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April 2007

Abstract. In recent years, multiobjective problems with many objec-
tives, i.e., more than three, have gained interest. Since the consideration
of many objectives cause obvious problems in terms of visualization,
decision making and computational cost, the question arises whether
objectives can be omitted to avoid or at least diminish the mentioned
problems. To answer the question how an objective reduction can help
in tackling problems with many objectives, we both theoretically and ex-
perimentally investigate how an addition or omission of objectives affects
the problem characteristics. Furthermore, we propose a general definition
of conflict between objective sets which provides the basis for a relation-
based objective reduction method. Exact and heuristic algorithms to
reduce the number of objectives under consideration are developed. How
a reduction of the objective set can be utilized both offline, i.e., in the
decision making step and online, i.e., within the search is demonstrated
for a radar waveform application as well as on well-known test problems.

1 Motivation

In recent years, the number of publications on evolutionary multi-objective op-
timization has been rapidly growing. Most of the studies, however, investigate
problems where the number of considered objectives is low, i.e., between two and
four, while studies with many objectives are rare, cf. [Coello Coello et al., 2002].
Why do most of the publications address problems with only few objec-
tives? Obviously, problems with many objectives cause additional difficulties;
due to the visualization of high-dimensional data, the necessary computa-
tional effort, the increasing size of the Pareto-optimal front or the rising num-
ber of incomparable solutions in general. That state-of-the-art search algo-
rithms like NSGA-II or SPEA2 do not scale well with an increasing number
of objectives was shown several times empirically, e.g., in [Khare et al., 2003],
[Purshouse and Fleming, 2003b], and [Wagner et al., 2007].



Contrariwise, a few studies argue the converse, namely that more objec-
tives can improve the performance of evolutionary algorithms. For example,
[Jensen, 2004] uses so-called helper-objectives to guide the search of multiob-
jective evolutionary algorithms, getting stuck in local minima when consider-
ing only a few objectives. That the conversion of single-objective problems to
multiobjective ones (“multi-objectivization” in [Knowles et al., 2001]) can de-
crease the running time of evolutionary algorithms was theoretically confirmed
for some combinatorial optimization problems, e.g. by [Scharnow et al., 2004],
and [Neumann and Wegener, 2006], and also experimentally, e.g., in terms of re-
ducing bloat in Genetic Programming, amongst others in [Bleuler et al., 2001],
[Ekárt and Németh, 2001], and [De Jong et al., 2001].

However, the question why many-objective problems are hard to tackle with
state-of-the-art EAs remains unsolved. The fact that many of the multiobjec-
tive problems with many objectives were solved by aggregating objectives, cf.
for example [Coello Coello et al., 2002], leads us to the assertion that reducing
the number of objectives can be, in general, a helpful approach when tackling
many-objective problems. With the present study, we support this assertion by
addressing the field of objective reduction in evolutionary multiobjective opti-
mization with respect to the following open questions:

– What is the effect of joining or omitting objectives?
– What does, in particular, objective conflict mean?
– Can the objective set be reduced? Under which circumstances?
– How can a reduction of the objective set improve evolutionary algorithms?

To this end, in the following sections we will

– give a general definition of objective conflicts, including a measure of conflict,
– show that the presence or absence of pairwise conflicts do not indicate

whether objectives can be omitted while the dominance-relation is preserved,
– propose algorithms to compute minimum objective sets, and
– demonstrate how the proposed objective reduction approach can be utilized

within applications in terms of
• learning about a problem by analyzing Pareto front approximations and
• saving computation time during search.

2 Current State of Research

Why at all are multiple objectives considered simultaneously? An obvious expla-
nation is the inherent multiobjective property of many real-world problems, i.e.,
the objectives need to be kept separately to gain information about the tradeoff
between the objectives while a decision maker wants to learn about the problem
and the trade-offs between the objectives in particular. Although in the end a
single solution or a small set of solutions has to be chosen by a decision maker,
information about the decision maker’s preference is insufficient in the beginning
to turn the multiobjective problem into a single-objective one in advance. From
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a practical point of view it is also desirable with most applications to include as
many objectives as possible without the need to specify preferences among the
different criteria.

When many objectives are considered simultaneously, many obvious prob-
lems occur: (i) a human decision maker cannot handle many objectives due to
visualization problems and the huge amount of data; (ii) the set of trade-offs
becomes larger with more objectives which causes problems both for a (hu-
man) decision maker and search algorithms, and (iii) the needed computation
effort, to some extent, increases dramatically with the number of objectives,
e.g., if hypervolume indicator based algorithms such as SMS-EMOA, proposed
by [Emmerich et al., 2005], are used.

In this context, the question arises why at all many objectives are considered
and whether a reduction to less objectives is useful both within search and
decision making while computation and visualization problems can be avoided.

Since in many fields like statistics, pattern recognition, data mining, and
machine learning, dimensionality reduction methods are of broad interest for pre-
processing data in real-world problems as pointed out by [Liu and Motoda, 1998],
various dimensionality reduction techniques have been proposed and successfully
used, e.g., by [Dai et al., 2006] in biology or by [Kaelbling et al., 2003] in text
processing. The general idea of dimensionality reduction methods is to reduce
large feature spaces to smaller feature spaces, whereas the variables under consid-
eration are called features. Two distinct approaches to reduce the dimensionality
of the feature space can be distinguished; they are often referred to as feature
extraction and feature selection.

Given a high-dimensional data set with many “features”, the task in feature
extraction is to find a new feature space, the data can be embedded into and the
size of which is as small as possible. In other words, feature extraction tries to
extract a set of (arbitrary) features to explain the data. The emerging features
are often new and defined as combinations of the original ones. Methods for
this task of feature extraction are, e.g., principal component analysis (PCA, see
[Jolliffe, 2002]) and independent component analysis, see [Hyvärinen et al., 2001].
In contrast to the feature extraction approach, the task in feature selection is to
find the smallest subset of the given features, representing the given data best.
The task of finding a smallest subset of features is, in general, NP-hard when
formalized as an optimization problem as it was shown by [Charikar et al., 2000].
Therefore, an exhaustive search is necessary to solve some instances of feature se-
lection problems optimally. In practice, various methods based on greedy heuris-
tics as well as evolutionary algorithms have been proposed and applied to fea-
ture selection problems, cf. for example [Langley, 1994], [Dash and Liu, 1997],
and [Vafaie and De Jong, 1993].

Translated to the multiobjective optimization field, one can ask for a set of
arbitrary objectives (feature extraction) or for a subset of given objectives (fea-
ture selection) which describes the original problem best. Since new objectives—
potentially defined as combinations of the given ones—are not easy to handle
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in the decision making, we focus on finding subsets of the given objectives, (re-
)formulating the original problem best.

Various multiobjective optimization problems have been considered in the
literature so far. However, most of the problems have only a few objectives,
i.e., < 5, cf. [Coello Coello et al., 2002]. Therefore, the development of dimen-
sionality reduction methods for the case of multiobjective optimization had not
obtained top priority in research and not many studies deal with objective re-
duction. In recent years, the interest shifts more and more to problems with
many objectives. Unfortunately, it turned out that state-of-the-art evolutionary
algorithms, well-suited for bi- or three-objective problems, have difficulties in
approximating the Pareto-optimal front of many-objective problems. For exam-
ple, [Wagner et al., 2007] showed this fact empirically for well-known algorithms
like NSGA-II and SPEA2 on a set of test problems. By means of the focus to-
wards many-objective problems in the last years, the question, how an objective
reduction can gain a better performance of known algorithms to tackle problems
with many objectives, got challenging in the meantime.

When developing an objective reduction method for evolutionary multiob-
jective optimization, one has to consider the question on which basis the ob-
jective set should be reduced. Different notions of objective conflicts yield dif-
ferent objective reduction methods. For example, [Deb and Saxena, 2006] use
the principal component analysis method to compute a set of “the most im-
portant conflicting objectives” by omitting the redundant ones, whereas an ob-
jective is called redundant if its omission will not change the Pareto-optimal
front. Since the approach of [Deb and Saxena, 2006] is based on a correlation-
based definition of conflicting objectives, the approach cannot guarantee that the
Pareto-dominance relation is preserved while omitting objectives. For this case,
[Gal and Leberling, 1977] proposed a method to reduce the number of objectives
without changing the dominance structure. Nevertheless, the proposed algorithm
for computing the smallest set of objectives not changing the dominance struc-
ture is only applicable in the case of linear vector maximum problems, where
the objective functions are explicitly known as linear combinations of the (real)
decision variables, i.e., the Pareto optimal set is determined within the prob-
lem formulation. Thus, the approach is inapplicable in a black-box scenario. For
the same reason, a generalization of Gal and Leberling’s redundancy theory by
[Agrell, 1997] is also not applicable in a black-box scenario.

With this paper, we propose an objective reduction method which both is
suited for black-box optimization problems and preserves (most of) the Pareto-
dominance relation. A generalized definition of conflicting objectives builds the
basis of the proposed objective reduction method.

Before we propose the new conflict definition, we will give a brief overview of
conflict definitions, known from literature. Some of these definitions state conflict
as a property of the entire set ob objectives, some other are restricted to objective
pairs. Several publications define conflicts regarding to the set of Pareto optimal
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solutions, other with respect to the entire search space. We restate the conflict
definitions briefly, but cannot go into details1.

Definition 1 (Conflict by [Deb, 2001]) A multiobjective optimization prob-
lem contains conflicting objectives if and only if there are trade-offs, i. e., there
is no single optimal solution.

Definition 2 (Conflict by [Tan et al., 2005]) A set F of objective functions
is said to be conflicting if and only if there are incomparable solution pairs2.

Definition 3 (Conflict by [Purshouse and Fleming, 2003a]) Two objec-
tives i and j are conflicting if there exist at least two solutions where the one has
a better ith objective value and a worse jth objective value than the other and
vice versa.

The following example shows that a generalization of the conflict definitions
of [Deb, 2001], [Purshouse and Fleming, 2003a], and [Tan et al., 2005] to arbi-
trary objective sets is crucial for a sufficient and necessary criterion to decide
whether objectives can be omitted while the dominance relation is preserved.

Example 1. Figure 1 shows the parallel coordinates plot3 of three solutions x1

(solid line), x2 (dotted) and x3 (dashed) that are pairwise incomparable. As-
suming that x1,x2,x3 represent either the entire search space or the Pareto
optimal set, the original objective set {f1, f2, f3} is conflicting according to
[Deb, 2001] as there is no single optimal solution but three Pareto optimal
ones. For the same reason of incomparable solution pairs, the objective set is
also conflicting according to [Tan et al., 2005]. Every possible objective pair
fi, fj with i, j ∈ {1, 2, 3}, i 6= j “exhibits evidence of conflict” as defined by
[Purshouse and Fleming, 2003a].

Although the three conflict definitions mislead to the assumption that all
objectives are necessary, the objective set {f1, f2, f3} contains redundant infor-
mation: the objective f2 can be omitted, and all solutions remain incomparable
to each other with regard to the objective set {f1, f3}, i.e., the dominance rela-
tion on the search space stays unaffected.

Note, that not only the consideration of objective pairs is insufficient to consider
whether objectives can be omitted as shown in the example, but the considera-
tion of objective sets of any fixed size cannot provide information on redundancy
in general.

Since the above mentioned effect of objective subsets inducing the same dom-
inance relation than all objectives is rather rare, it would be a benefit to dis-
tinguish between different degrees of conflict. A possible measure of conflict,
proposed in [Brockhoff and Zitzler, 2006a], is illustrated in the following exam-
ple.

1 For a more detailed overview on the definitions, we refer to
[Brockhoff and Zitzler, 2006c].

2 Two solutions are incomparable iff either is better than the other one in some ob-
jectives.

3 cf. [Purshouse and Fleming, 2003a]
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Fig. 1. Parallel coordinates plot for three solutions and three objectives f1, f2, f3.

