Gradient-based and derivative-free multiobjective optimization via iterative single-objective optimization: MO-BFGS and MO-SLSQP

Dimo Brockhoff

joint work with Anne Auger, Nikolaus Hansen, and Baptiste Plaquevent-Jourdain

Inria and CMAP, Ecole Polytechnique, IP Paris, France

July 23, 2024 --- ISMP, Montreal, Canada

Context: Multiobjective Blackbox Optimization

if k > 1:

- incomparable solutions (objective trade-offs)
- optimum" is a set

Pareto Set and Pareto Front

 \bigstar

Pareto Front:

set of objective vectors, not dominated by any other feasible objective vector

© D. Brockhoff 2024

min

min

 f_2

4 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

 \bigstar

 \bigstar

min

Pareto Set and Pareto Front \bigstar Pareto Set: χ_{3} pre-image **f**2 of Pareto Front $\boldsymbol{x_1}$ $\boldsymbol{x_2}$ \bigstar \checkmark **Pareto Front:** set of objective vectors, not dominated by any other feasible what is the actual **optimization goal**? min objective vector

min

Optimization Goal

Here: optimize Hypervolume (HV) indicator

Optimization Goal

Here: optimize Hypervolume (HV) indicator

Even then, 2 optimization goals:

- fixed size approximation (maximizing HV with p points) given $p \in \mathbb{N}$, find p solutions $\{x_1, \dots, x_p\} \subset \mathbb{R}^n$ with maximal hypervolume $HV(\{x_1, \dots, x_p\})$
- unbounded approximation (= finding the "entire" Pareto Set)

Optimization Goal

Here: optimize Hypervolume (HV) indicator

Even then, 2 optimization goals:

- fixed size approximation (maximizing HV with p points) given $p \in \mathbb{N}$, find p solutions $\{x_1, \dots, x_p\} \subset \mathbb{R}^n$ with maximal hypervolume $HV(\{x_1, \dots, x_p\})$
- unbounded approximation (= finding the "entire" Pareto Set)

 f_2

 f_1

consider hypervolume maximization as $(n \cdot p)$ -dimensional problem then: subspace optimization = optimize the hypervolume *improvement* (HVI)

Level Sets

consider hypervolume maximization as $(n \cdot p)$ -dimensional problem then: subspace optimization = optimize the hypervolume *improvement* (HVI)

level sets of hypervolume improvement

© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Level Sets

consider hypervolume maximization as $(n \cdot p)$ -dimensional problem then: subspace optimization = optimize the hypervolume *improvement* (HVI)

additional use of non-dominated sorting

level sets of hypervolume improvement + non-dom. sorting

additional use of non-dominated sorting

level sets of hypervolume improvement + non-dom. sorting

Problems: still flat regions without gradient search directed towards points, we already know

"upgrading" the HVI

"Uncrowded" Hypervolume Improvement (UHVI):

1) HVI if non-dominated

2) negative distance to empirical Pareto front otherwise

"upgrading" the HVI

"Uncrowded" Hypervolume Improvement (UHVI):1) HVI if non-dominated2) negative distance to empirical Pareto front otherwise

Quality of solution s wrt. current Pareto set approximation S:

$$\text{UHVI}_{\mathbf{r}}(\mathbf{s}, S) = \begin{cases} \text{HVI}_{\mathbf{r}}(\mathbf{s}, S) & \text{if } \text{EPF}_{S, \mathbf{r}} \not\prec \mathbf{f}(\mathbf{s}) \\ -d_{\mathbf{r}}(\mathbf{s}, S) & \text{if } \text{EPF}_{S, \mathbf{r}} \prec \mathbf{f}(\mathbf{s}) \end{cases}$$

"upgrading" the HVI

"Uncrowded" Hypervolume Improvement (UHVI): 1) HVI if non-dominated 2) negative distance to empirical Pareto front otherwise

Level Sets of the UHVI

"Uncrowded" Hypervolume Improvement (UHVI):

1) HVI if non-dominated

2) negative distance to empirical Pareto front otherwise

level sets of UHVI

Level Sets of the UHVI

"Uncrowded" Hypervolume Improvement (UHVI):

1) HVI if non-dominated

2) negative distance to empirical Pareto front otherwise

level sets of UHVI

non-zero indicator (+gradient) almost everywhere ©
 and: search directed towards "empty" regions ©

• we can write $UHVI_{r,S}(x) = \overline{UHVI}_{r,f(S)}(f(x))$

• we can write $UHVI_{r,S}(x) = \overline{UHVI}_{r,f(S)}(f(x))$

gradient of UHVI then computable via single-objective gradients:

PROPOSITION 2.1. Let $x \in \mathbb{R}^n$. Assume f is differentiable in x and UHVI is differentiable in f(x). Then the gradient of UHVI equals

(2.3) $\nabla_x UHVI_{r,S}(x) = \partial_1 \overline{UHVI}_{r,f(S)}(f(x))\nabla f_1(x) + \partial_2 \overline{UHVI}_{r,f(S)}(f(x))\nabla f_2(x)$

with ∂_i being the partial derivative with respect to the *i*th coordinate.

