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A Brief Introduction to Multiobjective Optimization
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A Brief Introduction to Multiobjective Optimization

Observations: © there is no single optimal solution, but
® some solutions (e) are better than others (g)
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A Brief Introduction to Multiobjective Optimization

u weakly Pareto dominates v (u <per v): V1 <t <k: fi(u) < fi(v)

u Pareto dominates v (u <par U)Z U Spar ¥V N\ U ;{par U

performance

20

incomparable
15

10

Q
5 — Q

max T incomparable

| | cost
;E 500 1000 1500 2000 2500 3000 3500

© Dimo Brockhoff EMO tutorial, GECCO0’2019, Praque, Czech Republic, July 2019



A Brief Introduction to Multiobjective Optimization

u weakly Pareto dominates v (u <per v): V1 <t <k: fi(u) < fi(v)

u Pareto dominates v (u <par U)Z U Spar ¥V N\ U ;{par U

performance

20

incomparable
15

10

Q
5 — Q

max T incomparable

| | cost
;E 500 1000 1500 2000 2500 3000 3500

© Dimo Brockhoff EMO tutorial, GECCO0’2019, Praque, Czech Republic, July 2019



A Brief Introduction to Multiobjective Optimizatio

cone dominance
Pareto dominance
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A Brief Introduction to Multiobjective Optimi

Pareto set: set of all non-dominated solutions (decision space)
Pareto front: its image in the objective space
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A Brief Introduction to Multiobjective Optimi

Pareto set: set of all non-dominated solutions (decision space)
Pareto front: its image in the objective space
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A Brief Introduction to Multiobjective Optim

decision space objective space
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A Brief Introduction to Multiobjective Optimize

Q

min |

ideal point: best values

nadir point: worst values

} obtained for Pareto-optimal points
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Optimization vs. Decision Making

Multiobjective Optimization
combination of optimization of a set and a decision for a solution
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Selecting a Solution: Examples

Possible O ranking: performance more important than cost
Approaches:
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Selecting a Solution: Examples

Possible O ranking: performance more important than cost
Approaches: ® constraints: cost must not exceed 2400
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When to Make the Decision

Before Optimization:

g .
“ rank objectives, L

define constraints,...

\ (good) solution

|

v
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When to Make the Decision

Before Optimization:
.
u rank objectives,

AR

define constraints,...

{‘!
search for one
(good) solution
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When to Make the Decision

Before Optimization: After Optimization:

u rank objectives, search for a set of
b ' (good) solutions

define constraints,...

q
- 1§

= = i
R

n gearch forone | i " select one solution
(good) solution o | considering
° ! constraints, etc.
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When to Make the Decision

Before Optimization: After Optimization:
rank objectives search for a set of
"I define constraints, . (good) solutions
| k!
. r
- to: select one solution
* | considering

| l constraints, etc.

Focus: learning about a problem
» trade-off surface

* |nteractions among criteria

= structural information

= also: interactive optimization
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Two Communities...

\ International Society on
/ Multiple Criteria Decision Making

= established field = (uite young field
(beginning in 1950s/1960s) (first papers in mid 1980s)

= bi-annual conferences since = bi-annual conference since
1975 2001

= background in economics, = background in computer
math, management and science, applied math and
social sciences engineering

= focus on optimization and » focus on optimization

decision making algorithms
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...Slowly Merge Into One

International Society on
M Multiple Criteria Decision Making

= MCDM track at EMO conference since 2009
= gspecial sessions on EMO at the MCDM conference since 2008

= joint Dagstuhl seminars since 2004
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One of the Main Differences

Blackbox optimization

reX (S1(z), -, [r(x))

only mild assumptions

—> EMO therefore well-suited for real-world engineering problems

non-linear  NOISY many objectives
uncertain huge
objectives problem search
expensive spaces

non-differentiable (integrated simulations, many constraints
real experiments)
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The Other Main Difference

Evolutionary Multiobjective Optimization

= set-based algorithms
= therefore possible to approximate the Pareto front in one run

performance Pareto front
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Multiobjectivization

Some problems are easier to solve in a multiobjective scenario

example: TSP
[Knowles et al. 2001]

T e S, — f(n) T € S, = (fi(m,a,b), fo(m,a,b))
Multiobjectivization

by addition of new “helper objectives” [Jensen 2004]

job-shop scheduling [Jensen 2004], frame structural design
[Greiner et al. 2007], VRP [Watanabe and Sakakibara 2007], ...

