
Gradient-based and derivative-free

multiobjective optimization via iterative

single-objective optimization: MO-BFGS

and MO-SLSQP

Dimo Brockhoff

joint work with Anne Auger, Nikolaus Hansen, and Baptiste Plaquevent-Jourdain

Inria and CMAP, Ecole Polytechnique, IP Paris, France

July 23, 2024 --- ISMP, Montreal, Canada

2© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

if 𝑘 > 1:

▪ incomparable solutions (objective trade-offs)

▪ "optimum" is a set

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

g(𝑥) ∈ ℝ𝑚

Context: Multiobjective Blackbox Optimization

∇f(𝑥) ∈ ℝ𝑛⋅𝑘

3© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Pareto Set and Pareto Front

𝒇𝟏

𝒇𝟐

min

m
in

Pareto Front:
set of objective

vectors, not

dominated by any

other feasible

objective vector

4© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Pareto Set and Pareto Front

𝒇𝟏

𝒇𝟐

min

m
in

Pareto Front:
set of objective

vectors, not

dominated by any

other feasible

objective vector

𝒙𝟏 𝒙𝟐

𝒙𝟑Pareto Set:
pre-image

of Pareto Front

5© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Pareto Set and Pareto Front

𝒇𝟏

𝒇𝟐

min

m
in

Pareto Front:
set of objective

vectors, not

dominated by any

other feasible

objective vector

𝒙𝟏 𝒙𝟐

𝒙𝟑Pareto Set:
pre-image

of Pareto Front

what is the actual optimization goal?what is the actual optimization goal?

6© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Optimization Goal

Here: optimize Hypervolume (HV) indicator

7© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Optimization Goal

Here: optimize Hypervolume (HV) indicator

Even then, 2 optimization goals:

• fixed size approximation (maximizing HV with p points)

given 𝑝 ∈ ℕ, find 𝑝 solutions 𝑥1, … , 𝑥𝑝 ⊂ ℝ𝑛 with maximal hypervolume 𝐻𝑉({𝑥1, … , 𝑥𝑝})

• unbounded approximation (= finding the “entire” Pareto Set)

8© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Optimization Goal

Here: optimize Hypervolume (HV) indicator

Even then, 2 optimization goals:

• fixed size approximation (maximizing HV with p points)

given 𝑝 ∈ ℕ, find 𝑝 solutions 𝑥1, … , 𝑥𝑝 ⊂ ℝ𝑛 with maximal hypervolume 𝐻𝑉({𝑥1, … , 𝑥𝑝})

• unbounded approximation (= finding the “entire” Pareto Set)

9© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

The Hypervolume Indicator

𝒇𝟏
min

m
in

𝒇𝟐

10© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

The Hypervolume Indicator

𝒇𝟏
min

m
in

𝒇𝟐

11© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

The Hypervolume Indicator

𝒇𝟏
min

m
in

reference point
𝒇𝟐

12© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

The Hypervolume Indicator

𝒇𝟏
min

m
in

reference point
𝒇𝟐

13© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

The Hypervolume Indicator

𝒇𝟏
min

m
in

reference point
𝒇𝟐

What does an algorithm actually see?

14© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

consider hypervolume maximization as (𝑛 ⋅ 𝑝)-dimensional problem

then:

subspace optimization = optimize the hypervolume improvement (HVI)

15© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Level Sets

consider hypervolume maximization as (𝑛 ⋅ 𝑝)-dimensional problem

then:

subspace optimization = optimize the hypervolume improvement (HVI)

𝒇𝟏 𝒙 =෍

𝒊

𝒙𝒊 − 𝒙𝒐𝒑𝒕,𝒇𝟏
𝟐

𝒇𝟐 𝒙 =෍

𝒊

𝒙𝒊 − 𝒙𝒐𝒑𝒕,𝒇𝟐
𝟐

level sets of hypervolume improvement

16© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Level Sets

consider hypervolume maximization as (𝑛 ⋅ 𝑝)-dimensional problem

then:

subspace optimization = optimize the hypervolume improvement (HVI)