• we can write $UHVI_{r,S}(x) = \overline{UHVI}_{r,f(S)}(f(x))$

gradient of UHVI then computable via single-objective gradients:

PROPOSITION 2.1. Let $x \in \mathbb{R}^n$. Assume f is differentiable in x and UHVI is differentiable in f(x). Then the gradient of UHVI equals

(2.3) $\nabla_x UHVI_{r,S}(x) = \partial_1 \overline{UHVI}_{r,f(S)}(f(x))\nabla f_1(x) + \partial_2 \overline{UHVI}_{r,f(S)}(f(x))\nabla f_2(x)$

with ∂_i being the partial derivative with respect to the *i*th coordinate.

• $\partial_1 \overline{UHVI}_{r,f(S)}$ and $\partial_2 \overline{UHVI}_{r,f(S)}$ independent of f and relatively simple to compute

Cases where Gradient not defined

all those cases are analytically characterizable

when set S is given

hence: non-differentiable regions are null-sets

assuming that single-objective gradients are differentiable

Idea:

- start with $S = \emptyset$
- while not happy:
 - use single-objective solver to optimize $UHVI_{\mathbf{r}}(x, S)$
 - $S = S \cup$ incumbent of last run when stopped

 \mathbf{A}^{f_1}

 f_1

Idea:

- start with $S = \emptyset$
- While not happy:
 - use single-objective solver to optimize $UHVI_{\mathbf{r}}(x, S)$
 - $S = S \cup$ incumbent of last run when stopped

Idea:

- start with $S = \emptyset$
- While not happy:
 - use single-objective solver to optimize $UHVI_{\mathbf{r}}(x, S)$
 - $S = S \cup$ incumbent of last run when stopped

Note: the solver can be initialized fully random or at the previously found solution with largest hypervolume contribution

we typically choose the strategy that used less function evaluations in the past

Gradient-Based vs. Derivative-Free

Gradient-Based vs. Derivative-Free

•

lacksquare

COCO (Comparing Continous Optimizers)

http://numbbo.github.io/coco/

COCO (Comparing Continous Optimizers)

http://numbbo.github.io/coco/

- bbob (24 noiseless, unconstrained functions, n = 2,3,5,10,20,40)
- bbob-noisy (30 functions with 3 noise types)
- bbob-biobj (55 bi-objective functions)
- bbob-largescale (like bbob but with $n \in \{20, 40, \dots, 640\}$)
- **bbob-constrained** (48 functions with $1 \dots 9 + \lfloor 9n/2 \rfloor$ constraints, of which $1 \dots 6 + 3n$ are active)
- bbob-mixint & bbob-biobj-mixint (versions with 20% continuous variables, the rest discrete with varying arity from 2 to 16)
- sbox-cost (bound-constrained version of bbob)

COCO (Comparing Continous Optimizers)

http://numbbo.github.io/coco/

- bbob (24 noiseless, unconstrained functions, n = 2,3,5,10,20,40)
- bbob-noisy (30 functions with 3 noise types)
- bbob-biobj (55 bi-objective functions)
- **bbob-largescale** (like bbob but with $n \in \{20, 40, \dots, 640\}$)
- **bbob-constrained** (48 functions with $1 \dots 9 + \lfloor 9n/2 \rfloor$ constraints, of which $1 \dots 6 + 3n$ are active)
- bbob-mixint & bbob-biobj-mixint (versions with 20% continuous variables, the rest discrete with varying arity from 2 to 16)
- sbox-cost (bound-constrained version of bbob)
- all in (predefined) 6 dimensions (in principle, any)

COCO (Comparing Continous Optimizers)

http://numbbo.github.io/coco/

- bbob (24 noiseless, unconstrained functions, n = 2,3,5,10,20,40)
- bbob-noisy (30 functions with 3 noise types)
- bbob-biobj (55 bi-objective functions)
- **bbob-largescale** (like bbob but with $n \in \{20, 40, \dots, 640\}$)
- **bbob-constrained** (48 functions with $1 \dots 9 + \lfloor 9n/2 \rfloor$ constraints, of which $1 \dots 6 + 3n$ are active)
- bbob-mixint & bbob-biobj-mixint (versions with 20% continuous variables, the rest discrete with varying arity from 2 to 16)
- sbox-cost (bound-constrained version of bbob)
- all in (predefined) 6 dimensions (in principle, any)
- available in Python, C/C++, Java, Matlab/Octave, Rust