Example 2. Fig. 2 shows the parallel coordinates plot of three solutions x1 (solid
line), x2 (dashed) and x3 (dotted) that are pairwise incomparable. At a closer
inspection, the objective functions f1 and f3 indicate redundancy in the prob-
lem formulation, as the corresponding relations are the same. With the above
notions, the set {f1, f2, f4} is a minimum objective set preserving the dominance
structure, i.e., x weakly dominates y w.r.t. {f1, f2, f4} if and only if x weakly
dominates y w.r.t. the entire objective set. Because all smaller objective sets
yield a changed dominance structure, {f1, f2, f4} is minimum.

Considering, for example, the objective subset F ′ := {f3, f4}, we observe
that, by reducing the set of objectives to F ′, the dominances change: on the one
hand x1 weakly dominates x2 w.r.t. F ′; on the other hand x1 does not weakly
dominate x2 w.r.t. all objectives. In this sense, we make an error: the objective
values of x1 had to be smaller by an additive term of δ = 0.5, such that x1 would
weakly dominate x2 w.r.t. all objectives. This δ value can be used as a measure
to quantify the difference in the dominance structure induced by F ′ and the
entire objective set. By computing the δ values for all solution pairs x,y, we can
then determine the maximum error. The meaning of the maximum δ value is
that whenever we wrongly assume that x weakly dominates y w.r.t. F ′, we also
know that x is not worse than y in all objectives by an additive term of δ. For
F ′ := {f3, f4}, the maximum error is δ = 0.5; for F ′ := {f2, f4}, the maximum
δ is 4.
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Fig. 2. Parallel coordinates plot for three solutions and four objectives.
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After these preliminary statements on objective conflicts and objective reduc-
tion, we tackle the question whether always all objectives are necessary to induce
the dominance relation (with a certain error) by proposing a dimensionality re-
duction method and applying the approach within evolutionary multiobjective
optimization in the remainder of this paper. Before, we briefly restate the general
conflict definition of [Brockhoff and Zitzler, 2006a].

3 Objectives, Orders, and a General Notion of Conflict

In the following, we consider—unless otherwise noted—multiobjective minimiza-
tion problems. The vector function f : X → Z ⊆ R

k maps a solution or
decision vector x in the decision space X into an objective vector f(x) =
(f1(x), . . . , fk(x)) ∈ R

k in the objective space Z = R
k.

Furthermore, we assume that the minimal elements of the weak Pareto dom-
inance relation

�F := {(x,y) |x,y ∈ X ∧ ∀f ∈ F : f(x) ≤ f(y)}4

are sought, where F := {f1, . . . , fk} is the set of all k objective functions5. We
say x weakly dominates y w.r.t. objective set F whenever x �F y; if neither x
weakly dominates y nor y weakly dominates x, we say x and y are incomparable.
Two solutions which are mutually dominating each other are called indifferent.

The minimal elements minx∈X{x} of X w.r.t. the weak dominance relation
�F are denoted as Pareto-optimal and constitute the Pareto set, whereas their
image f(minx∈X{x}) in objective space is called Pareto (optimal) front.

The observation used below, that for any objective function set the general-
ized weak Pareto dominance relation can be derived from the objective-wise less
than or equal relation on R, is shown in the following theorem.

Theorem 1. Let F = {f1, . . . , fk} be a set of k different objective functions.
Then it holds:

�F =
⋂

1≤i≤k

�i

Proof. Let x,y ∈ X, then (x,y) ∈�F ⇐⇒ x � y w.r.t.F ⇐⇒ ∀i ∈ {1, . . . , k} :
fi(x) ≤ fi(y) ⇐⇒ ∀i ∈ {1, . . . , k} : x � y w.r.t.fi ⇐⇒ ∀i ∈ {1, . . . , k} :
(x,y) ∈�i ⇐⇒ (x,y) ∈

⋂

1≤i≤k �i.
Note that the above equivalence also holds for the strict dominance relation

≺≺ and the multiplicative ε-dominance relation �ε, cf. [Zitzler et al., 2003], but
does not apply to the regular Pareto dominance relation ≺ defined as x1 ≺
x2 :⇐⇒ x1 � x2 ∧ ¬(x2 � x1).

4 We will write �i if we mean the weak dominance relation w.r.t. F = {fi}; in addition,
we define �∅:= X × X for the case that F is empty.

5 Other dominance relations such as epsilon dominance, cf. [Zitzler et al., 2003], could
be taken as well, and the following discussions apply to any preorder on X that is
defined by a corresponding partial order on R

k.
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Corollary 1. The same equivalence as in Theorem 1 holds for the ε-dominance
relations6 defined by [Zitzler et al., 2003]:

�ε,◦
F =

⋂

i∈F

�ε,◦
i with ◦ ∈ {+, ·}

To come up with a definition of conflicts between objective sets, we first take
a look at the possible changes in the dominance structure, when omitting or
adding objectives. We know from Theorem 1 that the weak dominance relation
is always an intersection of relations �i. Thus, by considering a larger number of
objectives, the number of comparable solution pairs can only decrease; compara-
ble solutions can become incomparable, but also indifferent solutions can become
comparable. Contrary, when objectives are omitted, the number of comparable
solution pairs can only increase.

Since an omission of objectives will usually result in a changed problem for-
mulation, i.e., the dominance relations �F ′⊂F and �F are not exactly the same,
the question arises how such a structural change can be quantified. A possible
measure for changes in the dominance structure according to Example 2 was re-
cently proposed by [Brockhoff and Zitzler, 2006a]: the definition of δ-conflicting
objective sets based on the (additive) ε-dominance relation.

Definition 4 Let F1 and F2 be two objective sets. We define

F1 ⊑δ F2 :⇐⇒�F1
⊆�δ

F2
.

Definition 5 Let F1 and F2 be two objective sets. We call F1 δ-nonconflicting
with F2 iff

(

F1 ⊑δ F2

)

∧
(

F2 ⊑δ F1

)

.

Definition 5 is useful for changing a problem formulation by considering a
different objective set. If a multiobjective optimization problem uses the objec-
tive set F1 and one can prove that F1 is δ-nonconflicting with another objective
set F2, one can easily replace F1 with F2 and can be sure that in the new formu-
lation, for any x,y ∈ X, x either weakly dominates y w.r.t. F2 or x ε-dominates
y w.r.t. F2 if x weakly dominates y w.r.t. F1 and ε = δ. In the special case
of an objective subset F ′ ⊆ F , δ-nonconflicting with all objectives F , the def-
inition fits the intuitive measure of error in Example 2. If an objective subset
F ′ ⊂ F is δ-nonconflicting with the set F of all objectives, x δ-dominates y, i.e.,
∀i ∈ F : fi(x) − δ ≤ fi(y), whenever x weakly dominates y w.r.t. the reduced
objective set F ′. We, then, can omit all objectives in F \ F ′ without making a
larger error than δ in the omitted objectives.

4 Computing Minimum Objective Sets

With the definition of δ-conflict, the question arises whether a smallest set of
objectives can be derived which is δ-nonconflicting with the entire objective set.

6 We distinguish between an additive version of the ε-dominance relation �ε,+
F′ :=�ε

F′=
{(x,y) |x,y ∈ X ∧ ∀i ∈ F ′ ⊆ F : fi(x) − ε ≤ fi(y)} and the multiplicative one
�ε,·

F′ := {(x,y) |x,y ∈ X ∧ ∀i ∈ F ′ ⊆ F : ε · fi(x) ≤ fi(y)}
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The following section formalizes this topic by defining minimal, minimum, and
redundant objective sets (Sec. 4.1) and the optimization problems δ-MOSS and
k-EMOSS (Sec. 4.2). In Sec. 4.3 and Sec. 4.4, we present algorithms to tackle the
two objective reduction problems and conclude this section with experiments,
comparing the proposed algorithms.

4.1 Minimal, Minimum, and Redundant Objective Sets

Before we define δ-minimal, δ-minimum, and δ-redundant objective sets formally,
we want to give an intuitive impression of these three terms. An objective set
F ′ should be called δ-minimal w.r.t. another set F7 if

(i) the set F ′ is not δ-conflicting with F but
(ii) for all smaller errors δ′, F ′ is δ′-conflicting with F ′, and
(iii) the set F ′ cannot be further reduced without preserving property (i).

This definition of a δ-minimal set is a “local” property, i.e., one can decide only
by considering the objective set F ′ itself (and the set F of course) whether F ′

is δ-minimal w.r.t. F or not. In contrast to the notion of δ-minimal objective
sets, we want to introduce the notion of a δ-minimum objective set, i.e., a δ-
minimal set with the additional property that all other subsets of F that are
also δ-minimal w.r.t. F contain at least as many objectives as F ′. An objective
set, δ-minimum w.r.t. a set F , is therefore at all times also δ-minimal w.r.t. F
but not vice versa. Translated into Example 2, the set {f1, f3} is 2-minimal but
not 2-minimum w.r.t. the entire objective set, since the set {f3, f4} of the same
size is 0.5-minimal w.r.t. the entire objective set. For the case of no error, a
(0-)minimal objective set is a subset of the original objectives that cannot be
further reduced without changing the associated preorder; a minimum objective
set, however, is the smallest possible set of original objectives that preserves the
original order on the search space. The following definition will formalize the
described two forms of minimality.

Definition 6 Let F be a set of objectives and δ ∈ R. An objective set F ′ ⊆ F
is denoted as

– δ-minimal w.r.t. F iff (i) F ′ is δ-nonconflicting with F , (ii) F ′ is δ′-conflicting
with F for all δ′ < δ, and (iii) there exists no F ′′ ⊂ F ′ that is δ-nonconflicting
with F ;

– δ-minimum w.r.t. F iff (i) F ′ is δ-minimal w.r.t. F , and (ii) there exists no
F ′′ ⊂ F with |F ′′| < |F ′| that is δ-minimal w.r.t. F .

Definition 7 A set F of objectives is called δ-redundant if and only if there
exists an F ′ ⊂ F that is δ-minimal w.r.t. F .

Before we formalize the problems of finding δ-minimum objective sets, we
briefly state the following theorems. They are necessary for the algorithms we
propose in the next section. Proofs can be found in the appendix.

7 Usually, the entire objective set will be used as F .
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Theorem 2. Let F ′ ⊆ F . Then F ′ is δ-nonconflicting with F if and only if
�F ′ ⊆�δ

F .

Theorem 3. Let F1,F2 two objective sets and X a decision space. If

δ′ := max
x,y∈X∧x�F1

y

i∈F2

{fi(x) − fi(y)} and δ′′ := max
x,y∈X∧x�F2

y

i∈F1

{fi(x) − fi(y), }

then, F1 is δ-nonconflicting with F2 w.r.t. X for all δ ≥ max(δ′, δ′′) and no
δ < max{δ′, δ′′} exists such that F1 is δ-nonconflicting with F2.

Note, that if F1 ⊆ F2, the theorem can be shortened to F1 is δ-nonconflicting
with F2 for all δ ≥ δ′ but for no δ < δ′ if δ′ := maxx,y∈X∧x�F1

y,i∈F2
{fi(x) −

fi(y)}.

4.2 The MOSS, δ-MOSS, and k-EMOSS Problems

In this section we (re-)formulate three problems, emerging from the above discus-
sion on objective reduction. The problem MINIMUM OBJECTIVE SUBSET (MOSS)
from [Brockhoff and Zitzler, 2006b] asks for a minimum objective set, preserv-
ing the dominance structure. The problems δ-MINIMUM OBJECTIVE SUBSET and
MINIMUM OBJECTIVE SUBSET OF SIZE k WITH MINIMUM ERROR already proposed
in [Brockhoff and Zitzler, 2006a] correspond to questions arising with the gen-
eralization to δ-redundancy.

Based on Sec. 3, the problem MINIMUM OBJECTIVE SUBSET (MOSS) can be
characterized as follows.

Definition 8 Given a multiobjective optimization problem, the problem MINIMUM

OBJECTIVE SUBSET (MOSS) is defined as follows.

Instance: The set A of solutions, the generalized weak Pareto dominance
relation �F , and for all k objective functions fi ∈ F the single
relations �i, where

⋂

1≤i≤k �i =�F .

Task: Compute a minimum objective subset F ′ ⊆ F w.r.t. F .

