Gradient-based and derivative-free multiobjective optimization via iterative single-objective optimization: MO-BFGS and MO-SLSQP

**Dimo Brockhoff** 

joint work with Anne Auger, Nikolaus Hansen, and Baptiste Plaquevent-Jourdain

Inria and CMAP, Ecole Polytechnique, IP Paris, France

July 23, 2024 --- ISMP, Montreal, Canada







#### **Context: Multiobjective Blackbox Optimization**



#### if k > 1:

- incomparable solutions (objective trade-offs)
- optimum" is a set

### **Pareto Set and Pareto Front**

 $\bigstar$ 

#### **Pareto Front:**

set of objective vectors, not dominated by any other feasible objective vector

© D. Brockhoff 2024

min

min

 $f_2$ 

4 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

 $\bigstar$ 

 $\bigstar$ 



#### min

#### **Pareto Set and Pareto Front** $\bigstar$ Pareto Set: $\chi_{3}$ pre-image **f**2 of Pareto Front $\boldsymbol{x_1}$ $\boldsymbol{x_2}$ $\bigstar$ $\checkmark$ **Pareto Front:** set of objective vectors, not dominated by any other feasible what is the actual **optimization goal**? min objective vector

min

## **Optimization Goal**

Here: optimize Hypervolume (HV) indicator

## **Optimization Goal**

Here: optimize Hypervolume (HV) indicator

Even then, 2 optimization goals:

- fixed size approximation (maximizing HV with p points) given  $p \in \mathbb{N}$ , find p solutions  $\{x_1, \dots, x_p\} \subset \mathbb{R}^n$  with maximal hypervolume  $HV(\{x_1, \dots, x_p\})$
- unbounded approximation (= finding the "entire" Pareto Set)

## **Optimization Goal**

Here: optimize Hypervolume (HV) indicator

Even then, 2 optimization goals:

- fixed size approximation (maximizing HV with p points) given  $p \in \mathbb{N}$ , find p solutions  $\{x_1, \dots, x_p\} \subset \mathbb{R}^n$  with maximal hypervolume  $HV(\{x_1, \dots, x_p\})$
- unbounded approximation (= finding the "entire" Pareto Set)

 $f_2$ 



 $f_1$ 









#### consider hypervolume maximization as $(n \cdot p)$ -dimensional problem then: subspace optimization = optimize the hypervolume *improvement* (HVI)

### **Level Sets**

consider hypervolume maximization as  $(n \cdot p)$ -dimensional problem then: subspace optimization = optimize the hypervolume *improvement* (HVI)



#### level sets of hypervolume improvement

© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

### **Level Sets**

consider hypervolume maximization as  $(n \cdot p)$ -dimensional problem then: subspace optimization = optimize the hypervolume *improvement* (HVI)





#### additional use of non-dominated sorting

#### level sets of hypervolume improvement + non-dom. sorting





#### additional use of non-dominated sorting

#### level sets of hypervolume improvement + non-dom. sorting



# Problems: still flat regions without gradient search directed towards points, we already know

## "upgrading" the HVI

"Uncrowded" Hypervolume Improvement (UHVI):

1) HVI if non-dominated

2) negative distance to empirical Pareto front otherwise

## "upgrading" the HVI

"Uncrowded" Hypervolume Improvement (UHVI):1) HVI if non-dominated2) negative distance to empirical Pareto front otherwise

Quality of solution s wrt. current Pareto set approximation S:

$$\text{UHVI}_{\mathbf{r}}(\mathbf{s}, S) = \begin{cases} \text{HVI}_{\mathbf{r}}(\mathbf{s}, S) & \text{if } \text{EPF}_{S, \mathbf{r}} \not\prec \mathbf{f}(\mathbf{s}) \\ -d_{\mathbf{r}}(\mathbf{s}, S) & \text{if } \text{EPF}_{S, \mathbf{r}} \prec \mathbf{f}(\mathbf{s}) \end{cases}$$

## "upgrading" the HVI

"Uncrowded" Hypervolume Improvement (UHVI): 1) HVI if non-dominated 2) negative distance to empirical Pareto front otherwise



## Level Sets of the UHVI

"Uncrowded" Hypervolume Improvement (UHVI):

#### 1) HVI if non-dominated

2) negative distance to empirical Pareto front otherwise

level sets of UHVI



### Level Sets of the UHVI

"Uncrowded" Hypervolume Improvement (UHVI):

#### 1) HVI if non-dominated

2) negative distance to empirical Pareto front otherwise

#### level sets of UHVI



non-zero indicator (+gradient) almost everywhere ©
 and: search directed towards "empty" regions ©

• we can write  $UHVI_{r,S}(x) = \overline{UHVI}_{r,f(S)}(f(x))$ 

#### • we can write $UHVI_{r,S}(x) = \overline{UHVI}_{r,f(S)}(f(x))$

#### gradient of UHVI then computable via single-objective gradients:

PROPOSITION 2.1. Let  $x \in \mathbb{R}^n$ . Assume f is differentiable in x and UHVI is differentiable in f(x). Then the gradient of UHVI equals

(2.3)  $\nabla_x UHVI_{r,S}(x) = \partial_1 \overline{UHVI}_{r,f(S)}(f(x))\nabla f_1(x) + \partial_2 \overline{UHVI}_{r,f(S)}(f(x))\nabla f_2(x)$ 

with  $\partial_i$  being the partial derivative with respect to the *i*th coordinate.

