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Principles of Multiple Criteria Decision

A hypothetical problem: all solutions plotted
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A hypothetical problem: all solutions plotted
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Principles of Multiple Criteria Decision

Observations: @ there is no single optimal solution, but

® some solutions (@) are better than others ()
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Principles of Multiple Criteria Decision

Observations: @ there is no single optimal solution, but
® some solutions (@) are better than others ()
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Principles of Multiple Criteria Decision

Observations: @ there is no single optimal solution, but
® some solutions (@) are better than others ()
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Decision Making: Selecting a Solution

Possible * supply more important than cost (ranking)
Approach:

water
supply
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Decision Making: Selecting a Solution

Possible * supply more important than cost (ranking)
Approach: |
Vfal?er  cost must not exceed 2400 (constraint)
supply | ]
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When to Make the Decision

Before Optimization:
g A

u rank objectives,

define constraints,...

o
v
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When to Make the Decision

Before Optimization:
g A

u rank objectives,

define constraints,...

o
v
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When to Make the Decision

Before Optimization: After Optimization:
o, ) N &
rank objectives search for a set of
" define constraints, ™. ” (blue) solutions
l -
. to vV select one solution
* | considering
: l constraints, etc.
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When to Make the Decision

(blue) solution constraints, etc.

Before Optimization: After Optimization:
2 b L
Wank objectives, : search for a set of
- define constraints, .. ” (blue) solutions
l P
V
=N o 'V select one solution
j search for one o) 92

l considering

v

Focus: learning about a problem
» trade-off surface

* nteractions among criteria

= structural information
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Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which
concerns about multiple conflicting criteria can be formally incorporated into

the management planning prOCESS - International Society on

_,»//Multiple Criteria Decision Making

odel ” ............................................................. - trade-off surface

]T
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Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which
concerns about multiple conflicting criteria can be formally incorporated into

the management planning process @\ International Society on

- //Multiple Criteria Decision Making

noisy many objectives

non-linear _
uncertain

huge
problem search
spaces

objectives

_ _ expensive
non-differentiable (integrated simulations) many constraints
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<1<z, (e%t) optimization
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Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which
concerns about multiple conflicting criteria can be formally incorporated into

the management planning process ﬂ _ International Society on

P /Multiple Criteria Decision Making

non-linear  NOSY many ob CIVS
uncerts Black box optimization

objectives

= PN yex — f — (Ao
non-differentiable (integrated sir 8 | (fi(z) fi(@))

g(r)<0
h(zx)=10

r<r<r,

(e%t) opti only mild assumptions
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Evolutionary Multiobjective Optimization

Definition: EMO

EMO = evolutionary algorithms / randomized search algorithms
= applied to multiple criteria decision making (in general)
» used to approximate the Pareto-optimal set (mainly)

water

supply
M A

mutation survival

Pareto set approximation

. ‘e
&»‘:a % 4’»““‘
t 43@’ ’y»
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recombination matlng " t‘g‘:. e
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Multiobjectivization

Some problems are easier to solve in a multiobjective scenario

example: TSP
[Knowles et al. 2001]

T e S, = f(n) T €S, = (fi(m,a,b), fo(m,a,b))

Multiobjectivization

by addition of new “helper objectives”

job-shop scheduling [Jensen 2004], frame structural design
[Greiner et al. 2007], theoretical (runtime) analyses [Brockhoff et al.
2009]

by decomposition of the single objective

TSP [Knowles et al. 2001], minimum spanning trees [Neumann and
Wegener 2006], protein structure prediction [Handl et al. 2008a],
theoretical (runtime) analyses [Handl et al. 2008b]
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Innovization

Innovization = Finding innovative design principles through
optimization [Deb et al. 2006-2013]

R . IIIIIIIIII )
example: MIN. Mass + g lin ~\/

clutch brake design stopping time Z=5
[Deb and Srinivasan 2006]

A i
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Innovization

Innovization = Finding innovative design prmcmles through

optimization [Deb et a. AT

NSGA-II °

10 - T*S=308,106 mm"2.

R =
V ; 9 - \ NSGA-II (r_i=80mm) * _:
," E 8 | %Zz S 7T
example: A AN =it om
o 6 - _ T
g AN g
clutch brake deS|gh ’ —T% ik
4 F Z=9
[Deb and Srinivasan 20@56] T e L ‘ _
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Innovization

Innovization = Finding innovative design prmcmles through

optimization [Debeta .-\~ IR R N
~ 10~ 1-o xo9 .
f 9 - NSGA-II (r i=aolr\Tn§::1IJ),I <'> ©
'E 8 %.Zﬂ 7 7§
example: IR | 3
. For e : |
clutch brake design  * —M
4+ Z=9
[Deb and Srinivasan 2006] . PR LA L ‘ _
0.4 06 08 ! 1214 16 18 222 30000 50000 100000 180000

Brake Mass (kg) Surface Area (mm”*2)

Innovization [Deb and Srinivasan 2006]

= using machine learning techniques to find new and
Innovative design principles among solution sets

= learning about a multiobjective optimization problem

Other examples:
= SOM for supersonic wing design [Obayashi and Sasaki 2003]
» Dbiclustering for processor design and KP [ulrich et al. 2007]
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The History of EMO At A Glance