As the set A of solutions, we can imagine either the entire search space A = X
or a Pareto front approximation A ⊆ X. The weak dominance relations have to
be only defined on the set A of solutions, i.e., �i⊆ A × A. Thus, an instance of
MOSS has a size of O(k ·m2), with m := |A|. Because MOSS is a kind of set cover
problem, it can be proved to be NP-hard, cf. [Brockhoff and Zitzler, 2006c] for
details.

When generalizing the MOSS problem to deal with dominance structure chang-
es, we can (i) given a δ, ask for a δ-minimum set or (ii) given a certain k, ask
for an objective set F ′ with at most k objectives and a minimal δ, such that
F ′ is δ-nonconflicting with the set of all objectives. Question (i) is denoted as
the δ-MOSS problem and (ii) as the k-EMOSS problem, both already proposed in
[Brockhoff and Zitzler, 2006a].
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Definition 9 Given a multiobjective optimization problem, the problem δ-MINIMUM
OBJECTIVE SUBSET (δ-MOSS) is defined as follows.

Instance: The objective vectors f(x1), . . . , f(xm) ∈ R
k of the solutions

x1, . . . ,xm ∈ A ⊆ X and a δ ∈ R.

Task: Compute a δ-minimum objective subset F ′ ⊆ F w.r.t. F .

Definition 10 Given a multiobjective optimization problem, the problem MINIMUM

OBJECTIVE SUBSET OF SIZE k WITH MINIMUM ERROR (k-EMOSS) is defined as
follows.

Instance: The objective vectors f(x1), . . . , f(xm) ∈ R
k of the solutions

x1, . . . ,xm ∈ A ⊆ X and a k ∈ R.

Task: Compute an objective subset F ′ ⊆ F which has size |F ′| ≤ k and
is δ-nonconflicting with F with the minimal possible δ.

The δ-MOSS problem contains the MOSS problem as the special case with δ =
0, although the two problems differ in its input instances. Nevertheless, the
instances can be transformed into each other by a simple algorithm, the running
time of which is linear in the input size. A MOSS instance, e.g., can be transferred
into a δ-MOSS instance by using a topological sorting of the orders �i as objective
values f(x1), . . . , f(xm). In the following we give attention to the more general
problems δ-MOSS and k-EMOSS and propose an exact algorithm and heuristics for
them.

4.3 An Exact Algorithm

Although the problems stated above are NP-hard, we propose with Algorithm 1
an exact algorithm, appropriate to deal with both problem formulations δ-MOSS,
and k-EMOSS respectively. The running time of Algorithm 1 is polynomial in |A|
but exponential in the number k of objectives. Nevertheless, the exact algorithm
is applicable for instances with only few objectives and a moderate number of
solutions as experimental results show (Sec. 4.5).

Instead of simply considering all 2k possible objective subsets and computing
whether they are minimal w.r.t. the set F of all objectives and the set A of
solutions, the basic idea of Algorithm 1 is to consider solution pairs separately.
This separate information is then combined to get all minimal objective sets for
increasing sets of solution pairs. Algorithm 1 considers all solution pairs (x,y)
successively in arbitrary order and stores in SM all minimal objective subsets
F ′ together with the minimal δ′ value such that F ′ is δ′-nonconflicting with the
set F of all objectives when taking into account only the solution pairs in M ,
considered so far.

The algorithm uses a subfunction δmin(F1,F2), that computes the minimal δ
error for two solutions x,y ∈ A, such that F1 is δ-nonconflicting with F2 w.r.t.
x,y according to Theorem 3. Furthermore, Algorithm 1 computes the union ⊔ of
two sets of objective subsets with simultaneous deletion of not δ′-minimal pairs
(F ′, δ′):
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Algorithm 1 An exact algorithm for the problems δ-MOSS and k-EMOSS
1: Init:
2: M := ∅, SM := ∅
3: for all pairs x,y ∈ A, x 6= y of solutions do

4: S{(x,y)} := ∅
5: for all objective pairs i, j ∈ F , not necessary i 6= j do

6: compute δij := δmin({i} ∪ {j},F) w.r.t. x,y
7: S{(x,y)} := S{(x,y)} ⊔ ({i} ∪ {j}, δij)
8: end for

9: SM∪{(x,y)} := SM ⊔ S{(x,y)}

10: M := M ∪ {(x,y)}
11: end for

12: Output for δ-MOSS: (smin, δmin) in SM with minimal size |smin| and δmin ≤ δ
13: Output for k-EMOSS: (s, δ) in SM with size |s| ≤ k and minimal δ

S1 ⊔ S2 := {(F1 ∪ F2, max{δ1, δ2}) | (F1, δ1) ∈ S1 ∧ (F2, δ2) ∈ S2

∧ 6∃(F ′
1, δ

′
1) ∈ S1, (F

′
2, δ

′
2) ∈ S2 :

(

F ′
1 ∪ F ′

2 ⊂ F1 ∪ F2 ∧ max{δ′1, δ
′
2} ≤ max{δ1, δ2}

)

∧ 6∃(F ′
1, δ

′
1) ∈ S1, (F

′
2, δ

′
2) ∈ S2 :

(

F ′
1 ∪ F ′

2 ⊆ F1 ∪ F2 ∧ max{δ′1, δ
′
2} < max{δ1, δ2}

)}

The correctness proof of Algorithm 1—as well as the proof of its running time of
O(m2 · k · 2k)—can be found in Appendix B. Note, that the exact algorithm can
be easily parallelized, as the computation of the sets S{(x,y)} are independent
for different pairs (x,y). It can also be accelerated if line 9 of Algorithm 1
is tailored to either the δ-MOSS or the k-EMOSS problem by including a pair
(F ′, δ′) into SM∪{(x,y)} only if δ′ ≤ δ, and |F ′| ≤ k respectively. Input instances
for which Algorithm 1 provably needs exponential time are known; we refer to
[Brockhoff and Zitzler, 2006c] for an example.

4.4 Heuristics

The two heuristic algorithms, we propose in this section, are better suited for
large instances of the δ-MOSS problem, and k-EMOSS respectively, than the above
exact algorithm. They are much faster but therefore do not guarantee to find
a minimum objective set. Furthermore, not even a minimal set can be assured.
Nevertheless, the computed objective sets can keep up with the sets computed
with the exact algorithm (Sec. 4.5).

A Greedy Algorithm for δ-MOSS Before we propose an approximation al-
gorithm for the δ-MOSS problem, we introduce a generalization of the weak ε-
dominance �ε

F , used in the algorithm. We also present observations on the new
dominance relation which are necessary for the correctness proof of the algo-
rithm.
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Algorithm 2 A Greedy Algorithm for δ-MOSS.
1: Init:
2: compute the relations �i for all 1 ≤ i ≤ k and �F

3: F ′ := ∅
4: R := X × X\ �F

5: while R 6= ∅ do

6: i∗ = argmin
i∈F\F′

{|(R∩ �i)\ �0,δ

F′∪{i},F\(F′∪{i}) |}

7: R := (R∩ �i∗)\ �0,δ

F′∪{i∗},F\(F′∪{i∗})

8: F ′ := F ′ ∪ {i∗}
9: end while

Definition 11 Let δ1, . . . , δk ∈ R and F1, . . . ,Fk objective subsets. We define
the (δ1, . . . , δk)-dominance relation on X for all x,y ∈ X as

x �δ1,...,δk

F1,...,Fk
y :⇐⇒ ∀1 ≤ i ≤ k : ∀j ∈ Fi : fj(x) − δi ≤ fj(y).

Observation 1 Let δ1, . . . , δk, δ′1, . . . , δ
′
k ∈ R with ∀1 ≤ i ≤ k : δi ≤ δ′i, and

F1, . . . ,Fk,F ′
1, . . . ,Fk objective sets with ∀1 ≤ i ≤ k : F ′

i ⊆ Fi. Then both

�δ1,...,δk

F1,...,Fk
⊆�

δ′
1,...,δ′

k

F1,...,Fk
and �δ1,...,δk

F1,...,Fk
⊆�δ1,...,δk

F ′
1,...,F ′

k

holds.

Observation 2 Furthermore, �δ1,...,δk

F1,...,Fk
=

⋂

1≤i≤k �δi

Fi
and �δ,...,δ

F1,...,Fk
=�δ

⋃

i Fi
.

Observation 3 Let δ ∈ R and fi ∈ F for all 1 ≤ i ≤ k. Then

⋂

i∈F

�δ
i =�δ

F .

Algorithm 2, as an approximation algorithm for δ-MOSS, computes an objec-
tive subset F ′, δ-nonconflicting with the set F of all objectives in a greedy way.
Starting with an empty set F ′, Algorithm 2 chooses in each step the objective
fi which yields the smallest set �F ′ ∩ �i without considering the relationships
in �0,δ

F ′∪{i},F until F ′ is δ-nonconflicting with F . For the correctness proof of

Algorithm 2 and the proof of its running time of O(min{k3 · m2, k2 · m4}) we
once again refer to Appendix B. Note, that Algorithm 2 not necessarily yields a
δ-minimal or even δ-minimum objective set w.r.t. F .

A Greedy Algorithm for k-EMOSS Algorithm 3 is an approximation algorithm
for the k-EMOSS problem. It supplies always an objective subset of size k which
is δ-nonconflicting with the entire objective set but does not guarantee to find
the set with minimal δ. The greedy algorithm needs time O(m2 · k3) since at
most k ≤ k loops with k calls of the δmin subfunction are needed. One call of
the δmin function needs time Θ(m2 · k) and all other operations need time O(1)
each. Note, that Algorithm 3 can be accelerated in a concrete implementation
as the while loop can be aborted if either |F ′| = k or δmin(F ′,F) = 0.
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Algorithm 3 A greedy algorithm for k-EMOSS
1: Init:
2: F ′ := ∅
3: while |F ′| < k do

4: F ′ := F ′ ∪ argmin
i∈F\F′

{δmin (F ′ ∪ {i},F) w.r.t. X }

5: end while

4.5 Comparison of Exact and Greedy Methods

The experiments, presented in this section, serve two goals: (i) to investigate the
size of a δ-minimum objective subset as well as the error of computed objective
sets for k-EMOSS depending on the size of the search space and the number of
original objective functions, and (ii) to compare the exact and the approximative
algorithms with respect to the size of the generated objective subsets and the
corresponding running times. Both issues have been considered on various test
problems.

MOSS, δ-MOSS, and k-EMOSS Problems To show the potentials of our objective
reduction method, we test the proposed approach of objective reduction in a
simple scenario. We generate the objective values for a set of solutions at ran-
dom where the objective values are chosen uniformly distributed in [0, 1] ⊂ R.
This corresponds to randomly chosen solutions of a problem with objectives, the
induced linear (pre)orders of which are chosen uniform randomly from the set
of all linear preorders. For different solution set sizes and increasing number of
objectives, we use the exact Algorithm 1 to compute a minimum objective set.
The sizes of the minimum objective sets, averaged over 100 independent random
samples, are shown in Fig. 3.

For all tested solution set sizes, the resulting sizes of the minimum objective
subsets behave similar: with increasing number of objectives, the size of the
computed minimum set increases up to a specific point, depending on the number
of solutions, and further decreases with more objectives. The larger the search
space, i.e., the more solutions we generate, the less objectives can be omitted.
Nevertheless, we expect that the size of a minimum set decreases down to 2 if
the number of objectives is increased to infinity, independently of the number
of solutions. The reason is the increasing probability of an objective pair, the
intersection of which yields the given preorder on the solutions, if more and more
objectives are taken into account.

