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if 𝑘 > 1:

▪ incomparable solutions (objective trade-offs)

▪ "optimum" is a set

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

g(𝑥) ∈ ℝ𝑚

Context: Multiobjective Blackbox Optimization

∇f(𝑥) ∈ ℝ𝑛⋅𝑘
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what is the actual optimization goal?what is the actual optimization goal?
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Optimization Goal

Here: optimize Hypervolume (HV) indicator
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Optimization Goal

Here: optimize Hypervolume (HV) indicator

Even then, 2 optimization goals:

• fixed size approximation (maximizing HV with p points)

given 𝑝 ∈ ℕ, find 𝑝 solutions 𝑥1, … , 𝑥𝑝 ⊂ ℝ𝑛 with maximal hypervolume 𝐻𝑉({𝑥1, … , 𝑥𝑝})

• unbounded approximation (= finding the “entire” Pareto Set)
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The Hypervolume Indicator

𝒇𝟏
min

m
in

reference point
𝒇𝟐

What does an algorithm actually see?
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consider hypervolume maximization as (𝑛 ⋅ 𝑝)-dimensional problem

then:

subspace optimization = optimize the hypervolume improvement (HVI)
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Level Sets

additional use of non-dominated sorting
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Level Sets

additional use of non-dominated sorting
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Problems:

 still flat regions without gradient

 search directed towards points, we already know
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“upgrading” the HVI

“Uncrowded” Hypervolume Improvement (UHVI):

1) HVI if non-dominated 

2) negative distance to empirical Pareto front otherwise

Cheikh Touré et al. 2019
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“upgrading” the HVI

“Uncrowded” Hypervolume Improvement (UHVI):

1) HVI if non-dominated 

2) negative distance to empirical Pareto front otherwise

Quality of solution 𝐬 wrt. current Pareto set approximation 𝑆:
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Level Sets of the UHVI
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level sets of UHVI

 non-zero indicator (+gradient) almost everywhere ☺

 and: search directed towards “empty” regions ☺

“Uncrowded” Hypervolume Improvement (UHVI):

1) HVI if non-dominated 

2) negative distance to empirical Pareto front otherwise
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Gradient available almost everywhere

▪we can write 

▪gradient of UHVI then computable via single-objective gradients:

▪ and                  independent of 𝑓 and relatively simple 

to compute
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Gradient available almost everywhere
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Cases where Gradient not defined
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Gradient available almost everywhere

all those cases are analytically characterizable
when set S is given

hence: non-differentiable regions are null-sets

assuming that single-objective gradients are differentiable
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Unbounded UHVI optimization

Idea: 

▪ start with 𝑆 = ∅

▪ while not happy:

▪ use single-objective solver to optimize 𝑈𝐻𝑉𝐼𝐫(𝑥, 𝑆)

▪ 𝑆 = 𝑆 ∪ incumbent of last run when stopped
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Unbounded UHVI optimization

Idea: 

▪ start with 𝑆 = ∅

▪ While not happy:

▪ use single-objective solver to optimize 𝑈𝐻𝑉𝐼𝐫(𝑥, 𝑆)

▪ 𝑆 = 𝑆 ∪ incumbent of last run when stopped

Note: the solver can be initialized fully random or at the previously 

found solution with largest hypervolume contribution

we typically choose the strategy that used less function evaluations in the past
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Gradient-Based vs. Derivative-Free
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Gradient-Based vs. Derivative-Free

main conclusions:

• no big difference overall (wrt. #iterations)

• L-BFGS better with gradients (but depends on function)
• SLSQP very sensitive to ftol parameter (runs with 

gradient are not stopping early enough if < 10−1)
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Commercial Break ;-)
COCO (Comparing Continous Optimizers) 
http://numbbo.github.io/coco/

▪ allows for an (almost) automated benchmarking of solvers

▪ bbob (24 noiseless, unconstrained functions, 𝑛 = 2,3,5,10,20,40)

▪ bbob-noisy (30 functions with 3 noise types)

▪ bbob-biobj (55 bi-objective functions)

▪ bbob-largescale (like bbob but with 𝑛 ∈ {20, 40,… , 640})

▪ bbob-constrained (48 functions with 1…9 + ⌊9𝑛/2⌋ constraints, of 

which 1…6 + 3𝑛 are active)

▪ bbob-mixint & bbob-biobj-mixint (versions with 20% continuous 

variables, the rest discrete with varying arity from 2 to 16)

▪ sbox-cost (bound-constrained version of bbob)

▪ all in (predefined) 6 dimensions (in principle, any)

▪ available in Python, C/C++, Java, Matlab/Octave, Rust 
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Unbounded UHVI optimization: Results

pip install cocopp

python –m cocopp MO-BFGS/ MO-SLSQP/
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Unbounded UHVI optimization: Results

pip install cocopp

python –m cocopp MO-BFGS/ MO-SLSQP/ RM-MEDA NSGA-

II-platypus DMS TPB_Tanabe UP-MO-CMA
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Unbounded UHVI optimization: Results

20-D

2-D
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Unbounded UHVI optimization: Results
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Commercial Break II

▪Advertisement: COCO
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Conclusions

How to do multiobj. optimization with single-obj. solvers?

▪ when an unbounded representation of the Pareto set is 

sought via iterative UHVI optimization

▪ start with one solution, then increase the approximation size

▪ experiments with solvers L-BFGS and SLSQP from scipy

▪ basic version works well on simple functions but problems 

still with multimodality

▪ idea: add another stopping criterion, specific for the case 

of UHVI optimization



58© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Conclusions

How to do multiobj. optimization with single-obj. solvers?

▪ when an unbounded representation of the Pareto set is 

sought via iterative UHVI optimization

▪ start with one solution, then increase the approximation size

▪ experiments with solvers L-BFGS and SLSQP from scipy

▪ basic version works well on simple functions but problems 

still with multimodality

▪ idea: add another stopping criterion, specific for the case 

of UHVI optimization

Questions?