1984 first EMO approaches

dominance-based population ranking

1990 dominance-based EMO algorithms with diversity preservation techniques

1995 : :
attainment functions

elitist EMO algorithms  preference articulation convergence proofs

2000 test problem design quantitative performance assessment

multiobjectivization
uncertainty and robustness running time analyses  q,3jity measure design

MCDM + EMO quality indicator based EMO algorithms
2010 many-objective optimization statistical performance assessment
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The History of EMO At A Glance

/) first EMO approaches Distribution of the references by categories
3477
. ) . 3043
dominance-based population ranking
dominance-based EMO algorithms with diversity preservation techniques
attainment functions
elitist EMO algorithms preference articulation convergence proofs
test problem design quantitative performance assessment s
multiobjectivization
uncertainty and robustness running time analyses quality measure design yss
o . 57 45 4 89 1
MCDM + EMO quality indicator based EMO algorithms —
many-objective optimization statistical performance assessment ’.?5‘52?;' BEES muuumc‘g‘af;m“ '&fm? M:.i?;?: § ur;?.;[:; T;?:::: I lfiﬁ?\:tc’l-

Distribution of the references by year

b
Overall: 7806 references by March 13, 2013
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The EMO Community

The EMO conference series:

EMO2001 EMO2003 EMO2005 EMO2007 EMO2009 EMOZ2011 EMOZ2013

Zurich Faro Guanajuato Matsushima Nantes Ouro Peto Sheffield
Switzerland Portugal Mexico Japan France Brazil UK

I Shigeen Obuyashi Kadyunmey Deb I Wi I Tabakabi-
Cario Pabsm Tamaubl Mireyess Wby (b
et T
Evolutionary Evolutionary

% Multi-Criterion Multi-Criterion Multi-Criterion
2 Optimization ] Optlmixatlun

45 [ 87 56 /100 59/115 65/124 39/72 42 | 83 57/98

Many further activities:
special sessions, special journal issues, workshops, tutorials, ...
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
» performance assessment

Selected Advanced Concepts
* Indicator-based EMO
= preference articulation

A Few Examples From Practice
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Starting Point

What makes evolutionary multiobjective optimization
different from single-objective optimization?

f w" performance == performance
e ———————— - J‘\%‘E“— >

single objective multiple objectives
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General (Multiobjective) Optimization Problem

A multiobjective optimization problem: (X, Z,f, g, <)

X search / parameter / decision space
Z = IR" objective space
f =(f1,...,fn) vector-valued objective function with
fi: X— R
g — (917 e ,gm) vector-valued constraint function with
g, - X — R
<C Z X Z binary relation on objective space

Goal: find decision vector(s) a € X such that
O foralll<i<m:g;(a)<0 and
® forallbe X : f(b) <f(a)= f(a) < f(b)

© D. Brockhoff, INRIA Lille — Nord Europe voluti Multiobjective Optimization, GECCO 2013, July 6, 2013



A Single-Objective Optimization Problem

decision space objective space objective function

total order
(X, Z, . X >Z,relcZ x2Z)
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A Single-Objective Optimization Problem

decision space objective space objective function
\ /// total order

(X, Z, . X >Z,relcZ x2Z)

| — total preorder where
(X, prefrel) a prefrel b < f(a) rel f(b)
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A Single-Objective Optimization Problem

Example: Leading Ones Problem

(X, Z, . X >Z,relcZ x2Z)

.
e

{0,1},{0,1, 2, ...,n}, f 5,2 wheref @) = >:(l;<ia)
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Simple Graphical Representation

Example: > (total order)

a, b e f(X)
/ \
/ \

.
Q

Q
Q-
of

() optimum  totally ordered
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Preference Relations

decision space objective space objective functions

/ —— partial order

(X, Z, . X >Z,relcZ x2Z)

preorder where

. aprefrel b :=f(a) rel f(b)
(X, prefrel)

(X, ?pa«r)

weak
a par b = f(a) gpa?” f(b)

Pareto dominance
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A Multiobjective Optimization Problem

Example: Leading Ones Trailing Zeros Problem

(X,Z, . X >Z,relcZ x2Z)

© D. Brockhoff, INRIA Lille — Nord Europe

trailing Os
f2
_-lolo[o]o[o]o]0]

(X, prefrel)

00.
[1[1]1]1]o]o]0]
oY
.9, 0 o
L. @0, 9
IR [1]a[a]a]1]a]1]

leading 1s
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A Multiobjective Optimization Problem

Example: Leading Ones Trailing Zeros Problem

trailing Os

(X, Z, f: X —> Z, I’E| _CZ XZ) fzﬁ_v,.|o|o|o|o|o|o|o|

e S
Ot el

. .O.