by decomposition of the single objective

TSP [Knowles et al. 2001], minimum spanning trees [Neumann and
Wegener 2006], protein structure prediction [Handl et al. 2008a], ...

also backed up by theory e.g. [Brockhoff et al. 2009, Handl et al. 2008b]
related to constrained and multimodal single-objective optimization
see also this recent overview: [Segura et al. 2013]
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Innovization

Often innovative design principles among solutions are found
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Innovization

Often innovative design principles among solutions are found
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Innovization

Often innovative design principles among solutions are found

Innovization [Deb and Srinivasan 2006]

= using machine learning techniques to find new and innovative
design principles among solution sets

= learning from/about a multi-objective optimization problem

Other examples:
= SOM for supersonic wing design [Obayashi and Sasaki 2003]
= Biclustering for processor design and knapsack [Ulrich et al. 2007]

= Successful case studies in engineering

(noise barrier design, polymer extrusion, friction stir welding)
[Deb et al. 2014]
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The History of EMO At A Glance

First EMO
algorithms

| Dominance
ranking

Elitist |

EMO
algo-
rithms

Scalari-
! zation- §
based
EMO
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The History of EMO At A Glance
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The EMO Community

_ from Google maps
The EMO conference series:

EMO 2013
Sheffield, GB

EMO 2019 Munster, DE N
East Lansing, M|, USA
\ » EMO 2009

Nantes, FR .
EMO 2015 7 , } \
Guimaraes, PT : EMO“'32-001""

/' bR SENIOE005. - cryrcaGHl gl IR R
Faro, PT T = i 5 ams

EMO 2017/

EMO 2005

Guanajuato, MX < - EI\/IO K

| Ouro Preto, BR
Many further activities:

special sessions, speCIaI journal issues, workshops, tutorials, .

© Dimo Brockhoff EMO tutorial, GECCO0’2019, Praque, Czech Republ



Overview

The Big Picture

Basic Algorithm Design Principles and Concepts
Performance Assessment and Benchmarking

Preference Articulation
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Fitness Assignment: Principal Approaches

aggregation-based criterion-based dominance-based
problem decomposition VEGA SPEA2, NSGA-II
(multiple single-objective ‘modern” EMOA
optimization problems)
v e S
changing
//Q/ g goals g
Q / o o
Ll ...,
e . "..
SR T,
Q Q /1/ Q Q \ Q
maxT Q '-,.maxT Q maxT Q 3
— >V > V1 T > y1
max max max
solution-oriented set-oriented

scaling-dependent scaling-independent
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Solution-Oriented Problem Transformations

. parameters .
multiple single
objectives ! objective
(f,(), (%), ..., fu(X)) = transformation —> s(x)

A scalarizing function sis a functions : Z — R that maps each

objective vector v = (uq,.

.., uy,) € Z toareal value s(u) € R
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Solution-Oriented Problem Transformations

. parameters .
multiple single
objectives ! objective

(f,(), f2(3), ..., f(X)) —>transformation —> s(x)

fo

M Example 1: weighted sum approach

(Wy, Wy, ..., W)
|

Y =Wy T WY '

7N
AN
/}5\@} ..
N /3\ />>’-.\ |

o\\ /\\ /'/ Disadvantage: not all Pareto-

max 4 x/ /‘ N : optimal solutions can be found if
AN N, the frontis not convex

7\

N
N

max
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Solution-Oriented Problem Transformations

. parameters .
multiple single
objectives ! objective

(f,(), f2(3), ..., f(X)) —>transformation —> s(x)

. Example 2: weighted Tchebycheff
I e (A, Ay ooy A
’ > > l
O | > | y=max | Nz -y) | —
Q... :

. Several other scalarizing functions
iy 1 are known, see e.g. [Miettinen 1999

max T
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General Scheme of Most Set-Oriented EMO

mating selection (stochastic)
A

fitness assignment
partitioning into
dominance classes

. \4
population (archiv) offspring

i rank refinement within
dominance classes

environmental selection (greedy heuristic)
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Ranking of the Population Using Dominance

... goes back to a proposal by David Goldberg in 1989.
... IS based on pairwise comparisons of the individuals only.

dominance rank: by how
many individuals is an
Individual dominated?
MOGA, NPGA

dominance count: how many
Individuals does an individual
dominate?

