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Errata

– p. 146: Definition 9 does not precise what f1 and f2 are. The corrected version is
the following:

Definition 9 Let δ1, δ2 ∈ R and F1,F2 be two objective subsets. The (δ1, δ2)-
dominance relation �δ1,δ2F1,F2

on X is defined as x �δ1,δ2F1,F2
y :⇐⇒ ∀fi ∈ F1 :

fi(x)− δ1 ≤ fi(y) and ∀fj ∈ F2 : fj(x)− δ2 ≤ fj(y) for all x,y ∈ X .

– p. 152: The definition of the spread of a population is wrong in the original manuscript
and should read: On the one hand, the error δ is chosen relative to the spread of the
IBEA population after 100 generations, that is, the difference between the largest
and smallest objective value in the IBEA population corresponds to an error of
δ = 1.
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Abstract
Many-objective problems represent a major challenge in the field of evolutionary mul-
tiobjective optimization—in terms of search efficiency, computational cost, decision
making, visualization, and so on. This leads to various research questions, in particular
whether certain objectives can be omitted in order to overcome or at least diminish
the difficulties that arise when many, that is, more than three, objective functions are
involved. This study addresses this question from different perspectives.

First, we investigate how adding or omitting objectives affects the problem charac-
teristics and propose a general notion of conflict between objective sets as a theoretical
foundation for objective reduction. Second, we present both exact and heuristic algo-
rithms to systematically reduce the number of objectives, while preserving as much as
possible of the dominance structure of the underlying optimization problem. Third, we
demonstrate the usefulness of the proposed objective reduction method in the context
of both decision making and search for a radar waveform application as well as for
well-known test functions.
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Multiobjective optimization, many-objective problems, dimensionality reduction,
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1 Motivation

In the last decade, there has been growing interest in applying evolutionary algorithms
to multiobjective optimization problems, mainly to approximate the set of Pareto-
optimal solutions. However, most of the publications in this area deal with problems
where only a few, that is, between two and four, objectives are involved, while studies
with many objectives are rare (cf. Coello Coello et al., 2002). The reason is that a large
number of optimization criteria leads to further difficulties with respect to decision
making, visualization, and computation; for instance, it has been shown empirically
that state-of-the-art multiobjective evolutionary algorithms (MOEAs) such as NSGA-II
and SPEA2 do not scale well with an increasing number of objectives (Khare et al.,
2003; Purshouse and Fleming, 2003b; Wagner et al., 2007). Nevertheless, from a practi-
cal point of view it is desirable with most applications to include as many objectives as
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possible without the need to specify preferences among the different criteria. The 2007
conference on evolutionary multi-criterion optimization (Obayashi et al., 2007) revealed
that there is a need to handle many-objective scenarios, and the challenge is to develop
concepts and methods to tackle the aforementioned difficulties.

An interesting research question that arises in this context is whether all optimiza-
tion criteria are actually necessary and whether some of the objectives may be omitted
without—or with only slightly—changing the problem characteristics. The motivation
behind this question lies in the observation that additional objectives cause problems
mainly when they are competing with existing ones; a set of nonconflicting criteria can
be represented by a single objective. Methods for automated objective reduction can be
beneficial for both decision making and search. On the one hand, the decision maker
would have to consider fewer objective values per solution, it would be easier to visu-
alize the solutions, and the number of nondominated solutions is likely to decrease as
shown by Winkler (1985), resulting in a further reduction of the information that has to
be taken into account. On the other hand, search algorithms may work more efficiently
and consume less computational resources, if the number of objectives is decreased
adaptively. For instance, hypervolume-based MOEAs, for example, IBEA by Zitzler
and Künzli (2004) and SMS-EMOA by Emmerich et al. (2005), represent a promising
approach to overcome the limitations of density-based MOEAs such as NSGA-II and
SPEA2 in many-objective scenarios (Wagner et al., 2007). However, even the best known
algorithms for computing the hypervolume have running times exponential in the num-
ber of objectives (see While, 2005; While et al., 2005, 2006; Fonseca et al., 2006; Beume
and Rudolph, 2006), and therefore objective reduction is of high practical relevance for
this type of algorithm. Similar issues emerge with computationally expensive objective
functions, for example, when extensive simulations need to be carried out in order to
determine the objective function values.