[1[1[2]1]0]0]0]

[1[2]1[1]a]1]1]

leading 1s

{0,107 {0,1, 2, ..., n} x {0,1, 2, ..., n}, (Fio, Frr), 7)
1:Lo(a) — Zz(Hggz a;) f-rz(a) = Zi(ngi(l — ay))
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Pareto Dominance

— cost

(u1,...,u,) weakly Pareto dominates (vy,...,vn):
(Uty ey tn) <par (V1,...,0p) & VI <i<n:u; <oy
water (u1,...,u,) Pareto dominates (vy,...,vp):
supply (Ul, 7un) gp (Ula . JUTL) A (Ula' "7Un) 7<\pa'r (ula" '7un)
Q
dominatin
20 — HAtng Q
9  incomparable
15 — Q Q 9
o Q
10 — Q 9
o Q Q
5 — Q .
Q dominated
? | | | | | |
500 1000 1500 2000 2500 3000 3500
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Different Notions of Dominance

water
supply
A 8
/_/% Q
20 — Q
¢ Q
g-dominance
15 — S
Q Pareto dominance
10 — Q
Q Q Q
5 — Q :
Q cone dominance
< | | | | | cost

500 1000 1500 2000 2500 3000 3500
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The Pareto-optimal Set

The minimal set of a preordered set (Y, <) is defined as
Min(Y,S) :={acY|WeY:bZa=aZb}

Pareto-optimal set Min(X, <par) ® Pareto-optimal front
non-optimal decision vector Q  non-optimal objective vector

X2 decision f2 objective
» Space N Space
| T— .
Q- Q- e | !..--n”Q ‘
_' Q
. [ e s
> X1 > f1
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Visualizing Preference Relations

(f water supply)

LS
x .
.-w ‘Q'
. * ae
n a
.
LIS
Ve
a

(feosts fwater supply)
[ optima

‘I
n

Q\—»o note:
Q\“’\.Q reflexive and

£o% transitive edges
not shown

weak Pareto dominance: (X, <)
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Remark: Properties of the Pareto Set

Computational complexity:
multiobjective variants can become NP- and #P-complete

Size: Pareto set can be exponential in the input length
(e.g. shortest path [Serafini 1986], MSP [Camerini et al. 1984])

f, f
Q@ O o o O 0
OO ______________ v, nadir point @ v
T o 9 9-Q.9 7
: Q! % Q]
» o ° Q “
, oo [
? s N
éSQ)ape
VSO TG | | S S Q
ideal point
:fl :fl
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Approaches To Multiobjective Optimization

A multiobjective problem is as such underspecified
...because not any Pareto-optimum is equally suited!

Additional preferences are needed to tackle the problem:

Solution-Oriented Problem Transformation:
Induce a total order on the decision space, e.g., by
aggregation.

Set-Oriented Problem Transformation:

First transform problem into a set problem and then define
an objective function on sets.

Preferences are needed in any case, but the latter are weaker!

© D. Brockhoff, INRIA Lille — Nord Europe i Multiobjective Optimization, GECCO 2013, July 6, 2013



Problem Transformations and Set Problems

single solution problem set problem

search space

€
L

fx) = (fulx), falx), ., fulx))  f7(A) = {f(z) [z € A}

k

QR

e
&

objective space

z>y:eVifilr)> fily) AX*B:&VyepIrear =y

(partially) ordered set (R¥, >) (2B %)

(totally) ordered set
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Solution-Oriented Problem Transformations

. parameters .
multiple single
objectives l objecCtive

(f;, f,, ..., f) ——transformation— f

A scalarizing function s is a function s : Z — [R that maps each objective vector
(t1,...,uy) € Z to areal value s(uy,...,u,) € R.
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Aggregation-Based Approaches

. parameters _
multiple single
objectives l objecCtive
(f;, f,, ..., f) ——transformation— f

fo
A

o/‘// {' /
‘Q- .7‘./‘

Q

o Q/P;f

Example: weighting approach

(W, Wy, ..., Wy )

l

y=wWy, ... + WYy,

© D. Brockhoff, INRIA Lille — Nord Europe

:fl

Other example: Tchebycheff

y=max |w;(u; — z;)|

Multiobjective Optimization, GECCO 2013, July 6, 2013



Set-Oriented Problem Transformations

For a multiobjective optimization problem (X, Z, f, g, <),
the associated set problem is given by (¥, Q, F, G, €) where

e U = 2% is the space of decision vector sets,
i.e., the powerset of X,

o () = 27 is the space of objective vector sets,
i.e., the powerset of Z,

e [ is the extension of f to sets, i.e.,

F(A):={f(a) : ac A} for Aec VU,

e G=(G4,...,G,,) is the extension of g to sets,
i.e., G;(A) :=max{g;(a) :ac A} for1 <i<mand A € V¥,

o < extends < to sets where
AZ B:<Vbe Bdae A:a<b.
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Pareto Set Approximations

Pareto set approximation (algorithm outcome) =
set of (usually incomparable) solutions

performance
A

Al weakly dominates il
= not worse in all objectives
and sets not equal

. 88 dominates D
S = better in at least one objective

...... % ’...... A st I'I ct | y d om | nates -

= better in all objectives

.................................

>+ @Blisincomparable to iC
cheapness = neither set weakly better
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What Is the Optimization Goal (Total Order)?

* Find all Pareto-optimal solutions?

» Impossible in continuous search spaces

» How should the decision maker handle 10000 solutions?

* Find a representative subset of the Pareto set?

» Many problems are NP-hard

» What does representative actually mean?

