered set

single solution problem set problem
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Solution-Oriented Problem Transformations

transformation

parameters

f(f1, f2, …, fk)

multiple
objectives

single
objective
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Aggregation-Based Approaches

f2

f1

transformation

parameters

f(f1, f2, …, fk)

multiple
objectives

single
objective

Example: weighting approach

y = w1y1 + … + wkyk

(w1, w2, …, wk)

Other example: Tchebycheff
y= max wi(ui – zi)
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Set-Oriented Problem Transformations

Another approach:
define relation via 
quality indicators
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Quality of Pareto Set Approximations

f2

f1

f2

f1

reference set

ε

ε

hypervolume indicator epsilon indicator

I(A) = volume of weakly dominated
area in objective space

I(A,R) = how much needs A to
be moved to weakly dominate R

A     B :⇔ I(A) ≥ I(B) A     B :⇔ I(A,R) ≤ I(B,R)
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Refinements

Not all preference relations are useful...

refines the weak dominance relation      iff

A    B ∧ B A ⇒ A     B ∧ B A            (better ⇒ better)

…sought are total refinements
such as the hypervolume indicator
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Algorithm Design: Particular Aspects

0100

0011 0111

0011
0000

0011

1011

representation

environmental selection

parameters

fitness assignment mating selection

variation operators
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Fitness Assignment: Principal Approaches

y1

y2

y1

y2y2

y1

aggregation-based criterion-based dominance-based

parameter-oriented
scaling-dependent

set-oriented
scaling-independent

weighted sum                     VEGA                           SPEA2
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Criterion-Based Selection: VEGA

M

T2

T3

Tk-1

Tk

M’

T1

select
according to

f1

f2
f3

fk-1

fk

shuffle

population         k separate selections           mating pool

[Schaffer 1985]
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General Scheme of Dominance-Based EMO

(archiv)population offspring

environmental selection (greedy heuristic)

mating selection (stochastic) fitness assignment
partitioning into

dominance classes

rank refinement within
dominance classes

+
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Ranking of the Population Using Dominance

... goes back to a proposal by David Goldberg in 1989.

... is based on pairwise comparisons of the individuals only.

dominance rank: by how
many individuals is an
individual dominated?
MOGA, NPGA
dominance count: how many
individuals does an individual
dominate?
SPEA, SPEA2
dominance depth: at which
front is an individual located?
NSGA, NSGA-II

f2

f1

dominance
count

dominance
rank
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Illustration of Dominance-based Partitioning

f2

f1

dominance depth

1

2

3

f2

f1

dominance rank

4

1

8

6

3
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Refinement of Dominance Rankings

Goal: rank incomparable solutions within a dominance class

Density information (good for search, but usually no refinements)

e.g. NSGA-II                  e.g. SPEA2

Quality indicator (good for set quality): soon...

f
f

f

Kernel method

density =
function of the 

distances

k-th nearest neighbor

density =
function of distance

to k-th neighbor

Histogram method

density =
number of elements

within box



45“A Brief Introduction to EMO” @ TU Dortmund, September 23, 2011© Dimo Brockhoff, LIX, Ecole Polytechnique 45

Selection in SPEA2 and NSGA-II can result in
deteriorative cycles

non-dominated
solutions already
found can be lost

SPEA2 and NSGA-II: Cycles in Optimization



46“A Brief Introduction to EMO” @ TU Dortmund, September 23, 2011© Dimo Brockhoff, LIX, Ecole Polytechnique 46

Hypervolume-Based Selection

Latest Approach (e.g. SMS-EMOA [Beume et al. 2007], MO-CMA-ES 
[Igel et al. 2007])
use hypervolume indicator to guide the search: refinement!

Main idea
Delete solutions with
the smallest
hypervolume loss
d(s) = IH(P)-IH(P / {s})
iteratively

But: can also result
in cycles [Judt et al. 2011]

and is expensive [Bringmann and Friedrich 2009]

Therefore: HypE [Bader and Zitzler 2011]
Sampling + Contribution if more than 1 solution deleted
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Once Upon a Time...

... multiobjective EAs were mainly compared visually:

ZDT6 benchmark problem: IBEA, SPEA2, NSGA-II



49“A Brief Introduction to EMO” @ TU Dortmund, September 23, 2011© Dimo Brockhoff, LIX, Ecole Polytechnique 49

Attainment function approach:

Applies statistical tests directly
to the samples of approximation 
sets
Gives detailed information about 
how and where performance 
differences occur

Two Approaches for Empirical Studies

Quality indicator approach:

First, reduces each 
approximation set to a single 
value of quality
Applies statistical tests to the 
samples of quality values

see e.g. [Zitzler et al. 2003]
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Problems With Non-Compliant Indicators
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What Are Good Set Quality Measures?

There are three aspects [Zitzler et al. 2000]

Wrong! [Zitzler et al. 2003]

But: total (weak) refinement nice hypervolume (or R2) indicator

f2

f1

An infinite number of unary set measures is needed to detect
in general whether A is better than B
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Motivation

multiobjective 
problem optimizer

(approximation of) Pareto front

reduce number of objectives /
detect redundant objectives

⇒ assist the
decision maker

⇒ learn about the 
problem
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Underlying Concepts

values values

omit

still the same relations
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Key questions

Objective reduction possible without changing the problem?