The issue of objective reduction has gained only little attention in the literature so
far, and existing methods are either restricted to particular function classes or do not
take the underlying dominance structure into account. In this paper and based on work
by Brockhoff and Zitzler (2006a), we propose a methodology for objective reduction
that allows both to consider black-box optimization criteria and to maintain and control
the dominance structure. The key contributions are:

• A theoretical investigation of the effects of adding or omitting objectives, and
formal notions of objective conflicts, degree of conflict, redundant objectives, and
minimum objective sets;

• A definition of different types of objective reduction problems and the design of
corresponding exact and greedy algorithms, including running time analyses and
methods for visualizing objective relationships;

• A systematic study of the efficacy of the proposed approach on various benchmark
problems and a real-world application;

• A concept for incorporating the objective reduction techniques into an evolutionary
algorithm, and an empirical evaluation using a hypervolume-based MOEA.

In the following, we will first review related work before presenting the theoretical foun-
dations (Section 3) and the corresponding algorithms (Section 4). The application of the
objective reduction methods in decision making and search is demonstrated in Section 5.
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2 Related Work

2.1 Evolutionary Many-Objective Optimization

Up to now, there have only been a few studies that have dealt with applications in-
volving many objectives, ranging from nurse scheduling to aircraft construction (Qiu,
1997; Paechter et al., 1998; Coello Coello and Hernández Aguirre, 2002; Fleming et al.,
2005; Hughes, 2007; Sülflow et al., 2007). The corresponding optimization problems
have been mainly tackled using aggregation approaches such as weighted sum. In
recent studies, density-based MOEAs have also been employed—which were shown
to have difficulties when the number of objectives is high (cf. Wagner et al., 2007).
Hypervolume-based MOEAs (e.g., Emmerich et al., 2005) can bypass these drawbacks
but have the disadvantage of larger running times. However, whether such applica-
tions are in general harder to solve than problems with a low number of objectives is
an open question. Many researchers argue that more objectives induce additional diffi-
culties for evolutionary algorithms (e.g., Fonseca and Fleming, 1995; Horn, 1997; Deb,
2001; Coello Coello et al., 2002; Coello Coello, 2005); other studies have demonstrated
that more objectives can make a problem simpler (Knowles et al., 2001; Jensen, 2004;
Scharnow et al., 2004; Neumann and Wegener, 2006). None of the above publications,
though, has addressed the issue of objective reduction.

To our best knowledge, the first publication in the field of MOEAs that pointed out
the possibility of omitting objectives is the one by Purshouse and Fleming (2003a). The
paper discusses in detail various relationships between single objectives such as conflict,
harmony, and independence together with their effect on evolutionary multiobjective
optimization. Although the authors mention that (traditional) dimensionality reduction
techniques could be used to simplify both decision making and search, Purshouse and
Fleming (2003a) do not propose a concrete approach for a reduction of the objective set.

2.2 Dimensionality Reduction

Dimensionality reduction is a well-known problem in many areas like statistics and
data mining, and various methods to extract and select features1 are known. One can
distinguish between two distinct approaches: feature extraction and feature selection. The
task in feature extraction is to determine a (small) set of arbitrary features, while the task
in feature selection is to find the smallest subset of the given features, representing the
given data best. Translated to the multiobjective optimization field, one can ask either
for a set of arbitrary objectives or for a subset of given objectives that describes the
original problem best. The former question has been already addressed in the context
of coevolution (de Jong and Bucci, 2006). In this paper, though, we focus on the latter
aspect since new objectives—potentially defined as combinations of the given ones—are
not easy to handle in the decision making process. As Purshouse and Fleming (2003a)
already pointed out, common dimensionality reduction techniques cannot be used
directly as an objective reduction technique in evolutionary multiobjective optimization
since the Pareto-dominance relation is not taken into account—in other words: it cannot
be ensured that the Pareto-dominance relation is maintained while the number of
objectives is reduced.