= Find a good approximation of the Pareto set?

» What is a good approximation? \

» How to formalize intuitive
understanding:

O close to the Pareto front
® well distributed

© D. Brockhoff, INRIA Lille — Nord Europe
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Quality of Pareto Set Approximations

A (unary) quality indicator I is a function [ : ¥ — R that assigns a Pareto set
approximation a real value,

f, 2
x ,/Q
O ,/ Q
reference sef yw
Q | /,O
X7 Q
s )
Q X,
Q L
T/
> fl > fl
hypervolume indicator epsilon indicator
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General Remarks on Problem

ldea:
Transform a preorder into a total preorder

Methods:
= Define single-objective function based on the multiple criteria

= Define any total preorder using a relation

Question:

Is any total preorder ok resp. are there any requirements
concerning the resulting preference relation?

= Underlying dominance relation rel should be reflected

© D. Brockhoff, INRIA Lille — Nord Europe i Multiobjective Optimization, GECCO 2013, July 6, 2013



Refinements and Weak Refinements

ref

O < refines a preference relation = iff

ref ref
ASBABAA=A<SBABZXA (better = better)
= fulfills requirement

ref

® < weakly refines a preference relation = Iff

ref

A<XBABAXA=AXB (better = weakly better)

ref

= does not fulfill requirement, but < does not contradict <

...sought are total refinements...

© D. Brockhoff, INRIA Lille — Nord Europe i Multiobjective Optimization, GECCO 2013, July 6, 2013



Example: Refinements Using Indicators

ref ref

A < B:sI(A) >I(B) A < B:=1(AB) <I(B,A)

I(A) = volume of the
weakly dominated area
In objective space

I(A,B) = how much needs A to
be moved to weakly dominate B

5
k 2
) &
..... \
"""" ?
Q. ........
- A’
QA |
[CYR o g |
’ A |
Q |
__________________________________ ‘ - > |
unary hypervolume indicator binary epsilon indicator
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Example: Weak Refinement / No Refinement

ref ref
A= B:<I(AR) <I(B,R) A< B:=I1(A) <I(B)
I(A,R) = how much needs A to I(A) = variance of pairwise
be moved to weakly dominate R distances

weak refinement no refinement

e lA’
P IA) °
LA |
Q |
................. ‘ . > |
unary epsilon indicator unary diversity indicator
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
» performance assessment

Selected Advanced Concepts
* Indicator-based EMO
= preference articulation

A Few Examples From Practice
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Algorithm Design: Particular Aspects

representation 1 fitness assignment mating selection

00 °

11 ‘

2 environmental selection 3 variation operators
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Fithess Assignment: Principal Approaches

aggregation-based criterion-based dominance-based
y2 y2 y2
z. E
Y '-.
o {‘ O =,
. /‘/ ) Il o
Q //;« Q
Q Q / Q Q
Y/
Q : o :
V1 = y1
parameter-oriented _ set-oriented
scaling-dependent scaling-independent
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Criterion-Based Selection: VEGA

select shuffle [Schaffer 1985]
according to

f

1 > T]_ >
f

2 R T2 >
f

3 T .

M .

f |

fk_l 1 T >
K T .

population k separate selections mating pool
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Aggregation-Based: Multistart Constraint Method

Underlying concept:
= Convert all objectives except of one into constraints
= Adaptively vary constraints

y2 maximize f,
—

oo o

..O..

e,

imization, GECCO 2013, July 6, 2013

L .Q'O. .Q...

feasible region T

constraint

le}




Aggregation-Based: Multistart Constraint Method

Underlying concept:

Convert all objectives except of one into constraints
Adaptively vary constraints

y2 maximize f,
—
...O..
Lo,
!
. ] ° ..Q. .
feasible region T --..Q

constraint

Y1
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Aggregation-Based: Multistart Constraint Method

Underlying concept:
= Convert all objectives except of one into constraints
= Adaptively vary constraints

y2 maximize f,
—

feasible region T
constraint
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General Scheme of Dominance-Based EMO

mating selection (stochastic) —]
A

fitness assignment
partitioning into
dominance classes

. v
population (archiv) offspring

Q
Q Q
Q Q
Q 000.. Q Qe
Q 000 Q o ~
Q 9 Q
] ] ]

v rank refinement within
dominance classes

environmental selection (greedy heuristic) |—

Note: good in terms of set quality = good in terms of search?
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Ranking of the Population Using Dominance

... goes back to a proposal by David Goldberg in 1989.
... IS based on pairwise comparisons of the individuals only.

f2
= dominance rank: by how

many individuals is an

individual dominated? .
: dominance
} rank
» dominance count: how many
individuals does an individual | ~_ D\ e

dominate? o
Q @
%

_ _ dominance 7
» dominance depth: atwhich | count

front is an individual located? %, -, f1
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lllustration of Dominance-based Partitioning

f dominance rank P dominance depth

6 3
3 2
1 1
:fl :fl
by how many individuals at which front is an
IS an individual dominated? Individual located?
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Refinement of Dominance Rankings

Goal: rank incomparable solutions within a dominance class

O Density information (good for search, but usually no refinements)

Kernel method

density =
function of the
distances

k-th nearest neighbor

density =
function of distance
to k-th neighbor

Q

@o

Histogram method

density =
number of elements
within box

Q

® Q

® Quality indicator (good for set quality): soon...