In addition to the objective omission on the random problem where we tried
to preserve the underlying preorder, we also look at the generalized objective
reduction methods, based on δ-MOSS and k-EMOSS for six different test prob-
lems. We use the indicator based evolutionary algorithm IBEA, proposed in
[Zitzler and Künzli, 2004], to generate a Pareto front approximation for each of
the six test problems first. The population size µ is varying with the number
k of objectives, i.e., µ = 100 for k = 5, µ = 200 for k = 15, and µ = 300 for
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Fig. 3. Size of the computed minimum sets for different number k of randomly chosen
objectives and the number |A| of solutions.

k = 25. The other parameters are chosen according to the standard settings
of the PISA package presented in [Bleuler et al., 2003]. The generated Pareto
front approximations are, then, used as inputs for the δ-MOSS and k-EMOSS prob-
lems. To be able to compare the results for the different test problems and the
varying number of objectives, we choose the δ and k values relatively. On the
one hand, the error δ is chosen relatively to the spread of the IBEA population
after 100 generations, i.e., the difference between the largest and highest objec-
tive value in the IBEA population corresponds to an error of δ = 1. On the
other hand, the size k of the objective sets is denoted relatively to the number
k ∈ {5, 15, 25} of objectives in the problem formulation. We choose four different
δ values for the δ-MOSS problem (0%, 10%, 20%, 40%) and three different values
for k (30%, 60%, 90%). Table 1 shows the results for the three DTLZ problems
DTLZ2, DTLZ5, and DTLZ7, introduced in [Deb et al., 2005], as well as for
three 0-1-knapsack instances with 100, 250 and 500 items, denoted as KP100,
KP250, and KP500, cf. [Laumanns et al., 2004a].

With δ = 0, the six test problems show similar results than for the random
problem. Although an objective reduction is possible while preserving the pre-
order on the solutions, further objectives can be omitted if we allow changes
of the dominance structure within the dimensionality reduction. However, the
influence of a greater error δ on the resulting objective set size depends sig-
nificantly on the problems. For example, only small errors yield fundamentally
smaller objective sets for the DTLZ7 instances, while even a large error pro-
duces no further reduction for all DTLZ2 and DTLZ5 instances. By examining
the k-EMOSS problem for the 18 instances in Table 1, we see similar results in a
different manner. The smaller the chosen size k of the resulting objective sets,
the larger the error in the corresponding dominance structure.
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δ-MOSS k-EMOSS

0% 10% 20% 40% 30% 60% 90%

knapsack: 100 items, 5 objectives, 100 solutions 5 5 5 5 0.926 0.516 0.486
knapsack, 100 items, 15 objectives, 200 solutions 11 10 10 9 0.818 0.348 0.000
knapsack, 100 items, 25 objectives, 300 solutions 13 13 13 11 0.597 0.000 0.000
knapsack: 250 items, 5 objectives, 100 solutions 5 5 5 4 0.859 0.697 0.280
knapsack, 250 items, 15 objectives, 200 solutions 11 11 10 9 0.762 0.342 0.000
knapsack, 250 items, 25 objectives, 300 solutions 12 12 12 11 0.575 0.000 0.000
knapsack: 500 items, 5 objectives, 100 solutions 5 5 5 4 0.748 0.504 0.237
knapsack, 500 items, 15 objectives, 200 solutions 15 15 14 10 0.643 0.435 0.278
knapsack, 500 items, 25 objectives, 300 solutions 25 23 17 13 0.472 0.320 0.138
DTLZ2: 5 objectives, 100 solutions 5 5 5 5 0.991 0.970 0.920
DTLZ2: 15 objectives, 200 solutions 13 13 13 13 0.942 0.891 0.000
DTLZ2: 25 objectives, 300 solutions 18 18 18 18 0.832 0.782 0.000
DTLZ5: 5 objectives, 100 solutions 5 5 5 5 0.952 0.906 0.896
DTLZ5: 15 objectives, 200 solutions 11 11 11 11 0.860 0.803 0.000
DTLZ5: 25 objectives, 300 solutions 13 13 13 13 0.820 0.000 0.000
DTLZ7: 5 objectives, 100 solutions 5 5 1 1 0.135 0.134 0.132
DTLZ7: 15 objectives, 200 solutions 10 1 1 1 0.078 0.070 0.000
DTLZ7: 25 objectives, 300 solutions 11 1 1 1 0.050 0.000 0.000

Table 1. Sizes (for δ-MOSS) and relative errors (for k-EMOSS) of objective subsets for
different problems, computed with the greedy algorithms. For δ-MOSS, the δ value is
chosen relatively to the maximum spread of the IBEA population after 100 generations;
in the case of k-EMOSS the specified size k of the output subset is noted relatively to
the problem’s number of objectives.

Comparison of the Algorithms To compare the exact Algorithm 1 with
the greedy Algorithm 2 on δ-MOSS, we both use the random objective problem,
described above, and the 0-1-knapsack problem the results of which are shown
in Fig. 4, and Fig. 5 respectively.

For both problems, the comparison shows the same two aspects. Firstly, the
objective sets computed with the greedy algorithm are not too large in compar-
ison to the minimum sets computed with the exact algorithm. Nevertheless, the
difference between the sizes of the objective sets computed by the two algorithms
increase with more objectives. Secondly, the greedy algorithm is—as expected—
much faster than the exact algorithm. The runtime is a large advantage of the
greedy algorithm, especially for larger values of δ because the heuristic’s runtime
decreases with larger δ, cf. the right hand plot in Fig. 5.

5 Applications

In this last section, we provide examples where the above algorithms and the
definition of conflict can be useful. In the case of offline analysis where a search
method offers a set of non-dominated solutions, the proposed approach can not
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only indicate which objectives are redundant but can also provide insights in the
problem itself to make the decision making process easier. Section 5.1 will show
these benefits exemplary for a radar waveform problem with nine objectives,
recently proposed by [Hughes, 2007].

The general question whether objective reduction is useful during the search
is subject of Sec. 5.2 where we show experimentally that additional objectives
can both improve and worsen the running time behavior of a search method.
How the integration of an online objective reduction can drastically improve the
running time of a simple hypervolume-based search algorithm is, in addition,
shown in Sec. 5.2.

5.1 Offline Objective Reduction

How the proposed approach of objective reduction can be used offline, i.e.,
to effectively assist in the decision making after the search, is presented in
the following for a radar waveform optimization problem, recently proposed
by [Hughes, 2007]. The real and unmodified engineering problem, described in
[Hughes, 2007], is to design a waveform for a pulsed Doppler radar, i.e., to decide
on how to choose a set of waveforms allowing an unambiguous measure of both
range and velocity of targets. The formalization of the radar waveform problem
uses 9 objectives altogether.

[Hughes, 2007] states various relationships between these 9 objectives due to
their definitions. For example, objectives 1 & 3, 2 & 4, 5 & 7, and 6 & 8 “tend
to have a degree of correlation” because they are metrics associated with the
performance in range and velocity respectively.

We received a set of more than 22, 000 non-dominated solutions for the radar
waveform problem from the author. With this data, we try to confirm his state-
ments about the relationship between the objectives quantitatively and get a
deeper insight into the problem itself.

To apply the greedy algorithms for δ-MOSS and k-EMOSS, a reduction of the
> 22, 000 solutions to less solutions is necessary and performed by computing
the ε-nondominated solutions out of the normalized original ones. The error ε
is chosen as 0.062 yielding 107 solutions in the reduced set. The computed ε-
Pareto front approximation with 107 solutions is used as input for the greedy
algorithms, the results of which are presented in the following. Note, that the
used error of 0.062 and the resulting solution set size of 107 is more or less
arbitrary. Smaller errors, i.e., larger solution sets with up to 500 solutions yield
similar results.

Table 2 shows the δ-minimal sets, computed with the greedy Algorithm 2,
together with the corresponding δ-errors. It shows, that for the reduced set of
107 solutions, two objectives can be omitted without changing the dominance
structure. With respect to the entire set of objectives, that means that we make
only an error of at least 6.2% when omitting the right two objectives. Neverthe-
less, this is not really useful at all. Reducing the set of objectives from 9 to 7 still
yields a huge amount of information, a decision maker has to survey, especially
if more than 22, 000 solutions are to be compared.
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Algorithm 4 A second greedy algorithm for k-EMOSS, based on omitting objec-
tives.
1: Init:
2: F ′ := F
3: while |F ′| > k do

4: (fr, fs) := argmin
fi,fj∈F′

{δmin (i, j) w.r.t. X }

5: if max
x,y∈X∧x�fr

y

{fs(x) − fs(y)} < max
x,y∈X∧x�fs

y

{fr(x) − fr(y)} then

6: F ′ := F ′ \ {fs}
7: else

8: F ′ := F ′ \ {fr}
9: end if

10: end while

More useful for a decision maker would be to learn about the problem, i.e.,
to draw quantitative conclusions on the relationship between single objectives
as stated in [Hughes, 2007] qualitatively. The approach of δ-conflict can provide
such quantitative statements on objective pairs. For example, we can compute
the maximum δ-error between all possible objective pairs and illustrate them as
in Fig. 6. A low δ-error between an objective pair predicts that the consideration
of only one of both objectives does not change the dominance relation with an
error of more than δ. When illustrating the minimal δ-error between objective
pairs, as in Fig. 7, additional information on the objectives can be presented;
with the additional arrows, we can indicate which objective is to choose (and
which to omit) to yield the minimal δ-error. Surprisingly, the smallest error
occurs between objectives 4 and 9, the second smallest between objective pair
1/7, in contrast to the prediction of [Hughes, 2007]; Fig. 7 shows the computed
δ-errors graphically.

A New Greedy Algorithm for k-EMOSS As the last method in support of
decision making, we present a second greedy algorithm for the k-EMOSS problem,
allowing a kind of hierarchical clustering of the objective set yielding a visualiza-
tion of the computed δ-errors in a tree, as depicted in Fig. 8. Instead of greedily
constructing a not δ-conflicting objective set of size k by adding objectives in
Algorithm 3, the new Algorithm 4 removes objectives greedily until the resulting
subset has k objectives. At each step, the objective pair fi, fj with the smallest
δ-error is selected and the objective that minimizes the error between fi and fj

is omitted. Each of these steps can then be visualized as an inner node in a tree,
like in Fig. 8. Starting with the set of all objectives at the leafs, on the way to
the root more and more objectives are omitted until a single objective—for the
107 solutions of the radar problem it is f6—is computed.
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Table 2. All δ-minimal objective sets with δ < 0.66 for the 107 solutions of the radar
waveform problem. For the overall error, 0.062 has to be added to the denoted values.
See the text for details.

# objectives objective set δ-error

7 { 2, 3, 4, 5, 6, 7, 8 } 0.0
7 { 1, 2, 3, 4, 5, 8, 9 } 0.0
7 { 1, 2, 3, 5, 6, 8, 9 } 0.0
7 { 1, 2, 3, 5, 7, 8, 9 } 0.0
7 { 2, 3, 4, 5, 7, 8, 9 } 0.0
6 { 1, 2, 3, 5, 8, 9 } 0.137734775
6 { 2, 3, 5, 7, 8, 9 } 0.159793814
7 { 1, 2, 3, 5, 6, 7, 9 } 0.203106603
7 { 1, 2, 3, 4, 5, 6, 8 } 0.208309618
7 { 1, 3, 4, 5, 7, 8, 9 } 0.215672228
6 { 1, 3, 5, 6, 7, 9 } 0.215672228
6 { 3, 5, 6, 7, 8, 9 } 0.221649484
7 { 1, 2, 3, 4, 5, 6, 9 } 0.361418472
6 { 2, 3, 4, 5, 6, 8 } 0.408081958
6 { 1, 2, 3, 4, 5, 6 } 0.418133084
6 { 1, 2, 3, 5, 7, 9 } 0.43225554
5 { 2, 3, 4, 5, 6 } 0.437106497
5 { 3, 5, 6, 7, 9 } 0.437106497
5 { 2, 3, 5, 7, 9 } 0.437106497
6 { 1, 2, 3, 4, 5, 9 } 0.462720546
5 { 1, 2, 3, 5, 9 } 0.503130336
6 { 1, 3, 4, 5, 7, 9 } 0.506718475
6 { 1, 2, 3, 4, 6, 7 } 0.510638306
6 { 1, 2, 3, 4, 6, 8 } 0.510638306
6 { 1, 2, 3, 6, 7, 9 } 0.510638306
6 { 1, 2, 3, 6, 8, 9 } 0.510638306
6 { 3, 4, 5, 6, 7, 8 } 0.51392599
5 { 1, 2, 3, 4, 6 } 0.529302392
5 { 1, 2, 3, 6, 9 } 0.529302392
6 { 1, 3, 4, 6, 7, 9 } 0.531914881
6 { 3, 4, 6, 7, 8, 9 } 0.531914882
6 { 2, 3, 6, 7, 8, 9 } 0.531914882
5 { 1, 3, 6, 7, 9 } 0.553191477
5 { 3, 6, 7, 8, 9 } 0.553191477
5 { 3, 4, 5, 7, 9 } 0.580335506
5 { 3, 4, 5, 6, 7 } 0.602954888
4 { 3, 6, 7, 9 } 0.617021266
6 { 2, 3, 4, 7, 8, 9 } 0.639294927
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Fig. 6. Radar waveform problem: visualization of maximum delta error between ob-
jective pairs. Errors larger than 0.9 are omitted for clarity.
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Fig. 7. Radar waveform problem: visualization of minimum delta error between objec-
tive pairs. Errors larger than 0.8 are omitted for clarity and the line width indicates
the delta-error (the thicker, the smaller the error). The arrows point at the objectives
which should be used.
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5.2 Online Objective Reduction

Besides the advantages of objective reduction in the decision making, one may
ask whether objective reduction can also improve the search itself. To answer this
question, we provide—in addition to a brief review of related work—a simple test
problem, based on LOTZ, showing that both an improvement and a worsening of
the running time behavior of a simple indicator-based evolutionary algorithm can
happen when different objectives are added to the test problem. Nevertheless, the
main pursuit of reducing the algorithm complexity by online objective reduction
can be achieved for evolutionary algorithms the running times of which highly
depend on the number of objectives, as it is the case for some hypervolume-based
algorithms. Section 5.2 gives an example how the running time of a hypervolume-
based evolutionary algorithm can be reduced drastically by objective reduction.