An objective reduction approach that preserves the dominance structure was pro-
posed by Gal and Leberling (1977) for the case that the objective functions are explicitly

1Usually, the variables under consideration are called features.
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given as linear combinations of the (real) decision variables, that is, the Pareto opti-
mal set is determined within the problem formulation. Hence, this approach, as well
as a generalization by Agrell (1997), is restricted to a narrow class of problems and
inapplicable to general black-box scenarios.

A method using principal component analysis to decrease the number of objectives
was proposed recently by Deb and Saxena (2006). The method aims at computing a set
of “the most important conflicting objectives” by omitting redundant ones, that is, those
that are less influential with respect to the principal components. It was incorporated
into NSGA-II and used to shrink the objective set iteratively over the course of multiple
optimization runs. Furthermore, it was tested on and primarily invented for problems
where the Pareto-optimal front has a lower dimension than the problem formulation
itself. Since the approach of Deb and Saxena (2006) considers the correlation between ob-
jectives as an indicator for the conflict between them, it cannot guarantee that the Pareto-
dominance relation, and therefore the Pareto-optimal set, is preserved. In addition, no
quantitative measure can be specified by how much the dominance relation changes
when objectives are omitted. The same holds for a recently published extension that is
based on two nonlinear dimensionality reduction techniques (Saxena and Deb, 2007).

In the following, we propose an approach for objective reduction that is both suited
to black-box optimization problems and allows for the maintenance and control of the
dominance structure.

3 Theoretical Foundations

What happens if one or several objectives are added to or removed from a problem?
Under which circumstances can objectives be omitted? How can one measure the degree
of conflict between objectives or objective sets? This section deals with these questions,
introduces basic definitions and theorems, and thereby lays the foundation for the
objective reduction techniques presented in Section 4.

3.1 Relation Graphs and the Combination of Objectives

Suppose an arbitrary optimization scenario with a decision space X and k objective func-
tions fi : X → R (1 ≤ i ≤ k), which are without loss of generality to be minimized. Fur-
thermore, assume that the weak Pareto dominance relation is the underlying preference
structure according to which the optimization is to be carried out. A solution x ∈ X is
said to weakly dominate another solution y ∈ X if and only if x is not worse than y in all ob-
jectives; here, we consider the notation x �F ′ y in order to indicate that the weak Pareto
dominance relation is used w.r.t. a particular objective set F ′ ⊆ F := {f1, f2, . . . , fk}:

x �F ′ y :⇐⇒ ∀fi ∈ F ′ : fi(x) ≤ fi(y)

For better readability, we will sometimes only list the indices of the objective func-
tions instead of the function names themselves, for example, �{1,2} instead of �{f1,f2}.

2

2In addition, we will use the following standard terms: (i) x dominates y if x �F ′ y and y ��F ′ x;
(ii) x and y are comparable if either x �F ′ y or y �F ′ x; (iii) x and y are incomparable if neither x �F ′ y
nor y �F ′ x; (iv) x and y are indifferent if both x �F ′ y and y �F ′ x; (v) the Pareto(-optimal) set contains
all solutions x that either weakly dominate or are incomparable to any other solution y ∈ X, (vi) the
Pareto(-optimal) front is the image of the Pareto set in the objective space R|F ′ |.
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Figure 1: Parallel coordinates plot for the given example with four solutions and four
objectives (left); all objectives have to be minimized. On the right, the definition of δ

error is illustrated.

Furthermore, we will also use the set notation for relations, that is,

�F ′= {(x, y) ∈ A × A | ∀fi ∈ F ′ : fi(x) ≤ fi(y)}

where A ⊆ X is a particular set of solutions under consideration; it will be clear from
the context which set A is meant.

To illustrate how the weak Pareto dominance relation is modified when objectives
are removed from or added to a problem, its representation in terms of a relation graph is
useful. The relation graph for the weak Pareto dominance relation is given by the tuple
(A,�F ′ ) for a solution set A and an objective set F ′. It contains for each solution a corre-
sponding node and for each solution pair x, y ∈ A ⊆ X an edge from the node associated
with x to the node associated with y if and only if x weakly dominates y w.r.t. F ′.