• we can write  $UHVI_{r,S}(x) = \overline{UHVI}_{r,f(S)}(f(x))$ 

gradient of UHVI then computable via single-objective gradients:

PROPOSITION 2.1. Let  $x \in \mathbb{R}^n$ . Assume f is differentiable in x and UHVI is differentiable in f(x). Then the gradient of UHVI equals

(2.3)  $\nabla_x UHVI_{r,S}(x) = \partial_1 \overline{UHVI}_{r,f(S)}(f(x))\nabla f_1(x) + \partial_2 \overline{UHVI}_{r,f(S)}(f(x))\nabla f_2(x)$ 

with  $\partial_i$  being the partial derivative with respect to the *i*th coordinate.

•  $\partial_1 \overline{UHVI}_{r,f(S)}$  and  $\partial_2 \overline{UHVI}_{r,f(S)}$  independent of f and relatively simple to compute





#### **Cases where Gradient not defined**



all those cases are analytically characterizable

when set S is given



#### hence: non-differentiable regions are null-sets

assuming that single-objective gradients are differentiable

#### Idea:

- start with  $S = \emptyset$
- while not happy:
  - use single-objective solver to optimize  $UHVI_{\mathbf{r}}(x, S)$
  - $S = S \cup$  incumbent of last run when stopped

 $\mathbf{A}^{f_1}$ 

 $f_1$ 



#### Idea:

- start with  $S = \emptyset$
- While not happy:
  - use single-objective solver to optimize  $UHVI_{\mathbf{r}}(x, S)$
  - $S = S \cup$  incumbent of last run when stopped

#### Idea:

- start with  $S = \emptyset$
- While not happy:
  - use single-objective solver to optimize  $UHVI_{\mathbf{r}}(x, S)$
  - $S = S \cup$  incumbent of last run when stopped

Note: the solver can be initialized fully random or at the previously found solution with largest hypervolume contribution

we typically choose the strategy that used less function evaluations in the past

### **Gradient-Based vs. Derivative-Free**



## **Gradient-Based vs. Derivative-Free**



•

lacksquare

#### **COCO (Comparing Continous Optimizers)**

http://numbbo.github.io/coco/

#### **COCO (Comparing Continous Optimizers)**

http://numbbo.github.io/coco/

- bbob (24 noiseless, unconstrained functions, n = 2,3,5,10,20,40)
- bbob-noisy (30 functions with 3 noise types)
- bbob-biobj (55 bi-objective functions)
- bbob-largescale (like bbob but with  $n \in \{20, 40, \dots, 640\}$ )
- **bbob-constrained** (48 functions with  $1 \dots 9 + \lfloor 9n/2 \rfloor$  constraints, of which  $1 \dots 6 + 3n$  are active)
- bbob-mixint & bbob-biobj-mixint (versions with 20% continuous variables, the rest discrete with varying arity from 2 to 16)
- sbox-cost (bound-constrained version of bbob)

#### **COCO (Comparing Continous Optimizers)**

http://numbbo.github.io/coco/

- bbob (24 noiseless, unconstrained functions, n = 2,3,5,10,20,40)
- bbob-noisy (30 functions with 3 noise types)
- bbob-biobj (55 bi-objective functions)
- **bbob-largescale** (like bbob but with  $n \in \{20, 40, \dots, 640\}$ )
- **bbob-constrained** (48 functions with  $1 \dots 9 + \lfloor 9n/2 \rfloor$  constraints, of which  $1 \dots 6 + 3n$  are active)
- bbob-mixint & bbob-biobj-mixint (versions with 20% continuous variables, the rest discrete with varying arity from 2 to 16)
- sbox-cost (bound-constrained version of bbob)
- all in (predefined) 6 dimensions (in principle, any)

#### **COCO (Comparing Continous Optimizers)**

http://numbbo.github.io/coco/

- bbob (24 noiseless, unconstrained functions, n = 2,3,5,10,20,40)
- bbob-noisy (30 functions with 3 noise types)
- bbob-biobj (55 bi-objective functions)
- **bbob-largescale** (like bbob but with  $n \in \{20, 40, \dots, 640\}$ )
- **bbob-constrained** (48 functions with  $1 \dots 9 + \lfloor 9n/2 \rfloor$  constraints, of which  $1 \dots 6 + 3n$  are active)
- bbob-mixint & bbob-biobj-mixint (versions with 20% continuous variables, the rest discrete with varying arity from 2 to 16)
- sbox-cost (bound-constrained version of bbob)
- all in (predefined) 6 dimensions (in principle, any)
- available in Python, C/C++, Java, Matlab/Octave, Rust