General Considerations To answer the question whether the number of ob-
jectives and/or the number of incomparable solutions make a multiobjective
problem difficult, we give a brief overview of recent work regarding the complex-
ity of problems depending on the number of objectives.

The more objectives the harder the problem? Many publications, amongst others
[Fonseca and Fleming, 1995], [Horn, 1997], [Deb, 2001], [Coello Coello et al., 2002],
[Coello Coello, 2005], conclude that a problem becomes harder to solve if ob-
jectives are added to the problem formulation. It is often mentioned that the
increasing size of the Pareto front makes the problem harder when more objec-
tives are taken into account. This assumption is valid if the entire Pareto front
is sought. In practice, this aim is often not feasible. We are, in most scenar-
ios, interested in a good approximation of the Pareto front with a solution set
of predefined size; the population size. Assuming, that we are interested in a
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good approximation of the Pareto front, it is not clear, in general, that addi-
tional objectives make the problem harder to approximate. A theoretical result
on random linear orders can emphasize this.

[Winkler, 1985] analyzed some basic properties of (finite) random partial or-
ders Pk(n), like width and height, whereas Pk(n) is the intersection of k randomly
chosen linear orders on {1, . . . , n}. We, here, briefly present the most interesting
results of [Winkler, 1985], translated to the field of multiobjective optimization.

The first result points out that additional arbitrary objectives will probably
increase the number of Pareto optimal solutions:

Theorem 4 ([Winkler, 1985]). The expected number Mk(n) of Pareto op-
timal elements for a multiobjective optimization problem with search space S,
|S| = n, and k random objectives is asymptotic to (ln(n))k−1/(k − 1)! for large
n, i.e., limn→∞ Mk(n) · (k − 1)!/(ln(n))k−1 = 1.

If we are interested in finding the entire Pareto-optimal set, Theorem 4 indicates
that problems become harder with more objectives, assuming that additional
objectives behave like random objectives. We remark that it is not clear whether
objectives in practical problems behave like random objectives. Otherwise, if we
are only interested in finding a good approximation of the Pareto-optimal front,
additional objectives can help, as the following theorem shows.

Theorem 5 ([Winkler, 1985]). For a multiobjective optimization problem with
search space S, |S| = n, and k random objectives, there is a constant c (depend-
ing only on k) with 0 < c < e, such that for almost every random objectives a
solution needs at most between cn1/k and en1/k improvements to become Pareto-
optimal.

The two presented Theorems of [Winkler, 1985] are connected to each other and
can be applied to problems with non-random objectives: With constant search
space, it is clear that a larger Pareto front cause a smaller average distance
between a solution and the front, i.e., less improvement steps are necessary to
reach the Pareto front starting from a randomly chosen solution.

That the computation of the entire front becomes harder with more objec-
tives was shown in [Laumanns et al., 2004b] for the artificial COUNTING ONES

COUNTING ZEROS (COCZ) problem. But for the COCZ problem, the search space
size increases with larger number of objectives. In addition, the COCZ problem
with many objectives do not emerge from the problem with less objectives by
adding additional objectives, i.e., the first objective of the three-objective COCZ

problem is not the same than the first objective of the bi-objective COCZ problem
and so forth.

To sum up, there are no hints saying that adding objectives to a problem
makes it, in general, harder to solve. In the following section we give a brief
review of hints indicating that additional objectives can simplify problems.

The more objectives the easier the problem? Some theoretical results on the
runtime of simple evolutionary algorithms are known which show that additional
objectives can make the problem easier, i.e., it is easier to solve for a simple
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EA if more objectives are taken into account. One of these problems is the
MINIMUM SPANNING TREE problem. [Neumann and Wegener, 2006] showed that
the global SEMO algorithm, as the multiobjective version of the (1+1) EA, solves
the bi-objective formulation of the problem asymptotically in less time than the
(1+1) EA needs for the single-objective formulation. The bi-objective problem
formulation is derived from the single-objective one by splitting the two terms
of the single-objective formulation into different objectives. It is, therefore, not a
correct hint that the addition of objectives can simplify a problem, but it shows
that more objectives are not always a problem.

Another problem, where the change from a single-objective problem to a
multiobjective formulation can improve the runtime of a simple EA drasti-
cally is the problem SINGLE SOURCE SHORTEST PATH (SSSP) as it was proved
in [Scharnow et al., 2004]. But also here, the multiobjective problem is derived
from the original single-objective one by decomposition of the single objective,
like in [Neumann and Wegener, 2006], instead of adding additional objectives.

The above mentioned approach of using multiobjective formulations instead
of optimizing single-objective problems is known, in general, as multi-objectiviza-
tion, introduced by [Knowles et al., 2001]. Knowles et al. distinguish between
decomposition of the single objective and the addition of objectives but focus
only on decomposition examples. [Jensen, 2004] proposed a generalization of the
idea of additional objectives, called helper-objectives. Jensen’s helper-objectives
are constructed during the search to fasten the computation of good solutions
by escaping local optima. In the end of his paper, Jensen mentions that his ex-
periments “indicate that when many helper-objectives are used simultaneously,
the disadvantage of the bad moves outweighs the advantage of escaping local op-
tima”. Nevertheless, both [Knowles et al., 2001] and [Jensen, 2004] showed with
experimental studies that (some) problems can be solved faster or with a better
quality of the Pareto front approximation if adequate additional objectives are
considered.

Generalization is not possible The various examples, mentioned above, do not
show a general behavior if additional objectives are used in multiobjective op-
timization. Whether a problem becomes harder or easier to solve with more
objectives highly depends on the problem and the form of the additional objec-
tives. The addition of only a few objectives can, if the objectives are designed
well, make a problem easier. But wrongly chosen objectives can also increase
the difficulty of a problem. That the form of the additional objective really has
an influence on the running time, was recently shown by [Brockhoff et al., 2007]
by proving rigorous running time bounds for the SEMO algorithm on a simple
PLATEAU problem. Starting from a single-objective problem, the PLATEAU prob-
lem gets either harder or easier, depending which objective function is added as
the second objective.

To get a better insight how an additional objective can influence a problems
complexity, we exemplify the possible changes when adding a new objective to
a simple bi-objective test problem in the next section.
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Additional Objectives: Experimental Study As we have seen, there is no general
answer to the question whether a problem becomes harder with more objec-
tives. With the experimental study in this section we, furthermore, reveal that
the number of incomparable solutions can also not indicate whether a problem
becomes harder or easier with additional objectives.

In general, the addition of objective functions can only change the dominance
structure in two ways as we learned in Sec. 3. Either indifferent solutions become
comparable or comparable solutions become incomparable. Here, we propose
four problem formulations where the problem becomes harder (P1,P3) or easier
(P2,P4) by adding an additional third objective function and therefore making
indifferent solutions comparable (P1,P2) or comparable solutions incomparable
(P3,P4). The problems P1 and P2 are based on the two-objective LOTZ problem,
defined in [Laumanns et al., 2004b], whereas the LOTZ problem is modified for
the problems P3 and P4. In the following definitions, let |x| the length of bitstring
x.

Definition 12 Let X = {0, 1}n. We define the following objective functions
LEADING ONES (LO) and TRAILING ZEROS (TZ) on a bitstring x := (x1, . . . , xn)
as defined in [Laumanns et al., 2004a].

LO(x) :=

n
∑

i=1

i
∏

j=1

xj TZ(x) :=

n
∑

i=1

n
∏

j=i

(1 − xj)

In addition, we define the middle block xM of a bitstring x := (x1, . . . , xn) as
the substring xLO(x)+1, . . . , xn−TZ(x) of size n− LO(x)− TZ(x) which is simply x
excluding its leading ones and the trailing zeros.

We also define the two modified LO and TZ functions MoLO and MoTZ. They
emerge from the LOTZ problem by grouping 2 LOTZ levels together and reflect-
ing every other 2-party layer at the origin. Figure 9 illustrates these objective
functions.

MoLO(x) :=















LO(x)
iff 0 ≡ (n − |xM |) mod 4
or 1 ≡ (n − |xM |) mod 4

(−n) ·

⌊

⌊

n−|xM |

2

⌋

2

⌋

− LO(x) else

MoTZ(x) :=















TZ(x)
iff 0 ≡ (n − |xM |) mod 4
or 1 ≡ (n − |xM |) mod 4

(−n) ·

⌊

⌊

n−|xM |

2

⌋

2

⌋

− TZ(x) else

Definition 13 According to [Laumanns et al., 2004b], the pseudo-Boolean func-
tion LOTZ: {0, 1}n → N

2 is defined as

LOTZ(x1, . . . , xn) := (LO, TZ).

The modified LOTZ function moLOTZ: {0, 1}n → N
2 is defined as

moLOTZ(x1, . . . , xn) := (MoLO, MoTZ).
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|xM | = 0

|xM | = 3

Fig. 9. Illustration of the objective space for the modified LOTZ.

Definition 14 We define the following four three-objective problems, based on
the LOTZ and the modified LOTZ problem respectively, where the first two objective
functions have to be maximized and the third one has to be minimized:

(i) The problem P1 is to maximize LOTZ and in addition, to minimize the addi-
tional third objective

f(i)(x) = |xM | − LZ(xM ) − TO(xM ).

where the functions LZ (LEADING ZEROS) and TO (TRAILING ONES) are de-
fined as

LZ(x) :=

n
∑

i=1

i
∏

j=1

(1 − xj) TO(x) :=

n
∑

i=1

n
∏

j=i

xj

(ii) The problem P2 is defined as the LOTZ problem with additional third objective

f(ii)(x) = ONES(xM ),

where ONES((x1, . . . , xn)) :=
∑n

i=0 xi.
(iii) We define the problem P3 as the moLOTZ problem with additional objective

f(iii)(x) =
n

2
− |

n

2
− |xM ||.
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(iv) Problem P4 is defined as the moLOTZ problem with additional objective

f(iv)(x) := |xM |.

Note, that all four problems have the same Pareto-optimal front {x = 1i0n−i | 0 ≤
i ≤ n} as LOTZ and moLOTZ, since the Pareto-optimal points of LOTZ and moLOTZ

minimize each of the additional objective functions.