© D. Brockhoff, INRIA Lille — Nord Europe
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Example: SPEA2 Dominance Ranking

Basic idea: the less dominated, the fitter...

Principle:  first assign each solution a weight (strength),
then add up weights of dominating solutions

f2
g
9
2 -
9 0
Qe 0 Q S (strength) =
4 Q. #dominated solutions @
Q - . ~
o 4+3Q o R (raw fitness) =
2+1+4+3+2 2. strengths of
Q4+3+2 % f dominators o
5 |1
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Example: SPEAZ2 Diversity Preservation

Density Estimation

k-th nearest neighbor method:

» Fithess=R + 1/ (2 + Dx)
\ J

v
<1
= Dk = distance to the k-th
nearest individual

» Usually used: k=2
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Example: NSGA-II Diversity Preservation

Density Estimation
crowding distance:

= sort solutions wrt. each
objective

= crowding distance to neighbors:

d(i) = Y [fm(i—1) = frm(i+1)]

obj. m
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SPEA2 and NSGA-II: Cycles in Optimization

Selection iIn SPEA2 and NSGA-II can result in

deteriorative cycles %

non-dominated
solutions already
found can be lost

© D. Brockhoff, INRIA Lille — Nord Europe
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Pareto set -
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Hypervolume-Based Selection

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, .

.-)

use hypervolume indicator to gwde the search: refinement!

Main idea
Delete solutions with
the smallest
hypervolume loss

d(s) = I4(P)-lu(P /{s}) -

iteratively

But: can also result

IN cycles [Judt et al. 2011]

.

e
minimize

Hypervolume of A:
r

ly(A) = [oZ)dlz
!

\
o]

a(z)=0 fitness ng:rnmr

contribution to

..

hypervolume

and is expensive [Bringmann and Friedrich 2009]

Moreover: HypE [Bader and zitzler 2011]
Sampling + Contribution if more than 1 solution deleted

X reference
- pointT
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Approximation-Guided EMO

AGE: Approximation-Guided Evolutionary Multi-Objective
Optimization [Bringmann et al. 2011]

Main ldea:

= quality of population: how well does it approximate the
Pareto front?

Definition 1. For finite sets S, T C R?, the additive approxi-
mation of 1" with respect to S is defined as

a(S,T) := maxmin max (s; — t;).
seS teT 1<i<d

= aim since Pareto front not known: min. approximation
a(A,P) of the population P wrt. an external archive A

= not locally sensitive; instead delete points with
lexicographically worst approximations

Sa(A; P\ {p}) = (a1(p), - - -, a4/ (p))
With oi(p) = {a({a:}, P\ {p}) |a; € A}
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Decomposition-Based Selection: MOEA/D

MOEA/D: Multiobjective Evolutionary Algorithm Based on

Decomposition [zhang and Li 2007]

ldeas:
Optimize N scalarizing functions in parallel
Use only best solutions of “neighbored scalarizing function”

© D. Brockhoff, INRIA Lille — Nord Europe

for mating

keep the best solutions for each
scalarizing function

use external archive for non-
dominated solutions

several improved versions
recently

-
———
———
—"_
—"
—’—
—’—
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Scalarizing Approaches

Open Questions:
* how to choose “the right” scalarization even if the
direction in objective space is given by the DM?
= combinations/adaptation of scalarization functions
* independent optimization vs. cooperation between
single-objective optimization

Multiobjective Optimization, GECCO 2013, July 6, 2013
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Variation in EMO

= At first sight not different from single-objective optimization
= Most algorithm design effort on selection until now
= But: convergence to a set # convergence to a point

Open Question:
= how to achieve fast convergence to a set?

Related work:
* multiobjective CMA-ES [igel et al. 2007] [VoR et al. 2010]
» set-based variation [Bader et al. 2009]
» set-based fithess landscapes [verel et al. 2011]
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
* Indicator-based EMO
= preference articulation

A Few Examples From Practice
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Once Upon a Time...

... multiobjective EAs were mainly compared visually:

£y

ECCO 2013, Jul



Two Approaches for Empirical Studies

Attainment function approach: Quality indicator approach:

= Applies statistical tests directly = First, reduces each
to the samples of approximation approximation set to a single
sets value of quality

= Gives detailed information about " Applies statistical tests to the
how and where performance samples of quality values

differences occur

A attains B attains

Indicator A B
e Hypervolume indicator | 6.3431  7.1924
' e-indicator | 1.2090  0.12722
R, indicator | 0.2434  0.1643
Ry indicator | 0.6454  0.3475

: :
erand worst ‘g

attainment
surface 4

minimize

grand best
attainment

minimize minimize

see e.g. [Zitzler et al. 2003]
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Empirical Attainment Functions

three runs of two multiobjective optimizers

1323

“n
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3/3 03, 13 23 3/3

w0l -
15a . . . . . ‘ --------------------------
]04 . E L] L] L]
] .,. . . .
5a L] E L] L]
] e
11|||||||T||\\\\\\\\~f1
5 1