Example 1 Consider the multiobjective scenario depicted in Figure 1 by a parallel
coordinates plot.3 There are four objectives f1, f2, f3, and f4, and four solutions a (solid
line), b (dashed), c (dotted), and d (dashed-dotted) which are pairwisely incomparable
with respect to the objective set F = {f1, f2, f3, f4}. The relation graphs for all possible
relations �F ′⊆F that are associated with specific objective subsets are shown in Figure 2.
As the solutions are pairwisely incomparable, the relation graph of �{f1,f2,f3,f4} contains
only the reflexive edges (Figure 2(o)).

Now, how does adding an objective affect the overall relation graph? Starting with
a single-objective problem, the weak Pareto dominance relation �{fi } always forms a
total preorder,4 that is, all solution pairs are comparable (cf. Figure 2(a–d)). With an
additional objective, the relation between any two solutions x, y ∈ X can be changed
in two ways: (i) x and y have been comparable, but not indifferent, and now become
incomparable because x is better regarding the first objective and y regarding the second
(or vice versa), or (ii) x and y have been indifferent, but now one solution dominates the
other one because it is better regarding the additional objective. The same holds if an

3See the paper of Purshouse and Fleming (2003a) for details on parallel coordinates plots.
4A relation that is reflexive, transitive and total is called total preorder; if it is also antisymmetric, it is

called a partial order. Note, that the weak Pareto-dominance relations for single objectives are usually
only total preorders and not partial orders, since solutions with the same objective value can exist, that
is, the antisymmetry of �{fi } cannot be guaranteed.
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Figure 2: Relation graphs for the solutions depicted in Figure 1.

objective is added to a multiobjective problem. Regarding the relation graph, that means
that an additional objective either leaves the edges between two nodes unchanged or
removes exactly one edge; overall, adding objectives can only remove edges from the
relation graph. Contrariwise, if one or several objectives are omitted, edges are added
to the corresponding relation graph: incomparable solutions may become comparable,
and a solution dominated by another one may become indifferent to it.

Example 2 Consider the solution pair a, b in Figure 1. When taking only objective f1
into account as a single-objective minimization problem, solution b is preferred to so-
lution a, that is, b weakly dominates a, see Figure 2(a). If objective f2 is added, b still
weakly dominates a since solution b has smaller objective values than a in both objec-
tives f1 and f2 (Figure 2(b) and (e)). In the case of adding objective f4, the two solutions
a and b become incomparable due to the fact that a weakly dominates b w.r.t. f4. The
edge between a and b in the corresponding relation graph disappears, see Figure 2(l).
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Since a solution x weakly dominates another solution y w.r.t. an objective set if
and only if x weakly dominates y w.r.t. every single objective, an edge can only be in
the relation graph for �F if for every subset F ′ ⊆ F the corresponding relation graph
contains the edge. This can be formalized in the following theorem.

THEOREM 1: If F = {f1, . . . , fk} is a set of k objective functions then �F = ⋂
1≤i≤k �{fi }.

PROOF: x �F y ⇐⇒ ∀i ∈ {1, . . . , k} : fi(x) ≤ fi(y) ⇐⇒ ∀i ∈ {1, . . . , k} : x �{fi } y ⇐⇒
(x, y) ∈ ⋂

1≤i≤k �{fi }. �

3.2 Conflicting, Redundant, and Minimum Objective Sets

Based on this result, it is now easy to see under which circumstances objectives can
be omitted without changing the problem structure: whenever the underlying rela-
tion graph remains the same. We will use the notion of conflicting and nonconflicting
objective sets to capture this observation.

DEFINITION 1: Two objective sets F1,F2 are called conflicting if the induced weak Pareto
dominance relations differ, that is, �F1 �=�F2 and nonconflicting otherwise (�F1=�F2 ).