In the LOTZ problem, all bitstrings x = 1i0 . . . 10j for fixed i, j are mapped to
the same objective vector; they are indifferent. Since f(i) and f(ii) are only de-
pendent on the middle block, the additional objective function can only make
indifferent solutions comparable. When using f(i) as the third objective, the ad-
ditional comparability between search points let an evolutionary algorithm, like
SEMO (defined by [Laumanns et al., 2004b]), prefer solutions the middle block
of which starts with many zeros and ends with many ones. This makes the way
to the Pareto-optimal front harder, because almost every bit in the middle block
has to flip successively. In the other case, when using f(ii) as third objective,
search points with less ones in the middle block are preferred which cause a
lower running time of evolutionary algorithms like SEMO compared to the two-
objective problem because variation steps improving the objectives will benefit
from larger blocks of zeros, see Fig. 12 for an example. Therefore, the LOTZ prob-
lem will become harder, when optimizing with the additional objective f(i), and
easier if the objective f(ii) is added. Note, that the statements on the difficulty of
the problems only refer to the time until a Pareto-optimal search point is found
and, in principle, only for mutation based algorithms like SEMO. Regarding the
complexity of finding the entire Pareto-optimal front, the problems’ complexity
for P1 and P2 are asymptotically equal for simple algorithms like SEMO8.

Similar thoughts hold for the problems P3 and P4, whereas solutions, which
are comparable with moLOTZ, become incomparable in P3 and P4. Due to the fact,
that an additional objective f(iii) makes solutions with |xM | = 4i and |xM | =
4i+1, 0 ≤ i ≤ ⌊n

4 ⌋−1 incomparable, the emerging large plateaus of incomparable
solutions makes the problem P3 harder to solve for evolutionary algorithms than
the bi-objective moLOTZ. On the other hand, the moLOTZ problem becomes easier
if the objective f(iv) is added because the additional objective cause solutions
within the levels with |xM | = 4i+1 and |xM | = 4i+2, 0 ≤ i ≤ ⌊n

4 ⌋−1 to become
incomparable. As the comparability between a solution in level |xM | = 4i + 1
and a solution in level |xM | = 4i+2 within the moLOTZ problem is misleading for
an evolutionary algorithm, the algorithm, if running on P4, has the opportunity
to search on a plateau of incomparable solutions instead of getting stuck in a
local minimum in the search space.

8 We omit the proofs for the expected running time of local SEMO, since we are
not interested in asymptotic running times for a theoretical and specific algorithm
like local SEMO, but in experiments showing that adding an objective can make a
problem either harder or easier for a simple EA like IBEA. The proofs can be done
based on techniques of [Droste et al., 2002] and [Laumanns et al., 2004b]. Note, that
the running time analysis for global SEMO on the mentioned problems is not trivial
and remains future work.
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Instead of proving asymptotical runtime bounds for the impractical9 SEMO
algorithm, we use simulation runs of the IBEA algorithm to show that additional
objectives can either increase or decrease the time until a Pareto-optimal search
point is found. To this end, 10 IBEA runs with a population size of 200 are
performed on each of the six problems LOTZ, moLOTZ, P1, P2, P3, and P4 for
various bitstring lengths. We use the standard settings from the PISA package
of [Bleuler et al., 2003] and compute the number of generations needed to reach
the Pareto-optimal front, i.e., the time until a first Pareto-optimal search point
is found. The figures Fig. 10 and Fig. 11 show the results for various bit string
lengths.

As expected, for both LOTZ and moLOTZ, an additional objective can improve
or worsen the performance of IBEA. IBEA needs for problem P1 more time
than for the bi-objective LOTZ problem because the third objective f(i) leads the
evolutionary algorithm away from the Pareto-optimal front, whereas with the
addition of f(ii), IBEA finds a Pareto-optimal point faster than for LOTZ, because
the additional objective give hints in direction to the Pareto-optimal front. In
comparison to the moLOTZ problem, the addition of f(iii) cause a greater running
time for IBEA, because solution pairs become incomparable the corresponding
dominance relation of which gives the correct direction to the Pareto front in
moLOTZ. Therefore, large plateaus have to be exploited if f(iii) is added. With
the addition of objective function f(iv), the moLOTZ problem becomes easier for
IBEA because the misleading dominance relation between solution pairs with
|xM | = 4i+1 and |xM | = 4i+2, 0 ≤ i ≤ ⌊n

4 ⌋− 1, is changed to incomparability.

Objective Reduction During Hypervolume-Based Search The main fo-
cus of the preliminary study, we present in this section, is to show that an
objective reduction can be useful if the running time of an evolutionary algo-
rithm highly depends on the number of considered objectives. Since the best
known algorithm for computing the hypervolume indicator exactly, proposed by
[Beume and Rudolph, 2006], is exponential in the number of objectives, evolu-
tionary algorithms which are based on this indicator, such as SMS-EMOA of
[Emmerich et al., 2005] or SIBEA by [Zitzler et al., 2007], can benefit from an
objective reduction during search.

The following preliminary study shows as a proof-of-principle that a simple
indicator based evolutionary algorithm together with an online objective reduc-
tion according to the greedy algorithm from Sec. 4.4 outperforms the algorithm
without any objective reduction.

The study is based on a simple indicator based evolutionary algorithm,
namely SIBEA from [Zitzler et al., 2007], enhanced with two different objective
reduction strategies and a slightly modified version of the DTLZ2 test function,
proposed by [Deb et al., 2005]. The following paragraphs explain the main issues
of both the used algorithms and the used test function.

9 In general, the population size of the SEMO algorithm is not bounded by a constant,
i.e., the population can become arbitrary large.
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Fig. 10. If an additional objective makes indifferent solutions comparable the resulting
problem can be either harder or easier than the original one. The plot shows the number
of generations the algorithm IBEA needs to reach a Pareto-optimal point on the LOTZ

problem itself (×), on the LOTZ problem with additional objective f(i) (+), and on the
LOTZ problem with additional objective f(ii) (◦) averaged over 10 runs for each of the
five bitstring lengths.

The Algorithms SIBEAno, SIBEArandom, and SIBEAonline Algorithm 5 shows
the organization of the original SIBEA, extended with a general objective re-
duction functionality. SIBEA starts with randomly choosing a set of µ solutions,
the population P . Until a certain time limit T is reached, the µ solutions of the
current population P are randomly selected for recombination and mutation,
the variated solutions are inserted into the population, and the population of
the next generation is determined by successively removing the individuals with
the worst hypervolume losses. The hypervolume loss d(x) of a solution x is de-
fined as the difference between the hypervolume of the population P and the
hypervolume of P without x:

d(x) := IH(P ) − IH(P \ {x}).

In addition, SIBEA applies two different objective reduction strategies to im-
prove the running time of the hypervolume computation. To this end, every G
generations it is decided which objectives are chosen for optimization and which
ones are neglected during the next G generations. In the following, we distinguish
between three versions of SIBEA: SIBEAno, SIBEArandom and SIBEAonline. The
SIBEA algorithm from [Zitzler et al., 2007] with “no” objective reduction is re-
ferred to as SIBEAno. SIBEArandom chooses the r considered objectives every G
generations randomly, where the number r of considered objectives is given in
advance. The algorithm SIBEAonline performs an objective reduction by apply-
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Fig. 11. If an additional objective makes comparable solutions incomparable the re-
sulting problem can be either harder or easier than the original one. The plot shows the
number of generations the algorithm IBEA needs to reach a Pareto-optimal point on
the modified LOTZ problem (×), the modified LOTZ problem with additional objective
f(iii) (+), and the modified LOTZ problem with additional objective f(iv) (◦) averaged
over 10 runs for each of the five bitstring lengths. Note, that an IBEA run is aborted
when no Pareto-optimal solution is found within 10000 generations.

xP1 = 1100011110 ⇒ x
′
P1

= 1100011100

xP2 = 1101000010 ⇒ x
′
P2

= 1101000000

Fig. 12. An example of the influence of f(i) and f(ii) on the objective function im-
provement for a certain mutation. The middle block is always underlined. Because an
evolutionary algorithm, optimizing P1, prefers solutions with starting ones and leading
zeros in the middle block as xP1 , a mutation of the second last bit to x′

P1
will cause an

improvement of one in the second and third objective function. Since an evolutionary
algorithm running on P2 prefers solutions with less ones in the middle block like in xP2 ,
a bit flip of the second last bit to x′

P2
will cause an improvement of 5 in the second

and third objective.
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ing the greedy algorithm for k-EMOSS on the current population to compute the
objectives which are considered in the next G generations.

Algorithm 5 Simple Indicator Based Evolutionary Algorithm (SIBEA)

Input: population size µ; running time T in seconds; indicator function I; reduction
frequency G in generations; size r of reduced objective set;
Output: approximation of Pareto-optimal set A;

Step 1 (Initialization):
Generate an initial set of decision vectors P of size µ; set the current time t0; set
generation counter m := 0.
Step 2 (Dimensionality reduction):
If m ≡ 0 mod G: Either do nothing (SIBEAno), choose r objectives randomly
(SIBEArandom), or use the greedy k-EMOSS algorithm to compute an objective subset
of size r according to all solutions in P (SIBEAonline). In the following G generations,
use only the chosen objectives for hypervolume computation.
Step 3 (Environmental Selection):
Iterate the following three steps until the size of the population does no longer exceed
µ:

1. Rank the population using Pareto dominance and determine the set of individuals
P ′ ⊆ P with the worst rank. Here, dominance depth [Deb et al., 2000] is used.

2. For each solution x ∈ P ′ determine the loss d(x) w.r.t. the hypervolume indicator
IH if it is removed from P ′, i.e., d(x) := IH(P ′) − IH(P ′ \ {x}).

3. Remove the solution with the smallest loss d(x) from the population P (ties are
broken randomly).

Step 4 (Termination):
If T seconds expired since t0 then set A := P and stop; otherwise set m := m + 1.
Step 5 (Mating):
Randomly select elements from P to form a temporary mating pool Q of size µ. Apply
variation operators such as recombination and mutation to the mating pool Q which
yields Q′. Set P := P + Q′ (multi-set union) and continue with Step 2.

DTLZ2 and DTLZ2BZ Test Functions As test function, we use a slightly mod-
ified version of the DTLZ2 function, known from [Deb et al., 2005]. Due to two
main properties of the original DTLZ2 function, the original DTLZ2 function is
slightly modified towards the used DTLZ2BZ function:

– On the one hand, the original DTLZ2 function proposed in [Deb et al., 2005]
has the property that the projection of the Pareto front to k < M objectives
collapses to one optimal point, i.e., when omitting arbitrary objectives, the
search always converge to one solution. Every multiobjective function has
this property if all objectives except one are omitted, i.e., optimizing a single-
objective problem. For the DTLZ function suite, however, this property even
holds for every subset of objectives. To eliminate this property, we limit
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the range of the variables, i.e., we cut corners of the Pareto-optimal front,
cf. Fig. 13.

– On the other hand, when optimizing only a subset of k < M objectives, the
neglected objectives are also optimized at the same time. The reason is the
scaling of all objectives by a function g(xM ), indicating the distance to the
real Pareto front. To come up with a problem where all single objectives
have to be optimized simultaneously to reach the Pareto front, we introduce
different scaling functions gi(x), instead of one single scaling function g(xM ).
Figure 14 shows the formal definition of the original DTLZ2 in comparison
to the new function DTLZ2BZ .

In addition, we differentiate in the experiments between two versions of the
DTLZ2BZ function, one unscaled as described in Fig. 14 and one scaled version
DTLZ2∗BZ where the objective value fi(x) (1 ≤ i ≤ k) is scaled to

f∗
i (x) = maxValue ·

(

fi(x)

maxValue

)i

if i is even, and to

f∗
i (x) = maxValue ·

(

fi(x)

maxValue

)1/i

if i is odd, where maxValue = 1 + (n − M + 1)/4 is an upper bound for the
original fi(x) values.

Experimental Settings To compare the three versions of SIBEA experimentally,
we perform 11 runs for each combination of algorithm, problem, and chosen
objective set size r. As algorithms we use the three proposed SIBEA versions.
As problems, we use the above defined DTLZ2BZ test problem with 3, 5, and
9 objectives, where the chosen objective set sizes r depend on the number k of
all objectives. The 11 runs are performed for both the unscaled and the scaled
version of DTLZ2BZ and the following combinations of k/r: 3/2, 5/2, 5/3, 9/2,
9/3, 9/4. We fix the computation time to T = 300 seconds and use a population
size of µ = 50, just as an objective reduction frequency of G = 50.