How to compute a minimum objective set?

Applicable to real problems?
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Omitting redundant objectives [Agrell 1997], [Gal and Leberling 1977]

Not suitable for black-box optimization

PCA based objective reduction [Deb and Saxena 2005-2008]

Cannot guarantee preservation of dominance structure
Works well in practice

Dominance Relation Preservation [Brockhoff and Zitzler 2006-2009] [López 
Jaimes et al. 2008, 2009]

Goal: find minimal set of objectives that preserve dominance 
relation
Efficient greedy algorithms available 
[http://www.tik.ee.ethz.ch/sop/download/supplementary/objectiveReduction/]

Objective Reduction Approaches
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Knapsack Problem

Radar Waveform Problem

Objective Reduction: Examples

original problem formulation

objectives

va
lu

es

reduced formulation
(no error)

objectives

va
lu

es
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Some problems are easier to solve in a multiobjective scenario

example: TSP 
[Knowles et al. 2001]

Multiobjectivization
by addition of new “helper objectives” [Jensen 2004]

job-shop scheduling [Jensen 2004], frame structural design 
[Greiner et al. 2007], theoretical (runtime) analyses [Brockhoff  et al. 
2009]

by decomposition of the single objective
TSP [Knowles et al. 2001], minimum spanning trees [Neumann and 
Wegener 2006], protein structure prediction [Handl et al. 2008a], 
theoretical (runtime) analyses [Handl et al. 2008b]

The Opposite: Multiobjectivization
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Often innovative design principles among solutions are found

example:
clutch brake design
[Deb and Srinivasan 2006]

Innovization

min. mass +
stopping time



60“A Brief Introduction to EMO” @ TU Dortmund, September 23, 2011© Dimo Brockhoff, LIX, Ecole Polytechnique 60

Often innovative design principles among solutions are found

example:
clutch brake design
[Deb and Srinivasan 2006]

Innovization

©
 A

C
M

, 2
00

6
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Often innovative design principles among solutions are found

example:
clutch brake design
[Deb and Srinivasan 2006]

Innovization [Deb and Srinivasan 2006]

= using machine learning techniques to find new and innovative 
design principles among solution sets

= learning about a multiobjective optimization problem

Other examples:
SOM for supersonic wing design [Obayashi and Sasaki 2003]

biclustering for processor design and KP [Ulrich et al. 2007]

Innovization

©
 A

C
M

, 2
00

6



62“A Brief Introduction to EMO” @ TU Dortmund, September 23, 2011© Dimo Brockhoff, LIX, Ecole Polytechnique 62

A Brief Introduction to EMO
basics: what is the difference between single- and 
multiobjective optimization?
state-of-the-art algorithm design concepts
performance assessment

Advanced Concepts Useful in Practice
objective reduction
multiobjectivization
innovization 

Examples of Applications

Overview



63“A Brief Introduction to EMO” @ TU Dortmund, September 23, 2011© Dimo Brockhoff, LIX, Ecole Polytechnique 63

Application: Design Space Exploration

Cost          

Latency Power

Specification Optimization Implementation

Environmental
SelectionMutation

x2

x1

f

Mating
SelectionRecombination

Evaluation
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Application: Design Space Exploration

Cost          

Latency Power

Specification Optimization Implementation

Environmental
SelectionMutation

x2

x1

f

Mating
SelectionRecombination

Evaluation

Truss Bridge Design
[Bader 2010]
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Application: Design Space Exploration

Cost          

Latency Power

Specification Optimization Implementation

Environmental
SelectionMutation

x2

x1

f

Mating
SelectionRecombination

Evaluation

Truss Bridge Design
[Bader 2010]

Network Processor Design
[Thiele et al. 2002]
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Application: Design Space Exploration

Cost          

Latency Power

Specification Optimization Implementation

Environmental
SelectionMutation

x2

x1

f

Mating
SelectionRecombination

Evaluation

Truss Bridge Design
[Bader 2010]

Network Processor Design
[Thiele et al. 2002]

Water resource
management
[Siegfried et al. 2009]
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Application: Trade-Off Analysis

Module identification from biological data [Calonder et al. 2006]

Find group of genes wrt
different data types:

similarity of gene
expression profiles

overlap of protein
interaction partners

metabolic pathway
map distances
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Conclusions: EMO as Interactive Decision Support

problem

solution

decision making

modeling

optimization

analysis

specification

visualization

preference
articulation

adjustment



69“A Brief Introduction to EMO” @ TU Dortmund, September 23, 2011© Dimo Brockhoff, LIX, Ecole Polytechnique 69

The EMO Community
Links:

EMO mailing list: http://w3.ualg.pt/lists/emo-list/
EMO bibliography: http://www.lania.mx/~ccoello/EMOO/
EMO conference series: http://www.mat.ufmg.br/emo2011/

Books:
Multi-Objective Optimization using Evolutionary Algorithms
Kalyanmoy Deb, Wiley, 2001
Evolutionary Algorithms for Solving Multi Evolutionary Algorithms 
for Solving Multi-Objective Problems Objective Problems, Carlos A. 
Coello Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2nd

Ed. 2007
Multiobjective Optimization—Interactive and Evolutionary 
Approaches, J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors, 
volume 5252 of LNCS. Springer, 2008
and more…
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