𝒇𝟏 𝒙 =෍

𝒊

𝒙𝒊 − 𝒙𝒐𝒑𝒕,𝒇𝟏
𝟐

𝒇𝟐 𝒙 =෍

𝒊

𝒙𝒊 − 𝒙𝒐𝒑𝒕,𝒇𝟐
𝟐

level sets of hypervolume improvement

dominated

region: flat

objective

function

17© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Level Sets

additional use of non-dominated sorting

𝒇𝟏 𝒙 =෍

𝒊

𝒙𝒊 − 𝒙𝒐𝒑𝒕,𝒇𝟏
𝟐

𝒇𝟐 𝒙 =෍

𝒊

𝒙𝒊 − 𝒙𝒐𝒑𝒕,𝒇𝟐
𝟐

level sets of hypervolume improvement + non-dom. sorting

18© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Level Sets

additional use of non-dominated sorting

𝒇𝟏 𝒙 =෍

𝒊

𝒙𝒊 − 𝒙𝒐𝒑𝒕,𝒇𝟏
𝟐

𝒇𝟐 𝒙 =෍

𝒊

𝒙𝒊 − 𝒙𝒐𝒑𝒕,𝒇𝟐
𝟐

level sets of hypervolume improvement + non-dom. sorting

Problems:

 still flat regions without gradient

 search directed towards points, we already know

19© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

“upgrading” the HVI

“Uncrowded” Hypervolume Improvement (UHVI):

1) HVI if non-dominated

2) negative distance to empirical Pareto front otherwise

Cheikh Touré et al. 2019

20© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

“upgrading” the HVI

“Uncrowded” Hypervolume Improvement (UHVI):

1) HVI if non-dominated

2) negative distance to empirical Pareto front otherwise

Quality of solution 𝐬 wrt. current Pareto set approximation 𝑆:

21© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

“upgrading” the HVI

“Uncrowded” Hypervolume Improvement (UHVI):

1) HVI if non-dominated

2) negative distance to empirical Pareto front otherwise

level sets of UHVI

22© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Level Sets of the UHVI

𝒇𝟏 𝒙 =෍

𝒊

𝒙𝒊 − 𝒙𝒐𝒑𝒕,𝒇𝟏
𝟐

𝒇𝟐 𝒙 =෍

𝒊

𝒙𝒊 − 𝒙𝒐𝒑𝒕,𝒇𝟐
𝟐

level sets of UHVI

“Uncrowded” Hypervolume Improvement (UHVI):

1) HVI if non-dominated

2) negative distance to empirical Pareto front otherwise

23© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Level Sets of the UHVI

𝒇𝟏 𝒙 =෍

𝒊

𝒙𝒊 − 𝒙𝒐𝒑𝒕,𝒇𝟏
𝟐

𝒇𝟐 𝒙 =෍

𝒊

𝒙𝒊 − 𝒙𝒐𝒑𝒕,𝒇𝟐
𝟐

level sets of UHVI

 non-zero indicator (+gradient) almost everywhere ☺

 and: search directed towards “empty” regions ☺

“Uncrowded” Hypervolume Improvement (UHVI):

1) HVI if non-dominated

2) negative distance to empirical Pareto front otherwise

24© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Gradient available almost everywhere

▪we can write

25© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Gradient available almost everywhere

▪we can write

▪gradient of UHVI then computable via single-objective gradients:

26© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Gradient available almost everywhere

▪we can write

▪gradient of UHVI then computable via single-objective gradients:

▪ and independent of 𝑓 and relatively simple

to compute

27© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Gradient available almost everywhere

28© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Gradient available almost everywhere

29© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Cases where Gradient not defined

30© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Gradient available almost everywhere

all those cases are analytically characterizable
when set S is given

hence: non-differentiable regions are null-sets

assuming that single-objective gradients are differentiable

31© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization

Idea:

▪ start with 𝑆 = ∅

▪ while not happy:

▪ use single-objective solver to optimize 𝑈𝐻𝑉𝐼𝐫(𝑥, 𝑆)

▪ 𝑆 = 𝑆 ∪ incumbent of last run when stopped

32© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization

𝒇𝟐

𝒇𝟏

33© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization

𝒇𝟐

𝒇𝟏

reference point

34© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization

𝒇𝟐

𝒇𝟏

reference point

35© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization

𝒇𝟐

𝒇𝟏

reference point

36© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization

𝒇𝟐

𝒇𝟏

reference point

37© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization

𝒇𝟐

𝒇𝟏

reference point

38© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization

𝒇𝟐

𝒇𝟏

reference point

39© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization

𝒇𝟐

𝒇𝟏

reference point

40© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization

𝒇𝟐

𝒇𝟏

reference point

41© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization

𝒇𝟐

𝒇𝟏

reference point

42© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization

Idea:

▪ start with 𝑆 = ∅

▪ While not happy:

▪ use single-objective solver to optimize 𝑈𝐻𝑉𝐼𝐫(𝑥, 𝑆)

▪ 𝑆 = 𝑆 ∪ incumbent of last run when stopped

43© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization

Idea:

▪ start with 𝑆 = ∅

▪ While not happy:

▪ use single-objective solver to optimize 𝑈𝐻𝑉𝐼𝐫(𝑥, 𝑆)

▪ 𝑆 = 𝑆 ∪ incumbent of last run when stopped

Note: the solver can be initialized fully random or at the previously

found solution with largest hypervolume contribution

we typically choose the strategy that used less function evaluations in the past

44© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Gradient-Based vs. Derivative-Free

45© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Gradient-Based vs. Derivative-Free

main conclusions:

• no big difference overall (wrt. #iterations)

• L-BFGS better with gradients (but depends on function)
• SLSQP very sensitive to ftol parameter (runs with

gradient are not stopping early enough if < 10−1)

main conclusions:

• no big difference overall (wrt. #iterations)

• L-BFGS better with gradients (but depends on function)
• SLSQP very sensitive to ftol parameter (runs with

gradient are not stopping early enough if < 10−1)

46© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Commercial Break ;-)
COCO (Comparing Continous Optimizers)
http://numbbo.github.io/coco/

▪ allows for an (almost) automated benchmarking of solvers

▪ bbob (24 noiseless, unconstrained functions, 𝑛 = 2,3,5,10,20,40)

▪ bbob-noisy (30 functions with 3 noise types)

▪ bbob-biobj (55 bi-objective functions)

▪ bbob-largescale (like bbob but with 𝑛 ∈ {20, 40,… , 640})

▪ bbob-constrained (48 functions with 1…9 + ⌊9𝑛/2⌋ constraints, of

which 1…6 + 3𝑛 are active)

▪ bbob-mixint & bbob-biobj-mixint (versions with 20% continuous

variables, the rest discrete with varying arity from 2 to 16)

▪ sbox-cost (bound-constrained version of bbob)

▪ all in (predefined) 6 dimensions (in principle, any)

▪ available in Python, C/C++, Java, Matlab/Octave, Rust

47© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Commercial Break ;-)
COCO (Comparing Continous Optimizers)
http://numbbo.github.io/coco/

▪ allows for an (almost) automated benchmarking of solvers

▪ bbob (24 noiseless, unconstrained functions, 𝑛 = 2,3,5,10,20,40)

▪ bbob-noisy (30 functions with 3 noise types)

▪ bbob-biobj (55 bi-objective functions)

▪ bbob-largescale (like bbob but with 𝑛 ∈ {20, 40,… , 640})

▪ bbob-constrained (48 functions with 1…9 + ⌊9𝑛/2⌋ constraints, of

which 1…6 + 3𝑛 are active)

▪ bbob-mixint & bbob-biobj-mixint (versions with 20% continuous

variables, the rest discrete with varying arity from 2 to 16)

▪ sbox-cost (bound-constrained version of bbob)

▪ all in (predefined) 6 dimensions (in principle, any)

▪ available in Python, C/C++, Java, Matlab/Octave, Rust

48© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Commercial Break ;-)
COCO (Comparing Continous Optimizers)
http://numbbo.github.io/coco/

▪ allows for an (almost) automated benchmarking of solvers

▪ bbob (24 noiseless, unconstrained functions, 𝑛 = 2,3,5,10,20,40)

▪ bbob-noisy (30 functions with 3 noise types)

▪ bbob-biobj (55 bi-objective functions)

▪ bbob-largescale (like bbob but with 𝑛 ∈ {20, 40,… , 640})

▪ bbob-constrained (48 functions with 1…9 + ⌊9𝑛/2⌋ constraints, of

which 1…6 + 3𝑛 are active)

▪ bbob-mixint & bbob-biobj-mixint (versions with 20% continuous

variables, the rest discrete with varying arity from 2 to 16)

▪ sbox-cost (bound-constrained version of bbob)

▪ all in (predefined) 6 dimensions (in principle, any)

▪ available in Python, C/C++, Java, Matlab/Octave, Rust

49© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Commercial Break ;-)
COCO (Comparing Continous Optimizers)
http://numbbo.github.io/coco/