The populations of the three algorithms after the given time T are compared
by computing their hypervolume indicator. The nonparametric Mann-Whitney
U test10 is used to confirm the hypothesis that one random variable, e.g., the
hypervolume indicator of algorithm A, “systematically” produces larger values
than another one, e.g., the hypervolume indicator of algorithm B by ranking all
values and comparing the rank sums for both samples.

Results The statistical tests, the results of which are shown in Table 3, confirm
in most cases the hypothesis derived from preliminary experiments. For all con-
sidered problem sizes, the random version SIBEArandom yields the worst results

10 As implemented in the statistical package SPSS, version 15.0, cf. www.spss.com.
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Fig. 13. Visual comparison between the Pareto-optimal fronts of original DTLZ2 (left)
and modified DTLZ2BZ (right). The first row shows the Pareto-optimal fronts for the
three-dimensional problems, whereas the second row shows the same fronts projected
to the f1/f3 plane: if objective f2 is omitted during optimization, the front collapses to
a single point, depicted in black, for DTLZ2 (left) and to a one-dimensional trade-off
front (black) for the modified DTLZ2BZ (right). Note that the surfaces of the Pareto
fronts are textured for illustration purpose.
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Min f1(x) = (1 + g(xM )) cos(θ1) cos(θ2) · · · cos(θM−2) cos(θM−1),
Min f2(x) = (1 + g(xM )) cos(θ1) cos(θ2) · · · cos(θM−2) sin(θM−1),
Min f3(x) = (1 + g(xM )) cos(θ1) cos(θ2) · · · sin(θM−2),
...

...
Min fM−1(x) = (1 + g(xM )) cos(θ1) sin(θ2),
Min fM (x) = (1 + g(xM )) sin(θ1),

where g(xM ) =
∑

xi∈xM
(xi − 0.5)2 ,

θi = π
2
· xifor i = 1, . . . , M − 1

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

(a) original DTLZ2 function of [Deb et al., 2005]

Min f1(x) = (1 + g1(xM )) cos(θ1) cos(θ2) · · · cos(θM−2) cos(θM−1),
Min f2(x) = (1 + g2(xM )) cos(θ1) cos(θ2) · · · cos(θM−2) sin(θM−1),
Min f3(x) = (1 + g3(xM )) cos(θ1) cos(θ2) · · · sin(θM−2),
...

...
Min fM−1(x) = (1 + gM−1(xM )) cos(θ1) sin(θ2),
Min fM (x) = (1 + gM (xM )) sin(θ1),

where gi(xM ) =
∑M+i·⌊n−M+1

M ⌋−1

j=M+(i−1)·⌊n−M+1
M ⌋

((

xi

2
+ 1

4

)

− 0.5
)2

for i = 1, . . . , M − 1,

gM (xM ) =
∑n

j=M+(M−1)·⌊n−M+1
M ⌋

((

xi

2
+ 1

4

)

− 0.5
)2

,

θi = π
2
·
(

xi

2
+ 1

4

)

for i = 1, . . . , M − 1
0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

(b) new DTLZ2BZ function

Fig. 14. The original DTLZ2 function (a) in comparison to the modified DTLZ2BZ

(b).
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on the DTLZ2BZ problem (all tests are significant or even highly significant,
except for the scaled DTLZ2∗BZ problem with k = 5 objectives and r = 3).
On the scaled DTLZ2∗BZ problems, SIBEAonline performs best (all tests signif-
icant or highly significant), whereas on the unscaled problems, SIBEAno beats
SIBEAonline except for the 9-objective problem and r = 3 and r = 4.

Two main statements can be derived from the presented comparison. Firstly,
the integration of online reduction methods into a hypervolume-based evolution-
ary algorithm makes sense and can improve the quality of the computed Pareto
front approximations. Secondly, the used objective reduction strategy highly in-
fluences the outcome of the evolutionary algorithm. The usage of an advanced
objective reduction technique as the δ-conflict based one, presented in this paper,
is preferred to a random choice of the objectives to optimize.

6 Conclusion

With many objectives in a multiobjective optimization problem, the question
arises whether the omission of objectives can help both in the decision mak-
ing (in terms of visualizing high-dimensional data and the unmanageable, large
amount of data) and the search with evolutionary algorithms (in terms of com-
putation time spent for the hypervolume indicator or to search in large plateaus
of incomparable solutions). In this work, we investigated the effect of adding or
omitting objectives on the Pareto dominance relation and proposed an objective
reduction technique based on objective conflicts which finds objective sets of
minimum size ensuring that the Pareto dominance relation is preserved or only
slightly changed with a certain, predefined error. To demonstrate how the pro-
posed objective reduction method can be utilized in an offline scenario, where
the omission of objectives assist in the decision making process, we analyzed the
application of designing a radar waveform in terms of conflicting objectives and
minimum objective sets. That the proposed objective reduction technique is also
useful within an online scenario, i.e., within an evolutionary algorithm, is shown
empirically for a Pareto-dominance based algorithm and in the special case of a
simple hypervolume based algorithm.
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[Charikar et al., 2000] Charikar, M., Guruswami, V., Kumar, R., Rajagopalan, S., and
Sahai, A. (2000). Combinatorial feature selection problems. In IEEE Symposium on
Foundations of Computer Science, pages 631–640.

[Coello Coello, 2005] Coello Coello, C. A. (2005). Recent Trends in Evolutionary Mul-
tiobjective Optimization. In Evolutionary Multiobjective Optimization: Theoretical
Advances And Applications, pages 7–32. Springer-Verlag, London.

[Coello Coello et al., 2002] Coello Coello, C. A., Van Veldhuizen, D. A., and Lamont,
G. B. (2002). Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer
Academic Publishers, New York.

[Dai et al., 2006] Dai, J. J., Lieu, L., and Rocke, D. (2006). Dimension reduction
for classification with gene expression microarray data. Statistical Applications in
Genetics and Molecular Biology, 5(1). article 6.

[Dash and Liu, 1997] Dash, M. and Liu, H. (1997). Feature selection for classification.
Intelligent Data Analysis, 1(3):131–156.

[De Jong et al., 2001] De Jong, E. D., Watson, R. A., and Pollack, J. B. (2001). Re-
ducing Bloat and Promoting Diversity using Multi-Objective Methods. In Spector, L.
et al., editors, Genetic and Evolutionary Computation Conference (GECCO 2001),
pages 11–18. Morgan Kaufmann Publishers.

[Deb, 2001] Deb, K. (2001). Multi-objective optimization using evolutionary algo-
rithms. Wiley, Chichester, UK.

[Deb et al., 2000] Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). A
fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II. In Schoenauer, M. et al., editors, Parallel Problem Solving from Nature
(PPSN VI), Lecture Notes in Computer Science Vol. 1917, pages 849–858. Springer.

[Deb and Saxena, 2006] Deb, K. and Saxena, D. (2006). Searching For Pareto-Optimal
Solutions Through Dimensionality Reduction for Certain Large-Dimensional Multi-
Objective Optimization Problems. In Congress on Evolutionary Computation (CEC
2006), pages 3352–3360. IEEE Press.

[Deb et al., 2005] Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2005). Scalable
Test Problems for Evolutionary Multi-Objective Optimization. In Abraham, A., Jain,
R., and Goldberg, R., editors, Evolutionary Multiobjective Optimization: Theoretical
Advances and Applications, chapter 6, pages 105–145. Springer.

37



[Droste et al., 2002] Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of
the (1+1) evolutionary algorithm. Theoretical Computer Science, 276:51–81.
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A Proofs omitted in Section 3

Theorem 2. Let F ′ ⊆ F . Then F ′ is δ-nonconflicting with F if and only if
�F ′ ⊆�δ

F .

Proof. Let F ′ ⊆ F . Then for all δ ≥ 0 �F⊆�F ′⊆�δ
F ′ , because ∀i ∈ F : x �i

y ⇒ ∀i ∈ F ′ ⊆ F : x �i y ⇒ ∀i ∈ F ′ : fi(x) ≤ fi(y) ⇒ ∀i ∈ F ′ : fi(x) − δ ≤
fi(y) ⇒ ∀i ∈ F ′ : x �δ

i y for all x, y ∈ X and δ > 0. But then F ′ δ-nonconflicting
with F ⇐⇒ F ′ ⊑δ F ∧ F ⊑δ F ′ ⇐⇒ �F ′⊆�δ

F ∧ �F⊆�δ
F ′ ⇐⇒ �F ′⊆�δ

F .

Theorem 3. Let F1,F2 two objective sets and X a decision space. If

δ′ := max
x,y∈X∧x�F1

y

i∈F2

{fi(x) − fi(y)} and δ′′ := max
x,y∈X∧x�F2

y

i∈F1

{fi(x) − fi(y)},

then, F1 is δ-nonconflicting with F2 w.r.t. X for all δ ≥ max(δ′, δ′′) and no
δ < max{δ′, δ′′} exists such that F1 is δ-nonconflicting with F2.

Proof. Let δ′, δ′′ ∈ R as defined above. Then

∀x,y ∈ X : [x �F1
y ⇒ ∀i ∈ F2 : fi(x) − fi(y) ≤ δ′]

∧ [x �F2
y ⇒ ∀i ∈ F1 : fi(x) − fi(y) ≤ δ′′]

⇐⇒ ∀x,y ∈ X : [x �F1
y ⇒ ∀i ∈ F2 : fi(x) − δ′ ≤ fi(y)]

∧ [x �F2
y ⇒ ∀i ∈ F1 : fi(x) − δ′′ ≤ fi(y)]

(∗)
=⇒ ∀δ ≥ max{δ′, δ′′} : ∀x,y ∈ X :

[

x �F1
y ⇒ ∀i ∈ F2 : fi(x) − δ ≤ fi(y)

]

∧
[

x �F2
y ⇒ ∀i ∈ F1 : fi(x) − δ ≤ fi(y)

]

⇐⇒ ∀δ ≥ max{δ′, δ′′} : ∀x,y ∈ X : [x �F1
y ⇒ x �δ

F2
y] ∧ [x �F2

y ⇒ x �δ
F1

y]

⇐⇒ ∀δ ≥ max{δ′, δ′′} :�F1
⊆�δ

F2
∧ �F2

⊆�δ
F1

⇐⇒ ∀δ ≥ max{δ′, δ′′} : F1 ⊑δ F2 ∧ F2 ⊑δ F1

⇐⇒ F1 δ-nonconflicting with F2 for all δ ≥ max{δ′, δ′′}

As a result of implication (∗) , it is clear that F1 is δ-conflicting with F2 for any
δ < max{δ′, δ′′} if δ′ and δ′′ are defined as above.
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B Correctness proofs

In this section we provide the correctness proofs for the algorithms proposed in
Sec. 4.1.

B.1 Greedy Algorithm for δ-MOSS

Before proving the correctness of Algorithm 2, we prove Lemma 1 first.

Lemma 1. Let F ′ ⊆ F and δ > 0. Then
(

∀x,y ∈ X : x �F ′ y ⇐⇒ x �0,δ
F ′,F\F ′ y

)

=⇒ F ′ is δ-nonconflicting with F .

Proof. Let F ′ ⊆ F and A :=
(

∀x,y ∈ X : x �F ′ y ⇐⇒ x �0,δ
F ′,F\F ′ y

)

. Then

�F ′ =�0
F ′

A
=�0,δ

F ′,F\F ′ = (�0
F ′ ∩ �δ

F\F ′) ⊆�δ
F ′ ∩ �δ

F\F ′ =�δ
F , i.e., F ′ is δ-

nonconflicting with F according to Theorem 2.

Theorem 4. Given the objective vectors f(x1), . . . , f(xm) ∈ R
k and a δ ∈ R,

Algorithm 2 always provides an objective subset F ′ ⊆ F , δ-nonconflicting with
F := {1, . . . , k} in time O(min{k3 · m2, k2 · m4}).

Proof. If we show that the invariant

∀(x,y) ∈ R := (X × X) \ R : x �F ′ y ⇐⇒ x �0,δ
F ′,F y (I)

holds during each step of Algorithm 2, the theorem is proved, due to Lemma 1
and the fact that x �F ′ y ⇐⇒ x �0,δ

F ′,F\F ′ y holds for all (x,y) ∈ X × X if

Algorithm 2 terminates, i.e., if R = ∅. We proof the invariant with induction
over |R|.