SPEA, SPEA2

dominance depth: at which
front is an individual located?
NSGA, NSGA-II, most of the
recently proposed algorithms

max T

Q

dominance
count

B > f1

—
maxX
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lllustration of Dominance-Based Partitioning

f, f, dominance depth
L 3
2 2
minl 0 minl 1
:fl :fl
<+ <

min min
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Refinement of Dominance Rankings

Goal: rank incomparable solutions within a dominance class

© Diversity information

Kernel method k-th nearest neighbor Histogram method
diversity = diversity = diversity =
function of the function of distance number of elements
distances to k-th nearest neighbor within box(es)
Q Q
f f
f 9 Q sl ©
¢ 0 :

® (Contribution to a) quality indicator
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Example: NSGA-II Diversity Preservation

Crowding Distance (CD)

= sort solutions with regard to
each objective

= assign CD maximum value to
extremal objective vectors

= compute CD based on the
distance to the neighbors in

each objective

CD(Z) o dl (7’) 4o dm(z)

fl,ma,x — fl,min fm,max - fm,min

© Dimo Brockhoff EMO tutorial, GECCO0’2019, Praque, Czech Republic, July 2019
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SPEA2 and NSGA-II: Deteriorative Cycles

Selection in SPEA2 and NSGA-II can result in
deteriorative cycles N — ' ' " Parcto st -

Archive elements after t=5.000,000 <
Archive elements after t=10.000.000 o

e

]

=

(=]
T

> IR -
T B0y
S

non-dominated
solutions already
found can be lost
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Remark: Many-Objective Optimization

= high number of objectives

—> percentage of non-dominated solutions within a
random sample quickly approaches 100 %

—> optimization is mainly guided by diversity criterion
-> apply secondary criterion compliant with dominance relation

600
| ) . ' ~
500 [rstbiind g akto b u g i sha d L b kr I A dlighak ‘R\-’?x Aot | A v
ﬁ:’?i:.!#%;‘,ﬁ"‘"\%‘. ho ?E'%ﬁ'}?'ﬂﬁ'. ‘Mﬂ&f’xﬁ“ﬂﬁﬁ;!‘«"\a_gaﬁ%r\f T fm‘: f"i 55‘: "BH'&"'T' ] 'f?r'&ftm 11.* -‘*““} 'w ﬁ#‘z‘ a‘“{?é‘.“s,*yy{" .f?.'#%:‘:li
. "y '

400
Q
5
w
©
Q
£
g 300k NECAT ——
: : SPEA2 -------
g NSGA-II with modified crowding distance --------
5 e-MOEA archive e
§ .: e-MOEA population

200 |

100

oL

100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+006
function evaluations
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Hypervolume-Based Selection

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...)
use hypervolume indicator to guide the search: refines dominance

o e et X reference
Main idea - point 7
Delete solutions with Hypervolume of A: :
r
the smallest I (A) = j (7)dz
/

hypervolume contribution_‘
d(s) = Iu(P)-Iu(P /{s}) 5 |

o(z) =1
| ;

iteratively S
IV .|
But: minimize e : ‘
: alz itness of point:
= can also result in Egnmm’;ﬁ ot |
hypervolume

cycles if reference

point iIs not constant [Judt et al. 2011]
= expensive to compute exactly [Bringmann and Friedrich 2009]
= Dut less and less practical restrictions [Guerreiro and Fonseca 2017]
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Indicator-Based Selection

= Concept can be generalized to any quality indicator

A (unary) quality indicator I is a function] : & = 2% —+ R
that assigns a Pareto set approximation a real value.

Multiobjective Indicator ,  Single-objective
Problem Problem

= for example: R2-indicator [Brockhoff et al. 2012], [Trautmann et al. 2013],
[Diaz-Manriquez et al. 2013]

= (Generalizable also to contribution to larger sets

HypE [Bader and Zitzler 2011]: Hypervolume sampling + contribution if
more than 1 (random) solution deleted

© Dimo Brockhoff EMO tutorial, GECCO0’2019, Praque, Czech Republic, Jul



The Optimization Goal in Indicator-Based E

When the goal is to maximize a unary indicator...
= we have a single-objective problem on sets
= but what is the optimum?
= |mportant: population size u plays a role!