10

frequency of attaining regions

Multiobjective Optimization, GECCO 2013, July 6, 2013



Attainment Plots

50% attainment surface for IBEA, SPEA2, NSGAZ (ZDT6)

1.35 B~ o« .
MAAA‘AA AAA
A,
1.3 - “AA&AAA“
4
* * * e
1.25 F e
T s *
1.2 = +** *’*“lk
LI -
= A A A
1.15-_- “mA ‘AA
A “A ‘AA
L L L L L L L L r“‘“-;ArAAr L
1.2 1.4 1.6 1.8 A2
Asa

latest implementation online at
http://eden.dei.uc.pt/~cmfonsec/software.html
see [Fonseca et al. 2011]
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Attainment Plots

objective 2

0.65

objective 1
0.45 05 0.55 0.6 0.65 07 075

m (0.8, 1.0]
W (05 0.8)
m [04,08)
O [0.2,04)
O (0.0, 0:2)

YL AR R

045

05

0.55
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latest implementation online at
http://eden.dei.uc.pt/~cmfonsec/software.html
see [Fonseca et al. 2011]
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Quality Indicator Approach

Goal: compare two Pareto set approximations A and B

K hypervolume 432.34 420.13

°* distance 0.3308 0.4532 “ .
. .:"K'"-- diversity 0.3637 03463 — A better
@ % = spread 0.3622 0.3601

B ° % cardinality 6 5

Comparison method C = quality measure(s) + Boolean function

guality Boolean
measure N function
A, B - |R > statement
reduction Interpretation
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Example: Box Plots

epsilon indicator

IBEA NSGA-IISPEA2

.08
.06
.04
.02

DTLZ2

o O o o

0.6F

0

Knapsacko. s

ZDT6 0.25

N W s ooy

" -
_

ot

-

1

2

IBEA NSGA-IISPEA2

hypervolume

R indicator

IBEA NSGA-IISPEA2

' ST e
@ 050008 —
0.004¢ ; 0.00006
: 0.00004
0.002¢ 0.00002f
ob N
- > 5 1 2 3
0.8 0.4 T
0.6 0.3
0.4 0.2 IIII
0.2 0.1
1 2 3 1 2 3

0.35 0.12F

0.3 0.1f
0.25 0.08}

0.2 : :
0.15 ' 0.06¢

0.1 0.04¢
0.05 0.02¢

0 ok
1 2 3 1 2 3
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Statistical Assessment (Kruskal Test)

/DT6 DTLZ?2
Epsilon R
is better s better
than than
r—’ IBEA |NSGA2 |SPEA2 r—’ IBEA |NSGA2 |SPEA2
IBEA ~0 () -0 () | IBEA 0 © |70 ©
NSGA2 |1 ~0 (%) | NSGA2 |1 1
SPEA2 |1 1 SPEA2 |1 ~0  (©
Overall p-value = 6.22079e-17. Overall p-value = 7.86834e-17.

Null hypothesis rejected (alpha 0.05) Null hypothesis rejected (alpha 0.05)
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Problems With Non-Compliant Indicators

5
| | | | | A A
Indicator A B B
ﬁ Generational distance | 3.46396  2.37411
ar Spacing (Schott) | 026476  0.19989 i
Max Pareto front error | 3.35489  3.31314
Extent | 3.56039  3.57319
g 2 -
& Yy
£ *
E L _
A %
A+ +
1 A + N i
/A +
0 ! ! ! | |
0 0.2 0.4 0.6 0.8 1

minimize
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What Are Good Set Quality Measures?

There are three aspects [Zitzler et al. 2000]

COTIPATTITE TITTETCIT OPTITIZATTON TeCTIUTS CXPeTIEITITy AW ays TIVOIVeS 1T TTOTToTT
of performance. In the case of multiobjective optimization, the definition of quality is
substantially more complex than for single-objective optimization problems, because the
optimization goal itself consists of multiple objectives:

o The distance of the resulting nondominated set to the Pareto-optimal front should be

minimized.

¢ A good (in most cases uniform) distribution of the solutions found is desirable. The
assessment of this criterion might be based on a certain distance metric.

e The extent of the obtained nondominated front should be maximized, i.e., for each
objective, a wide range of values should be covered by the nondominated solutions.

In the literamre. some atrempts can be fonund to formalize the above definition (or parts

Wrong! [zitzler et al. 2003]

An infinite number of unary set measures is needed to detect

In general whether A is better than B
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Set Quality Indicators

Open Questions:
= how to design a good benchmark suite?

= are there other unary indicators that are (weak)
refinements?

= how to achieve good indicator values?
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
» performance assessment

Selected Advanced Concepts
* Indicator-based EMO
= preference articulation

A Few Examples From Practice
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Indicator-Based EMO: Optimization Goal

When the goal is to maximize a unary indicator...
= we have a single-objective set problem to solve
= put what is the optimum?
= important: population size u plays a role!