Induction basis: When the algorithm starts, R = X × X\ �F , i.e., R =�F .
For each (x,y) ∈ R =�F with x �F ′ y, i.e., x �∅ y with �∅= X × X, x �F y

holds and therefore x �0,δ
F ′,F\F ′ y. The other direction x �0,δ

F ′,F\F ′ y ⇒ x �F ′ y

always holds trivially. Thus, the invariant is correct for the smallest possible |R|,
after the initialization of the algorithm.

Induction step: Now let |F ′| > 0. Then, the invariant can only become false, if
we change R (and with it R) in line 7 of Algorithm 2. Note, first, that R becomes
only smaller by-and-by, i.e., R contains more and more pairs (x,y) ∈ X × X.
Such a pair (x,y), already contained in R, stays in R forever and fulfills the
implication in the invariant (I) for every F ′′ ⊇ F ′ if the pair fulfills it for at least
one F ′ ⊆ F . If an {i} is inserted in F ′ to gain F ′′ ⊇ F ′, two possibilities for a
pair (x,y) ∈ R exist. First, if x 6�F ′ y, then x 6�F ′′ y for any F ′′ ⊇ F ′ and also

x 6�0,δ
F ′′,F\F ′′ y. Second, if x �F ′ y, then x �0,δ

F ′,F\F ′ y by induction hypothesis.

Thus, x �δ
F\F ′ y and x �δ

F\F ′′ y for any F ′′ ⊇ F ′. If x �F ′′ y for any F ′′ ⊇ F ′,

then x �0,δ
F ′′,F\F ′′ y and if x 6�F ′ y for any F ′′ ⊆ F ′ then x 6�0,δ

F ′′,F\F ′′ y. Thus,

a pair (x,y) ∈ R will always fulfill the implication in (I) for any F ′′ ⊇ F ′ if it
fulfills it for F ′. Beyond, a pair (x,y) ∈ X×X will only be included in R during
the update of R in line 7 if
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(i) (x,y) 6∈ (R∩ �i∗) or if

(ii) (x,y) ∈�0,δ
F ′∪{i∗},F\(F ′∪{i∗})

In case (i), the invariant stays true because for all new pairs (x,y) in R, (x,y) ∈
R ∧ (x,y) 6∈�i∗ holds. Thus, (x,y) 6∈ ∩i∈(F ′∪{∗}) �i =�F ′ and, therefore,

(x,y) 6∈�0,δ
F ′∪{i∗},F\(F ′∪{i∗}) as well. In the case (ii), (x,y) ∈�0,δ

F ′∪{i∗},F\(F ′∪{i∗})

and trivially (x,y) ∈�F ′∪{i∗}, i.e., the invariant remains true, too.

The running time of Algorithm 2 results mainly from the computation of the
relations in line 6. The initialization needs time O(k · m2) altogether. As the

relation �0,δ
F ′∪{i∗},F\(F ′∪{i∗}) is known from line 6, the calculation of the new R

in line 7 needs time O(m2); line 8 needs only constant time. The computation

of the relations �0,δ
F ′∪{i},F\(F ′∪{i}) in line 6 needs time O(k ·m2) for each i, thus,

line 6 needs time O(k2 · m2) altogether. Hence, the computation time for each
while loop cycle lasts time O(k2 ·m2). Because in each loop cycle, |F ′| increases
by one, there are at most k cycles before Algorithm 2 terminates. On the other
hand, Algorithm 2 terminates if R = ∅, i.e., after at most |X × X| = O(m2)
cycles of the while loop, if in each cycle |R| decreases by at least one—what
is true due to Theorem 1. The total running time of Algorithm 2 is, therefore,
O(max{k,m2} · k2 · m2) = O(max{k3 · m2, k2 · m4}).

B.2 Exact Algorithm

Theorem 5. Algorithm 1 solves both the δ-MOSS and the k-EMOSS problem ex-
actly in time O(m2 · k · 2k).

Proof. To prove the correctness of Algorithm 1, we use Lemma 2. It states that
Algorithm 1 computes for each considered set M of solution pairs a set of pairs
(F ′, δ′) of an objective subset F ′ ⊆ F with the corresponding correct δ′ value (i,
ii) that are minimal (iii, iv). Moreover, the algorithm computes solely minimal
pairs (v, vi). With Lemma 2, the correctness of Algorithm 1 follows directly from
the lines 12 and 13.

The upper bound on the running time of Algorithm 1 results from the size of
the set SM . For all of the O(m2) solution pairs, the set S{(x,y)} can be computed

in time O(k3) = o(k · 2k), but the computation time for SM ⊔ S{(x,y)} can be

exponential in k. As SM contains at most O(2k) objective subsets of size O(k),
the computation of SM ⊔ S{(x,y)} in line 9 is possible in time O(k · 2k) and,

therefore, the entire algorithm runs in time O(m2 · k · 2k).

For the following Lemma, we use a new short notation for δ errors regarding
a set M of solution pairs.

Definition 15 Let F ′ ⊆ F and M ⊆ X × X. Then δ(F ′,M) := δmin(F ′,F)
w.r.t. all solution pairs (x,y) ∈ M .
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Lemma 2. Given an instance of the δ-MOSS or the k-EMOSS problem. Let F ′ ⊆
F , F ′ 6= ∅, an arbitrary objective set and

M := {(x,y) ∈ X × X | (x,y) considered in Algorithm 1 so far}.

Then there exists always a (F ′′ ⊆ F ′, δ′′) ∈ SM , such that the following six
statements hold.

(i) δ(F ′′,M) = δ′′

(ii) δ(F ′,M) = δ′′

(iii) 6 ∃(F ′′′, δ′′′) ∈ SM : F ′′′ ⊂ F ′ ∧ δ′′′ ≤ δ′′

(iv) 6 ∃(F ′′′, δ′′′) ∈ SM : F ′′′ ⊆ F ′ ∧ δ′′′ < δ′′

(v) 6 ∃(F ′′′, δ′′′) ∈ SM : F ′′′ ⊃ F ′ ∧ δ′′′ ≥ δ′′

(vi) 6 ∃(F ′′′, δ′′′) ∈ SM : F ′′′ ⊇ F ′ ∧ δ′′′ > δ′′

Proof. The statements (iii)-(vi) hold for any M due to the definition of the ⊔-
union in line 9. We, therefore, prove only (i) and (ii) by mathematical induction
on |M |.
Induction basis: Let |M | = 1, i.e., M := {(x,y)}.

(a) x ∼F y: Thus, ∀i ∈ F : fi(x) = fi(y) and ∀F ′ ⊆ F ,F ′ 6= ∅ :
δ(F ′, {(x,y)}) = 0. By definition of ⊔, Algorithm 1 computes S{(x,y)} =
{({i}, 0) | 1 ≤ i ≤ k} correctly according to (i) and (ii).

(b) Without loss of generality x �F y ∧ ¬(y �F x): We can divide F
into two disjoint sets F=,F< with F= ∪ F< = F , F< 6= ∅, ∀i ∈
F= : x �i y ∧ y �i x, and ∀i ∈ F< : x �i y ∧ ¬ (y �i x), i.e.,
∀i ∈ F= : fi(x) = fi(y) and ∀i ∈ F< : fi(x) < fi(y). Furthermore,
∀i ∈ F< : δ({i}, {(x,y)}) = 0 and ∀i ∈ F= : δ({i}, {(x,y)}) = δ > 0
with δ := maxj∈F<

{fj(y) − fj(x)} independent of the choice of i.
Therefore, S{(x,y)} contains all pairs ({i}, δi) with 1 ≤ i ≤ k and

δi :=

{

0 if i ∈ F<

δ if i ∈ F=
. (i) and (ii) hold, because for any F ′ ⊆ F , F ′ 6= ∅,

δ′ := δ(F ′, {(x,y)}) is either 0 or δ, depending on F ′ ⊆ F= (⇒ δ′ =
δ > 0) or F ′ 6⊆ F= (⇒ δ′ = 0).

(c) x ‖F y: We can divide F into three well-defined disjoint sets F<, F>,
and F= with F< ∪ F> ∪ F= = F , F< 6= ∅, F> 6= ∅, ∀i ∈ F< : fi(x) <
fi(y), ∀i ∈ F> : fi(x) > fi(y), and ∀i ∈ F= : fi(x) = fi(y). For all
singletons {i} with 1 ≤ i ≤ k, δi := δ({i}, {(x,y)}) > 0 holds, i.e.,
({i}, δi) ∈ S{(x,y)} for all i ∈ F and

δi :=







δ< := maxj∈F>
{fj(x) − fj(y)} if i ∈ F<

δ> := maxj∈F<
{fj(y) − fj(x)} if i ∈ F>

δ= := maxj∈F\{i}{|fj(x) − fj(y)|} if i ∈ F=

.

In addition, S{(x,y)} contains only those pairs ({i, j}, 0) with i ∈ F< ∧
j ∈ F>. Other pairs ({i, j}, δ) with i 6= j ∧ δ > 0 are not in S{(x,y)}

due to the ⊔-union in line 7.
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Now, let F ′ ⊆ F . Then F ′
<,F ′

>,F ′
= ⊆ F ′ can be defined similarly to

F>, F>, and F= for F . The statement (i) holds due to the ⊔-union and
(ii) holds since δ(F ′, {(x,y)}) can only take a value δ′ ∈ {0, δ<, δ>, δ=}
and a pair (F ′′ ⊆, δ′) exists in S{(x,y)}:
1. δ(F ′, {(x,y)}) = 0 if F ′

> 6= ∅ ∧ F ′
< 6= ∅. But then, i ∈ F ′

> and
j ∈ F ′

< exist and ({i, j}, 0) ∈ S{(x,y)}.
2. Without loss of generality δ(F ′, {(x,y)}) = δ< if F ′

> = ∅∧F ′
< 6= ∅.

Then there exists an i ∈ F ′
< and ({i}, δ<) ∈ S{(x,y)}

3. δ(F ′, {(x,y)}) = δ= if F ′
> = ∅ ∧ F ′

<∅. Then F ′ ⊆ F= and there
exists at least one i ∈ F ′

= such that ({i}, δ=) ∈ S{(x,y)}.

Induction step: Let F ′ ⊆ F an arbitrary objective set with δ(F ′,M ∪ {(x,y)}).
Assume that (i)-(vi) holds for M and {x,y}. Thus, ∃(F ′′′, δ′′′) ∈ SM with F ′′′ ⊆
F ′ and (i)-(vi) and ∃(F ′′′′, δ′′′′) ∈ S{(x,y)} with F ′′′′ ⊆ F ′ and (i)-(vi).

To show that an (F ′′ ⊆ F ′, δ′′) exists in SM∪{(x,y)} := SM ⊔ S{(x,y)} that
fulfills (i) and (ii), we define F ′′ := F ′′′ ∪ F ′′′′ ⊆ F ′ and δ′′ := max{δ′′′, δ′′′′}.
Because δ(F ′′′,M) = δ(F ′,M), δ(F ′′′,M) = δ(F̂ ,M) holds for any F ′′′ ⊆
F̂ ⊆ F ′ and because of δ(F ′′′′, {(x,y)}) = δ(F ′, {(x,y)}), δ(F ′′′′, {(x,y)}) =
δ(F̂ , {(x,y)}) holds for any F ′′′′ ⊆ F̂ ⊆ F ′. Together with F ′′′ ∪F ′′′′ ⊆ F ′, this
yields δ(F ′′′ ∪ F ′′′′,M) = δ(F ′,M) = δ′′′ as well as δ(F ′′′ ∪ F ′′′′, {(x,y)}) =
δ(F ′,M) = δ′′′′. This follows (i) and (ii):

δ′′ = max{δ(F ′′′ ∪ F ′′′′,M), δ(F ′′′ ∪ F ′′′′, {(x,y)})}

= δ(F ′′′ ∪ F ′′′′,M ∪ {(x,y)}) (i)

= max{δ(F ′,M), δ(F ′, {(x,y)})} = δ(F ′,M ∪ {(x,y)}) (ii)
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