Optimal p-Distribution:
A set of u solutions that maximizes a certain unary indicator |

among all sets of u solutions is called optimal p-distribution for I.
[Auger et al. 2009a]

of 5 points: __0of 10 points: ~ of 20 points: ~ of 50 points:
1.00 ¢ 1.00 ¢ 1.00 - 1.00

75 ] 751" 75140 75

- * -*
-
50 s0{ ° s0{ '+, 50
* *
25 25 :
. see http://www.tik.ee.ethz.ch/sop/
0 — download/supplementary/testproblems/
0 25 s 75 100 .0 25 &

© Dimo Brockhoff

EMO tutorial, GECCO0’2019, Prag

ue, Czech Republic, July 20



Optimal p-Distributions for the Hypervolume

Hypervolume indicator refines dominance relation
—> most results on optimal p-distributions for hypervolume

Optimal p-Distributions (example results)

[Auger et al. 2009a]:
= contain equally spaced points iff front is linear
= density of points o« v/—f'(x) with f’ the slope of the front

= optimal p-distributions known on convex-quadratic functions
with same Hessian [Touré et al. 2019a]

[Friedrich et al. 2011]:

OPT |+ log(min{ A /a, B/b})

optimal p-distributions for the n
hypervolume correspond to HYP 1 YA VIR
g-approximations of the front ogiiyp 1 4 VIOEA/a) 1oa(B/)

n—2
| (probably) does not hold for > 2 objectives
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Indicator-Based EMO

Open Questions:
= how do the optimal p-distributions look like for >2 objectives?
= how to compute certain indicators quickly in practice?

= several recent improvements for the hypervolume indicator

[Yildiz and Suri 2012], [Bringmann 2012], [Bringmann 2013]
[Guerreiro and Fonseca 2018]

= how to do indicator-based subset selection quickly?
»= also here several recent improvements
[Kuhn et al. 2014], [Bringmann et al. 2014], [Guerreiro et al. 2015]
= what is the best strategy for the subset selection?

» |s the hypervolume the right performance measure for >2
objectives?

further open questions on indicator-based EMO available at
http://simco.gforge.inria.fr/doku.php?id=openproblems
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Decomposition-Based Selection: MOEA/D

MOEA/D: Multiobjective Evolutionary Algorithm Based on

Decomposition [Zhang and Li 2007]

ldeas:

© Dimo Brockhoff EMO tutorial, GECCO0’2019, Praque, Czech Republic, July 2

optimize N scalarizing functions in parallel

use best solutions of neighbor subproblems for mating
keep the best solution for each scalarizing function
update neighbors

use external archive for $1 4
non-dominated solutions

several variants and enhancements

-
-
-
-
-
-
Z -

https://sites.google.com/view/moead/home




Remark: Variation in EMO

= at first sight not different from single-objective optimization
= most research on selection mechanisms (until now)
= but: convergence to a set # convergence to a point

Open Question:
= how to achieve fast convergence to a set?

Related work:

» set-based gradient of the HV [Emmerich et al. 2007]

= multiobjective CMA-ES [Igel et al. 2007, Vol et al. 2010, Krause et al. 2016]
= RM-MEDA [Zhang et al. 2008]

= set-based variation [Bader et al. 2009]

» set-based fithess landscapes [Vverel et al. 2011]

= offline and online configuration based on libraries of variation
operators [Bezerra et al. 2015, Hadka and Reed 2013]

= COMO-CMA-ES [Touré et al. 2019b, EMO1@Monday]
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Overview

The Big Picture

Basic Algorithm Design Principles and Concepts
Performance Assessment and Benchmarking

Preference Articulation
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Once Upon a Time...

... multiobjective EAs were mainly compared visually:

A **Qf A

'

AA"* x % 'S A&** * ‘Q‘ s ﬁ**
* *

« SE¥e 3.35)




Two Approaches for Empirical Studies

Attainment function approach

minimize

applies statistical tests directly
to the approximation set

detailed information about how
and where performance

differences occur

A attains

_gran_d best

attainment

grand worst
attainment
surface

© Dimo Brockhoff

minimize

minimize

B attains

grand best
attainment

grand worst
attainment

surface -|

minimize
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Quality indicator approach

reduces each approximation set
to a single quality value

= applies statistical tests to the

quality values

Indicator A B
Hypervolume indicator | 6.3431  7.1924
e-indicator | 1.2090  0.12722
Ry indicator | 0.2434  0.1643
Rs indicator | 0.6454  0.3475

see e.q. [Zitzler et al. 2003]




Empirical Attainment Functions

fi{x} <> Run 1

© Manuel Lépez-lbafiez fl(.x)
[LOpez-lbafiez et al. 2010]