Multiobjective Indicator . Single-objective
Problem Problem

Optimal p-Distribution:
A set of u solutions that maximizes a certain unary
Indicator | among all sets of u solutions is called

optimal p-distribution for I. [Auger et al. 2009a]
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Optimal p-Distributions for the Hypervolume

Hypervolume indicator refines dominance relation
—> most results on optimal p-distributions for hypervolume

Optimal p-Distributions (example results)

[Auger et al. 2009a]:
= contain equally spaced points iff front is linear
= density of points « +/—f'(z) with f' the slope of the front

[Friedrich et al. 2011]:
log(min{A/a, B/b})

optimal p-distributions for the OPT 1+ —
hypervolume correspond to HYP (1 YATZ+ BTF

g-approximations of the front J/102(A/a) 1og(B/b)

n—2

logHYP 1+

| (probably) does not hold for > 2 objectives
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Indicator-Based EMO

Open Questions:
= How do the optimal u-distributions look like for >2 objectives?
* how to compute certain indicators quickly in practice?

= several recent improvements for the hypervolume
Indicator [Yildiz and Suri 2012], [Bringmann 2012], [Bringmann 2013]

* including lower bounds
= how to do indicator-based subset selection quickly?
= what is the best strategy for the subset selection?

further open guestions on indicator-based EMO available at
http://simco.gforge.inria.fr/doku.php?id=openproblems
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
» performance assessment

Selected Advanced Concepts
* Indicator-based EMO
= preference articulation

A Few Examples From Practice
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Articulating User Preferences During Search

What we thought: EMO is preference-less

ZIVCIL DY 1€ DJIVL

[Zitzler 1999]

Search before decision making: Optimization is performed without any pref-
erence Information given. The result of the search process 1s a set of
(1deally Pareto-optimal) candidate solutions from which the final choice
is made by the DM.

Decision makino durino search:e The DM can articunlate nreferences dnrino

What we learnt: EMO just uses weaker preference
Information

environmental Q preferable?
selection
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Incorporation of Preferences During Search

Nevertheless...
= the more (known) preferences incorporated the better

* |n particular if search space is too large
[Branke 2008], [Rachmawati and Srinivasan 2006], [Coel}!o Coello 2000]
2

A

@ Refine/modify dominance relation, e.g.:|"

* using goals, priorities, constraints
[Fonseca and Fleming 1998a,b]

» using different types of cones
[Branke and Deb 2004]

® Use quality indicators, e.g.: ."-=f1

» pased on reference points and directions [Deb and Sundar
2006, Deb and Kumar 2007]

* pbased on binary quality indicators [zitzler and Kiinzli 2004]
* pased on the hypervolume indicator (now) [zitzler et al. 2007]
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Example: Weighted Hypervolume Indicator

[Zitzler et al. 2007]

F <
w =\ = é&f:
Iy(A) = }[ w(z)dz ?hh%ﬁﬁ
weighted
hypervolume
general =
weight :
: LN .
! f,-"
-{L‘Z’
&S
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Weighted Hypervolume in Practice

IBEA ! IBEA

1 L
L \"\.h G L == — N
J]rl' f.? fﬂ ff’u‘ f._l Jru:l f?
weighted
Hypervolume weighted
Hypervolume two preference
It points
e T~ i
D .

fi [ f3 f4 f5 fe f;
[Auger et al. 2009b]
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
» performance assessment

Selected Advanced Concepts
* Indicator-based EMO
= preference articulation

A Few Examples From Practice
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Application: Design Space Exploration

’

Specification — Optimization — Evaluation — Implementation

VoY U0

G M G

=
o

problem  mapping  architecture
graph set graph

© D. Brockhoff, INRIA Lille — Nord Europe

Pt

Environmental

eaton Selection Power Latency
-

)

X, Mating
Selection

Recombination

Cost

Multiobjective Optimization, GECCO 2013, July 6, 2013



Application: Design Space Exploration

Truss Bridge Design
[Bader 2010]

intial brﬁdge warren truss

— Implementation

raghrs de mirrored
fixed nodes

BSVAVAVAVAVAVAVAVA

o

RN
7 7 G2
/ ¥
/ n decks Ioad L ;
i water level

207 207
| no robustness
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Application: Design Space Exploration

Truss Bridge Design
[Bader 2010]

intial brﬁdge: warren truss

raghr side mirrore
fixed nodes

WAVAVAVAVAVA

Ioad L

N\,
4
Fa

n decks

water level

20°

no robustness

Network Processor Design
[Thiele et al. 2002]

ESP
Encaps

AH
Cale

AH
o Verily

Flow NRT Encrypt /,
& Implementation Nr. 11 EEX h

| Save SVG H Save JPG H Save PNG H close ‘Snenarins:‘ scen2 H Scent ‘

Scenario: Sceni
Optimal Scaling Factor: 0.540
Total Memory: 9.963

5
Link Rx W 1P Pro
Header H

PowerPC Classifier DSP

RTPTx * UDPTx
Flow RT Send

Utilization: 14%  Utilization: 0% Utilization: 86%

e

>

Encrypt

ESP \i,
Decaps \}

Header

. Encryption/Decryption

O Voice Processing

IP header Calc Check

Modily P Flow NRT Forward

ARP  Schedule  Link
Look Up Tx

RTP R).