#### **COCO (Comparing Continous Optimizers)**

http://numbbo.github.io/coco/



#### **COCO (Comparing Continous Optimizers)**

http://numbbo.github.io/coco/



pip install cocopp

python -m cocopp MO-BFGS/ MO-SLSQP/

pip install cocopp

python -m cocopp MO-BFGS/ MO-SLSQP/ RM-MEDA NSGA-II-platypus DMS TPB Tanabe UP-MO-CMA





© D. Brockhoff 2024 MO optimization via iterative SO optimization: MO-BFGS and MO-SLSQP

## **Commercial Break II**



#### International Conference on Evolutionary Multi-Criterion Optimization

4-7 March, 2025 Canberra, Australia

#### About

EMO is a biennial conference series devoted to studying various aspects of multiobjective optimization such as:

- evolutionary and population-based algorithms;
- surrogate-based or Bayesian optimization methods;
- machine learning/artificial intelligence-based hybrid methods;
- theoretical foundations of multiobjective optimization;
- multiple-criteria decision-making;
- benchmarking, performance indicators, and visualization;
- Practical/industry applications.

#### EMO 2025 will be held at the Shine Dome, Canberra, Australia (<u>https://shinedome.org.au/</u>).

#### Submission types

- EMO Main track: Full papers (12 pages)
- MCDM Special track: Full papers or abstracts (2 pages)
- Industry Special track: Full papers or abstracts

All accepted papers will be included in Springer Lecture Notes in Computer Science (LNCS) proceedings.

#### Previous EMO conference proceedings: http://www.emo-online.org/

#### Key dates

Plenary Speakers

- Paper submission deadline: 15 September 2024
- Notification of outcomes: 15 November 2024
- Camera-ready papers due: 30 November 2024
- Conference dates: 4-7 March 2025

#### Submissions open!

More information: https://emo2025.org/

#### Organizing committee

#### General chairs:

- Hemant Kumar Singh (UNSW, Australia)
- Tapabrata Ray (UNSW, Australia)
  Joshua Knowles (SLB Cambridge,
  - UK)

Industry track chairs:

- Frank Neumann (University of Adelaide, Australia)
- Kate-Smith Miles (University of Melbourne, Australia)

#### Local arrangement chairs:

- Saber Elsayed (UNSW, Australia)
- Ali Ahrari (UNSW, Australia)

#### Conflict of Interest chairs:

- Hisao Ishibuchi (SUSTech, China)
- Lie Meng Pang (SUSTech, China)

Springer

#### Proceedings chairs:

- Bing Wang (UNSW Australia)
- Akira Oyama (JAXA, Japan)

- Program chairs:
- Xiaodong Li, (RMIT, Australia)
- Juergen Branke (University of Warwick, UK)

MCDM track chairs:

- Ruhul Sarker (UNSW, Australia)
- Sanaz Mostaghim (OvGU, Germany)

Tutorial chair:

- Hussein Abbass (UNSW, Australia)
- Web chair:
- Angus Kenny (UNSW, Australia)

#### Publicity chairs:

- Aneta Neumann (University of Adelaide, Australia)
- Yi Mei (VUW, New Zealand)
- Deepak Sharma (IITG, India)
- Handing Wang (Xidian Uni, China)
- Dimo Brockhoff (Inria Saclay, France)
- Carlos Coello-Coello (CINVESTAV-IPN, Mexico)



- Professor Bernhard Sendhoff, CEO of Global Network Honda Research Institutes, Germany
- Professor Qingfu Zhang, Chair Professor of Computational Intelligence, City University of Hong Kong
- Professor Kaisa Miettinen, Professor of Industrial Optimization, University of Jyvaskyla, Finland

## Conclusions

#### How to do multiobj. optimization with single-obj. solvers?

- when an unbounded representation of the Pareto set is sought via iterative UHVI optimization
- start with one solution, then increase the approximation size
- experiments with solvers L-BFGS and SLSQP from scipy
- basic version works well on simple functions but problems still with multimodality
  - idea: add another stopping criterion, specific for the case of UHVI optimization

## Conclusions

#### How to do multiobj. optimization with single-obj. solvers?

- when an unbounded representation of the Pareto set is sought via iterative UHVI optimization
- start with one solution, then increase the approximation size
- experiments with solvers L-BFGS and SLSQP from scipy
- basic version works well on simple functions but problems still with multimodality
  - idea: add another stopping criterion, specific for the case of UHVI optimization

#### **Questions?**