Empirical Attainment Functions

;‘,'3( X)

© Manuel Lopez-Ibafiez .,f']f.l',]'
[LOpez-lbaiez et al. 2010]
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Empirical Attainment Functions

© Manuel Lopez-Ibafiez
[LOpez-lbaiez et al. 2010]

1(x)
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Empirical Attainment Functions

f(x)

© Manuel Lopez-Ibafiez f]fl')
[LOpez-Ibafiez et al. 2010]

<> Run 1
O Run 2
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Empirical Attainment Functions

f(x)
2 <> Run 1
O Run?2
[ 1] Run 3
© Manuel Lopez-Ibafiez f]fl')

[LOpez-Ibafiez et al. 2010]
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Empirical Attainment Functions

f(x)
2 <> Run 1

(0 Run?2
[ ] Run 3

© Manuel Lépez-lbafiez f](l')
[LOpez-Ibafiez et al. 2010]
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Empirical Attainment Functions: Definition

The Empirical Attainment Function a(z) "counts" how many
solution sets X; attain or dominate a vector z at time T

N
1
ar(z) = Nz lixarn
i=1

with 2, being the weak dominance relation between a solution
set and an objective vector at time T.

Note that a;(z) is the empirical cumulative distribution function
of the achieved objective function distribution at time T in the
single-objective case ("fixed budget scenario").
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Empirical Attainment Functions in Prac

objective 1
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objective 1
ALG_1_dat ALG_2_dat

latest implementation online at
http://eden.dei.uc.pt/~cmfonsec/software.html

R package: http://lopez-ibanez.eu/eaftools
see also [Lopez-Ibafiez et al. 2010, Fonseca et al. 2011]
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Plotting Average Runtimes

Note: success probability can be naturally replaced by the
average runtime of an artificially restarted algorithm (aRT):

Lol aRTA function plot for beOb-bIObj fungtlon f1 (5-D) le6*n

10°

led*n

) (normalized)

10t}

opt
2

41e2*n

log10(f; — f.

. v1.2.1|.3057
107 1072 10 10° 10!
log10(f, — £™) (normalized)

1073

code available at http://github.com/numbbo/coco/
see also [Brockhoff et al. 2017]
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Quality Indicator Approach

ldea:
= transfer multiobjective problem into a set problem
= define an objective function (“quality indicator”) on sets
= use the resulting total (pre-)order (on the quality values)

Question:

Can any total (pre-)order be used or are there any requirements
concerning the resulting preference relation?

= Underlying dominance relation

should be reflected!
A = B:= VyElexEACC Spa/r Yy
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Refinements and Weak Refinements

ref

O < refines a preference relation < iff

ref ref

ASBABAA=ASBABZXA (better = better)

= fulfills requirement

ref

® < weakly refines a preference relation < iff

ref
A<XBABALA=A<B (better = weakly better)

ref
= does not fulfill requirement, but < does not contradict <

| sought are total refinements... [Zitzler et al. 2010]
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Example: Refinements Using Indicators

ref

A < B:=I(A) >1(B)

ref

A < B :<I(AB) <I(B,A)

I(A) = vqu_me oI i I(A,B) = how much needs A to
weakly dominated area ;
) . be moved to weakly dominate B
In objective space
A
. refinement refinement
-------- )
VO VO
o_._._._’,... ...
o A’
* A l
IA) 9 Y
: YA
max = -
f 7
—)
max
unary hypervolume indicator binary epsilon indicator
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Example: Weak Refinement / No Refineme

ref ref
A< B:<I1(AR) <I(B,R) A= B:=I1(A) <I(B)
I(A,R) = how much needs A to I(A) = variance of pairwise
be moved to weakly dominate R distances
A
weak refinement no refinement
v
.............. A’
—_— @ |
| 1
L — & 1
max [ — max
1 —o X
— —
max maxX
unary epsilon indicator unary diversity indicator
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Quality Indicator Approach

Goal: compare two Pareto set approximations A and B

hypervolume 432.34 420.13

°- distance 0.3308 0.4532 " "
o To T diversity 0.3637  0.3463 A better
* % = spread 0.3622 0.3601