UDP Rx

Dejitter Vaice

Decoder
Flow RT Recv

O%0 ' 200

e %f‘ | S %\\\\\
) R

Flow: NRTForward Priority: 3 Acc. Waiting Time in Queue: 34.192
LinkTx VerifylP
Schedule: Process|P
LinkRx IPModify
CalcCheck
ARPLU
Classity
RouteLU2
r
.
Li
H
.
[4
L
H
%t s
“".-u
*,
I | 1 _|
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Application: Design Space Exploration

Truss Bridge Design
[Bader 2010]

intial brﬁdge- warren truss

raghr side mirrore
fixed nodes

WAVAVAVAVAVA

Network Processor Design
[Thiele et al. 2002]

£ implementation Nr. 11

. Encryption/Decryption

O Voice Processing

IP header Calc Check Flow NRT Forward
lodify Sum

| Save SVG H Save JPG H Save PNG H close ‘Snenarins:‘ scen2 H Scent ‘

Fai

s /
/7 n decks Ioad L

i water level

Scenario: Sceni
Optimal Scaling Factor: 0.540
Total Memory: 9.963

ARP Schedule

Link
Look Up Tx

PowerPC Classifier DSP

UDPRx  RTPRx Dejitter

UDPTx  Bui ic
T ead Look U Decoder
Flow RT Send Flow RT Recv

Pl
Voice RTP Tx

Utilization: 14%  Utilization: 0% Utilization: 86%

<>

20°
| no robustness

10-

O20 ' 200

R
7

Water resource
management
[Siegfried et al. 2009]
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Application: Trade-Off Analysis

Module identification from biological data [calonder et al. 2006]

Find group of genes wrt
different data types:

= similarity of gene
expression profiles

= overlap of protein
Interaction partners

= metabolic pathway
map distances

© D. Brockhoff, INRIA Lille — Nord Europe
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Conclusions: EMO as Interactive Decision Support
A modeling

LA

oy

adjustment

analysis

) 4

A

specification optimization

\ 4

visualization

preference |
articulation |

'@‘

#= decision making

© D. Brockhoff, INRIA Lille — Nord Europe i Multiobjective Optimization, GECCO 2013, Jul



The EMO Community

Links:

= EMO mailing list: http://w3.ualg.pt/lists/emo-list/

= EMO bibliography: http://iwww.lania.mx/~ccoello/EMOO/

= EMO conference series: http://www.shef.ac.uk/emo2013/

Books:

= Multi-Objective Optimization using Evolutionary Algorithms
Kalyanmoy Deb, Wiley, 2001

= Evolutionary Algorithms for Solving Multi Evolutionary Algorithms
for Solving Multi-Objective Problems Objective Problems, Carlos A.
Coello Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2nd
Ed. 2007

= Multiobjective Optimization—Interactive and Evolutionary
Approaches, J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors,
volume 5252 of LNCS. Springer, 2008 [many open questions!]

= and more...
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PISA: http://www.tik.ee.ethz.ch/pisa/

SYSTEMS OPTIMIZATION

ETH Zirich - D-ITET - TIK - S0P - FISA

this webpage might no longer be updated more.. -]

Download of Selectors, Variators and Performance Assessment

‘ﬁ'PISA This page contains the currently available variators and selector (see also Principles of PISA) as well as performance
H. Principles and assessment tools (see also Performance Assessment). The varigtors are mainly test and benchmark problems that
Documentation can be used to assess the performance of different optimizers. EXPO is a complex application form the are of
computer design that can be used as a benchmark problem too. The selectors are state-of-the-art evolutionary
multi-objective optimization methods. If you want to write or submit a module, please look at Write and Submit a
Module. Links to documentation on the PISA specification can be found at Documentation.

‘&, PISA for Beginners

, Downloads Jaroslav Hajek pointed out a severe bug in the WEG selector, please redownload the module if your version is older
than 2010/02/03.

Performance

Assessment

Write and Submit a

el Optimization Problems Optimization Algorithms
#% Publications, Bugs, (variator) (selector)

Contact & License

GWLAB - Multi-Objective Groundwater Management SPAM - Set Preferei_Ahortilhn for Multiobjective
ptimization

Package: in Matlab L
Source:  InC
Binaries: Windows, Linux 32bit, Linux 64bit

" more...
LOTZ - Demonstration Program

Source:  in O SHV - Sampling-based HyperVolume-oriented algorithm
Binaries: Solaris, Windows, Linux

maore...

Source:  in C
Binaries: Windows, Linux 32bit, Linux 64bit

LOTZ2 - Leading Ones Trailing Zeros more...

SIBEA - Simple Indicator Based Evolutionary Algorithm

more...

Source: InC

Binaries: Solaris, Windows, Linux

—rT Source: inJava as rar or zip
Binaries: asrar, as zip or as tar.gz

" more...
LOTZ2 - Java Example Variator

Fowree | T ETE HypE - Hypervolume :;Ilqllzlaﬂtgllgnor‘llhn for Multiobjective
Binaries: Windows, Linux

LUz Source:  inC
Binaries: Windows, Linux 32bit, Linux 64bit

Knapsack Problem more...

Source:  inC SEMO - Demonstration Program

Binaries: Solaris, Windows, Linux n,
uestions? '
- | ToF

EXPO - Network Processor Design Problem
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