▪ allows for an (almost) automated benchmarking of solvers

▪ bbob (24 noiseless, unconstrained functions, 𝑛 = 2,3,5,10,20,40)

▪ bbob-noisy (30 functions with 3 noise types)

▪ bbob-biobj (55 bi-objective functions)

▪ bbob-largescale (like bbob but with 𝑛 ∈ {20, 40,… , 640})

▪ bbob-constrained (48 functions with 1…9 + ⌊9𝑛/2⌋ constraints, of

which 1…6 + 3𝑛 are active)

▪ bbob-mixint & bbob-biobj-mixint (versions with 20% continuous

variables, the rest discrete with varying arity from 2 to 16)

▪ sbox-cost (bound-constrained version of bbob)

▪ all in (predefined) 6 dimensions (in principle, any)

▪ available in Python, C/C++, Java, Matlab/Octave, Rust

50© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Commercial Break ;-)
COCO (Comparing Continous Optimizers)
http://numbbo.github.io/coco/

▪ allows for an (almost) automated benchmarking of solvers

▪ bbob (24 noiseless, unconstrained functions, 𝑛 = 2,3,5,10,20,40)

▪ bbob-noisy (30 functions with 3 noise types)

▪ bbob-biobj (55 bi-objective functions)

▪ bbob-largescale (like bbob but with 𝑛 ∈ {20, 40,… , 640})

▪ bbob-constrained (48 functions with 1…9 + ⌊9𝑛/2⌋ constraints, of

which 1…6 + 3𝑛 are active)

▪ bbob-mixint & bbob-biobj-mixint (versions with 20% continuous

variables, the rest discrete with varying arity from 2 to 16)

▪ sbox-cost (bound-constrained version of bbob)

▪ all in (predefined) 6 dimensions (in principle, any)

▪ available in Python, C/C++, Java, Matlab/Octave, Rust

51© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Commercial Break ;-)
COCO (Comparing Continous Optimizers)
http://numbbo.github.io/coco/

▪ allows for an (almost) automated benchmarking of solvers

▪ bbob (24 noiseless, unconstrained functions, 𝑛 = 2,3,5,10,20,40)

▪ bbob-noisy (30 functions with 3 noise types)

▪ bbob-biobj (55 bi-objective functions)

▪ bbob-largescale (like bbob but with 𝑛 ∈ {20, 40,… , 640})

▪ bbob-constrained (48 functions with 1…9 + ⌊9𝑛/2⌋ constraints, of

which 1…6 + 3𝑛 are active)

▪ bbob-mixint & bbob-biobj-mixint (versions with 20% continuous

variables, the rest discrete with varying arity from 2 to 16)

▪ sbox-cost (bound-constrained version of bbob)

▪ all in (predefined) 6 dimensions (in principle, any)

▪ available in Python, C/C++, Java, Matlab/Octave, Rust

contributions

(in terms of data sets)

welcome ☺

contributions

(in terms of data sets)

welcome ☺

52© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization: Results

pip install cocopp

python –m cocopp MO-BFGS/ MO-SLSQP/

53© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization: Results

pip install cocopp

python –m cocopp MO-BFGS/ MO-SLSQP/ RM-MEDA NSGA-

II-platypus DMS TPB_Tanabe UP-MO-CMA

54© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization: Results

20-D

2-D

55© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Unbounded UHVI optimization: Results

working well when

Pareto set is connected

working well when

Pareto set is connected

slow on multimodal

functions

slow on multimodal

functions

56© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Commercial Break II

▪Advertisement: COCO

57© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Conclusions

How to do multiobj. optimization with single-obj. solvers?

▪ when an unbounded representation of the Pareto set is

sought via iterative UHVI optimization

▪ start with one solution, then increase the approximation size

▪ experiments with solvers L-BFGS and SLSQP from scipy

▪ basic version works well on simple functions but problems

still with multimodality

▪ idea: add another stopping criterion, specific for the case

of UHVI optimization

58© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

Conclusions

How to do multiobj. optimization with single-obj. solvers?

▪ when an unbounded representation of the Pareto set is

sought via iterative UHVI optimization

▪ start with one solution, then increase the approximation size

▪ experiments with solvers L-BFGS and SLSQP from scipy

▪ basic version works well on simple functions but problems

still with multimodality

▪ idea: add another stopping criterion, specific for the case

of UHVI optimization

Questions?