B® & ¢ cardinality 6 5

Comparison method C = quality measure(s) + Boolean function

quality Boolean

measure n function
A, B > |R » sStatement

reduction Interpretation
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Example: Box Plots

epsilon indicator  hypervolume R indicator
IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2
0.08 : 0.008F : 0.00014
ol == o e g
DTLZ2 |, — 0.004} - | 010000
guaeags)
—_— N ' oF ===
1 2 3 1 2 3 1 2 3
0.6] T — 0.8 0.4 —
Knapsacko :. 0 0.3
p 03 . . 0.4 0.2 -
0.2 0.2 0.1
0.1 , 1 —— , . , , L :
1 2 3 1 2 3 1 2 3
0.35 0.35 0_125
70T6 o - - i =
0.2 ) ) 0.2 % ] 0.06E % .
O % O 0.04f
0.05 é 0.05 0.02
M 2 3 M — 2 3 e 2 3
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Statistical Assessment (Kruskal Test)

ZDT6 DTLZ2
Epsilon R
r ®|IBEA |NSGA2 SPEA2 r ® | IBEA |NSGA2 SPEA2
IBEA ~0 () -0 () | IBEA 0 © |70 ©
NSGA2 |1 ~0 (&) | NsGA2 |1 1
SPEA2 |1 1 SPEA2 |1 ~0  (©
Overall p-value = 6.22079e-17. Overall p-value = 7.86834e-17.
Null hypothesis rejected (alpha 0.05) Null hypothesis rejected (alpha 0.05)

Knapsack/Hypervolume: H, = No significance of any differences
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Automated Benchmarking

State-of-the-art in single-objective optimization: Blackbox
Optimization Benchmarking (BBOB) with COCO platform

https://github.com/numbbo/coco
Release of a bi-objective test suite at BBOB-2016 workshop
New bi-objective mixed-integer suite this year

Focus on target-based runlengths
= gives (nearly) anytime, interpretable results

» defines problem=(test function instance, single-objective goal
e.g. min. indicator difference to reference set, target precision)

= reports average runtimes (aRT) to reach target precision

COCO provides data profiles, scaling plots, scatter plots, tables,
statistical tests, etc. automatically
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A Few Recommendations

= always display everything you have
= |ook at single runs
= do each experiment at least twice
(= look at the variance of your results)
= as guality indicators, use hypervolume, R2, or epsilon indicator

» see also the tutorial slides by Nikolaus Hansen on this topic (not
restricted to single-objective optimization!)
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Overview

The Big Picture

Basic Algorithm Design Principles and Concepts
Performance Assessment and Benchmarking

Preference Articulation
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Articulating User Preferences During Search

What we thought: EMO is preference-less

Search before decision making: Optimization 1s performed without any pref- [Zitzler 1999]
erence information given. The result of the search process is a set of
(1deally Pareto-optimal) candidate solutions from which the final choice
is made by the DM.

What we learnt: EMO just uses weaker preference information

environmental Q preferable?
selection
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Incorporation of Preferences During Search

Nevertheless...
= the more (known) preferences incorporated the better

= |n particular if search space is large
[Branke and Deb 2004] [Branke 2008] [Bechikh et al. 2015]

©® Refine/modify dominance relation, e.g.: I?..

= using goals, priorities, constraints "Q
[Fonseca and Fleming 1998a,b] :

= using different types of dominance cones
[Branke and Deb 2004]

® Use quality indicators, e.g.:

» based on reference points and directions [Deb and Sundar 2006,
Deb and Kumar 2007]

= based on the hypervolume indicator
[Brockhoff et al. 2013] [Wagner and Trautmann 2010]

= pased on the R2 indicator [Trautmann et al. 2013]
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Example: Weighted Hypervolume Indicator

[Brockhoff et al. 2013]

r *ca?‘gﬁ
-y S
I5(A) = }[ w(Z)dz " T%%g
weighted
hypervolume

general
weight
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Weighted Hypervolume in Practice

IBEA l BEA

f o f fs fs

weighted _
Hypervolume weighted
Hypervolume two preference
s points
.' /AN
- . e
w" )
/ ™~ I \N
D !

fJ‘ ';2 f.? ’;:--‘E :Ir.'i ;‘E |I;?
[Auger et al. 2009Db]
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Example: Desirability Function (DF)-SMS-EMO