COCO (Comparing Continous Optimizers)

http://numbbo.github.io/coco/

COCO (Comparing Continous Optimizers)

http://numbbo.github.io/coco/

pip install cocopp

python -m cocopp MO-BFGS/ MO-SLSQP/

pip install cocopp

python -m cocopp MO-BFGS/ MO-SLSQP/ RM-MEDA NSGA-II-platypus DMS TPB Tanabe UP-MO-CMA

© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Commercial Break II

International Conference on Evolutionary Multi-Criterion Optimization

4-7 March, 2025 Canberra, Australia

About

EMO is a biennial conference series devoted to studying various aspects of multiobjective optimization such as:

- evolutionary and population-based algorithms;
- surrogate-based or Bayesian optimization methods;
- machine learning/artificial intelligence-based hybrid methods;
- theoretical foundations of multiobjective optimization;
- multiple-criteria decision-making;
- benchmarking, performance indicators, and visualization;
- Practical/industry applications.

EMO 2025 will be held at the Shine Dome, Canberra, Australia (<u>https://shinedome.org.au/</u>).

Submission types

- EMO Main track: Full papers (12 pages)
- MCDM Special track: Full papers or abstracts (2 pages)
- Industry Special track: Full papers or abstracts

All accepted papers will be included in Springer Lecture Notes in Computer Science (LNCS) proceedings.

Previous EMO conference proceedings: http://www.emo-online.org/

Key dates

Plenary Speakers

- Paper submission deadline: 15 September 2024
- Notification of outcomes: 15 November 2024
- Camera-ready papers due: 30 November 2024
- Conference dates: 4-7 March 2025

Submissions open!

More information: https://emo2025.org/

Organizing committee

General chairs:

- Hemant Kumar Singh (UNSW, Australia)
- Tapabrata Ray (UNSW, Australia)
 Joshua Knowles (SLB Cambridge,
 - UK)

Industry track chairs:

- Frank Neumann (University of Adelaide, Australia)
- Kate-Smith Miles (University of Melbourne, Australia)

Local arrangement chairs:

- Saber Elsayed (UNSW, Australia)
- Ali Ahrari (UNSW, Australia)

Conflict of Interest chairs:

- Hisao Ishibuchi (SUSTech, China)
- Lie Meng Pang (SUSTech, China)

Springer

Proceedings chairs:

- Bing Wang (UNSW Australia)
- Akira Oyama (JAXA, Japan)

- Program chairs:
- Xiaodong Li, (RMIT, Australia)
- Juergen Branke (University of Warwick, UK)

MCDM track chairs:

- Ruhul Sarker (UNSW, Australia)
- Sanaz Mostaghim (OvGU, Germany)

Tutorial chair:

- Hussein Abbass (UNSW, Australia)
- Web chair:
- Angus Kenny (UNSW, Australia)

Publicity chairs:

- Aneta Neumann (University of Adelaide, Australia)
- Yi Mei (VUW, New Zealand)
- Deepak Sharma (IITG, India)
- Handing Wang (Xidian Uni, China)
- Dimo Brockhoff (Inria Saclay, France)
- Carlos Coello-Coello (CINVESTAV-IPN, Mexico)

- Professor Bernhard Sendhoff, CEO of Global Network Honda Research Institutes, Germany
- Professor Qingfu Zhang, Chair Professor of Computational Intelligence, City University of Hong Kong
- Professor Kaisa Miettinen, Professor of Industrial Optimization, University of Jyvaskyla, Finland

Conclusions

How to do multiobj. optimization with single-obj. solvers?

- when an unbounded representation of the Pareto set is sought via iterative UHVI optimization
- start with one solution, then increase the approximation size
- experiments with solvers L-BFGS and SLSQP from scipy
- basic version works well on simple functions but problems still with multimodality
 - idea: add another stopping criterion, specific for the case of UHVI optimization

Conclusions

How to do multiobj. optimization with single-obj. solvers?

- when an unbounded representation of the Pareto set is sought via iterative UHVI optimization
- start with one solution, then increase the approximation size
- experiments with solvers L-BFGS and SLSQP from scipy
- basic version works well on simple functions but problems still with multimodality
 - idea: add another stopping criterion, specific for the case of UHVI optimization

Questions?