Shape of the untransformed Pareto front [Wagner and Trautmann 20 10]
1 Q | .
0.8 ] 0 |
()
Meo
0.6t ] dAd ------------------
-o—N t
O«
0.4} 1 o
(@) ey
0.2t . d = R :
o . i
% 02 04 0.6 08 1 © ¥ O) V)
f
1 Y
Shape of the transformed front for Shape of the transformed front for Shape of the transformed front for
. . . 0 0.99 . . . 0 0.99 . . . 0 0.99
identical DFs with ( 1 001 ) identical DFs with ( 075 0.01 ) identical DFs with ( 055 0.01 )
0 . . 0 . . .
-0.2t
-0.4
=
' -0.6}
-0.8f
=% w06 04 02 o0 1 08 06 04 02 0 1 08 06 04 02 0
-d, () -d,(f,) -d,(f)
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DF-SMS-EMOA In Practice
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Example: R2-EMOA

Concept

Integration of preferences by varying the scalarizing functions

Position of ideal point

>\C."\I
g
5 05
Q2
o)
o
S 0
O
()]
o
-0.5
-0.5 0 0.5

First objective y ,

N
> '
G>J .
£ 05f N
o} -
e
(@]
©
£ 0= A N
(&)
O
7))

0.5

-0.5 0 0.5 1
First objective y 1
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Example: R2-EMOA

Concept
Integration of preferences by varying the scalarizing functions

Restriction of the weight space

ZDT1

(0,0.3) (0.7, 1y e==== === = =5
(0.4,0.6) ——
(0.3,0.5) —
(0,0.3) | ssscccce o 9

|
0.0 0.2 04 0.6 0.8 1.0
Position x—axis
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Interactive Approaches

Successive Preference Articulation = Interactive EMO

= recent interest of both EMO and MCDM community
= important in practice

Examples

= first interactive EMO: [Tanino et al. 1993]

» good overview: [Jaszkiewicz and Branke 2008]

= more recent work: [Brockhoff et al. 2014] [Branke et al. 2014]

Issues/Open Questions
= realistic scenarios/ value functions
= evaluation of interactive algorithms [Lopez-Ibafiez and Knowles 2015]
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Conclusions: EMO as Interactive Decision Suppt
A modeling

LA

i)

adjustment

analysis

specification optimization

uolln|os

visualization

preference
articulation

-

** decision making
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The EMO Community

Links:

= EMO mailing list: https://lists.dei.uc.pt/mailman/listinfo/emo-list

= MCDM mailing list: http://lists.jyu.fi/mailman/listinfo/mcdm-discussion
= EMO bibliography: https://emoo.cs.cinvestav.mx/

= EMO conference series: https://www.emo2019.org/

Books:

= Multi-Objective Optimization using Evolutionary Algorithms
Kalyanmoy Deb, Wiley, 2001

= Evolutionary Algorithms for Solving Multi Evolutionary Algorithms
for Solving Multi-Objective Problems Objective Problems, Carlos A.
Coello Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2
Ed. 2007

= Multiobjective Optimization—Interactive and Evolutionary
Approaches, J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors,
volume 5252 of LNCS. Springer, 2008 [(still) many open questions!]

= and more...
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Software

SYSTEMS OPTIMIZATION

“PISA

s Crucial Bugfix
28 principles and

: A severe bug in the

Boctmentation A Platform and Programming Language Independent Interface for Search Algorithms hypervolume calculation of
@& PISA for Beginners —~ — e the IBEA variator has been
& £ ples and Documentation [l ,'.;,‘.-l’.x__f?;»:"“%:.z‘; m _Downloads_ | found, please redownload the
“ Downloads (‘ The ﬁrthAstep.s in order to Do\ynload Selectors, module if your version is older

Performance

Assessment

Write and Submit a

Module

4§ Publications, Bugs,
Contact & License

jﬁMsz m GORITHMS | PROBLEMS m OUR TECHNIQUES ¥

Welcome to the jMetal Web Site

TiE

Computer Engineering and
Networks Laboratory

JMetal is ... Summary of features Download from Sourceforge

© 2009 Institut TIK, ETH 3

jMetal stands for Metaheuristic Algorith
in Java, and it is an object-orien
Java-based framework for multi-objec
optimization with metaheuristics.

You can use it to ... MOEA Framework

A Free and Open Source Java Framework for Multiobjective Oprimizartion

Home Examples Downloads Documentation Support Donate

The object-oriented architecture of
framework and the included features allow
to: experiment with the provided classic

state-of-the-art techniques, develop your c Downloads
algorithms, solve your optimization problet
integrate jMetal in other tools, efc. A Framework for |n novati oh Current Version: 2.4

Released: Jan 02, 2015
The MOEA Framework is a free and open source Java library for developing and experimenting with multiobjective
evolutionary algorithms (MOEAs) and other general-purpose multiobjective optimization algorithms. The MOEA i* DEMO APPLICATION

: urt |0t|vat|0n 1S ... Framework supports genetic algorithms, differential evolution, particle swarm optimization, genetic programming, .

. - . - . ¢ COMPILED BINARIES
— o . N . grammatical evolution, and more. A number of algorithms are provided out-of-the-box, including NSGA-II, NSGA-III, *
The mnativatinn drivinn ne e tn nrovide

e-MOEA, GDE3 and MOEA/D. In addition, the MOEA Framework provides the tools necessary to rapidly design, 2+ SOURCE CODE

develop, execute and statistically test optimization algorithms

$* USER MANUAL
Key Features

Using Maven? Add our dependenc

Fast, reliable implementations of many state-of-the-art multiobjective evolutionary algorithms
Looking for a previous release?

Extensible with custom algorithms, problems and operators

Supports master-slave, island-model, and hybrid parallelization License

Modular design for constructing new optimization algorithms from existing components
Licensed under the GNU Lesser

Permissive open source license
Ceneral Public License

Fully documented source code
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O This repository

numbbo / coco

github.com/numbbo/coco/

<¥ Code Issues 115 Pull requests 1 Pulse Graphs Settings

MNumerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/ — Edit

0 7,902 commits ¥ 12 branches £ 25 releases A2 13 contributors
Branch: master + MNew pull request Create new file =~ Upload files = Find file
L") brockho committed on GitHub Merge pull request #1075 from numbbo/development = Latest commit 8cbb7db on 10 Jun
8 code-experiments Merge pull request #1071 from ttusar/debug a month ago
8 code-postprocessing further clean up of postprocessing output, a month ago
B code-preprocessing/archive-update Added empty last lines. a month ago
| docs updated reference to biobjective perf-assessment paper on arXiv in ge... 2 months ago
B howtos Update documentation-howto.md 4 months ago

[ [ [

[T

«clang-format
hgignore
AUTHORS

LICENSE

raising an error in bbob2009_logger.c when best_value is NULL. Plus s...
raising an error in bbob2009_logger.c when best_wvalue is NULL. Plus s...
small correction in AUTHORS

Added acknowledgements to external collaborators...

Key Features

® Fast, reliable implementations of many state-of-the-art multiobjective evolutionary algorithms
® Extensible with custom algerithms, problems and operators

® Supports master-slave, island-model, and hybrid parallelization

® Modular design for constructing new optimization algorithms from existing components

® Permissive open source license

® Fully documented source code

a year ago
a year ago
4 months ago

4 months ago

Using Maven? Add our dependenc

Looking for a previous release?

License

Licensed under the GNU Lesser

Ceneral Public License




Challenging Open (Research) Directions
= from algorithms to toolkits
» libraries of modules for each task (selection, variation, etc.)
= problem-specific algorithm configuration/ parameter tuning
= benchmarking
= comparison with classical approaches
= design/selection of practically relevant problems
= algorithm/toolkit recommendations for practice
= integration of EMO and MCDM into one field
» |nteractive preference articulation and learning
* |nteractive problem design
» integration of problem-specific knowledge

Questions?
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Additional Slides
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Instructor Biography: Dimo Brockhoff

Dimo Brockhoff

RandOpt team

Inria Saclay - lle-de-France

CMAP UMR 7641 Ecole Polytechnique CNRS
Route de Saclay

91128 Palaiseau

France

il jﬁ%m

After obtaining his diploma in computer science (Dipl.-Inform.) from University of
Dortmund, Germany in 2005, Dimo Brockhoff received his PhD (Dr. sc. ETH) from
ETH Zurich, Switzerland in 2009. Between June 2009 and October 2011 he held
postdoctoral research positions---first at Inria Saclay lle-de-France in Orsay and
then at Ecole Polytechnique in Palaiseau, both in France. Since November 2011,
Dimo has been a permanent researcher at Inria: from 2011 till 2016 with the Inria
Lille - Nord Europe research center and since October 2016 with the Saclay - lle-
de-France research center, co-located with CMAP, Ecole Polytechnique. His most
recent research interests are focused on evolutionary multiobjective optimization
(EMO) and other (single-objective) blackbox optimization techniques, in particular
with respect to benchmarking, theoretical aspects, and expensive optimization.
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