Whenever an objective subset F ′ ⊆ F is nonconflicting with the entire objective set
F , an omission of the objectives in F \ F ′ will preserve the weak dominance relation,
otherwise, the weak dominance relation will change. Other conflict definitions have
been proposed in the literature: Deb (2001) and Tan et al. (2005) define conflict only
depending on the Pareto-optimal front, while Purshouse and Fleming (2003a) define
conflict as a property of objective pairs. As the following example shows, the three men-
tioned definitions cannot indicate whether objectives can be omitted without affecting
the dominance structure.

Example 3 Assuming that the four solutions a, b, c, and d in Figure 1 represent either the
entire search space or the Pareto-optimal set, the original objective set {f1, f2, f3, f4} is
conflicting according to Deb (2001) as there is no single optimal solution but four Pareto-
optimal ones. For the same reason (incomparable solution pairs), the objective set is
also conflicting according to Tan et al. (2005). In addition, every objective pair “exhibits
evidence of conflict” as defined by Purshouse and Fleming (2003a). The three conflict
definitions mentioned may lead to the conclusion that all objectives are necessary.
However, objective f3 can be omitted and all solutions remain incomparable to each
other with regard to the objective set {f1, f2, f4}, that is, the weak Pareto-dominance
relation on the search space stays unaffected (cf. Figure 2(l) and (o)). In contrast to
the three abovementioned conflict definitions, Definition 1 classifies {f1, f2, f4} and
{f1, f2, f3, f4} as nonconflicting.

This example indicates that objective conflict appears to be rather a set-based prop-
erty than a property of objective pairs. Similarly, the question of whether objectives
can be omitted while the dominance structure is preserved cannot be decided by con-
sidering relations between objective pairs only; the NP-hardness proof of the δ-MOSS
problem in Section 4 will support this statement. We will use the term redundancy
to state whether objectives in an objective set can be omitted or not (necessary and
sufficient criterion).
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DEFINITION 2: A set F ′ ⊆ F of objectives is called redundant if and only if there exists an
objective subset F ′′ ⊂ F ′ that is nonconflicting with F ′.

The additional question of which objective set is the smallest one among those
nonconflicting with the entire objective set can be denoted as finding a minimum
objective set, and will be defined as follows.

DEFINITION 3: An objective set F ′′ ⊆ F ′ is denoted as

• minimal w.r.t. F ′ iff F ′′ is both not redundant and nonconflicting with F ′;

• minimum w.r.t. F ′ iff F ′′ is the smallest minimal objective set w.r.t. F ′.

A minimal objective set is a subset of the original objectives that cannot be further
reduced without changing the associated preorder. A minimum objective set is the
smallest possible set of original objectives that preserves the original order on the search
space. By definition, every minimum objective set is minimal, but not all minimal sets
are at the same time minimum.

Example 4 In the example depicted in Figure 1, the entire objective set is redundant
since the objective set {f1, f2, f4} induces the same dominance relation as {f1, f2, f3, f4},
see Figure 2(l) and (o). The set {f1, f2, f4} is at the same time minimal and minimum w.r.t.
the entire objective set because no other objective subset with three or fewer objectives
induces the same dominance relation as all objectives.

Note that in general neither every minimal objective set is at the same time minimum
nor does a unique minimum objective set exist.

3.3 Measuring the Degree of Conflict

The requirement that the underlying relation graph must not change is often too strict
in practice; the size of the minimum objective set may be close to the number of original
objective functions. In order to achieve a more substantial reduction of the objective set,
a continuous measure of conflict is helpful that allows the researcher to gradually tune
the acceptable changes in the dominance relation. Before defining such a measure, we
will illustrate the basic idea in the following example.

Example 5 Let us again consider the example in Figure 1 and the corresponding relation
graphs from Figure 2. We have seen that the omission of objective f3 does not change the
underlying dominance structure (Figure 2(l)). A further omission of an objective would
change the dominance relation by making one (if f1 is omitted), two (if f2 is omitted), or
even three (if f4 is omitted) solution pairs comparable. When examining in detail what
happens if, for example, f1 is omitted, we observe that as a result, solution c is weakly
dominated by solution b. As b and c are incomparable w.r.t. the entire objective set, we
make an error by omitting f1 and f3 and wrongly assuming that b weakly dominates
c. If the f1 value of c were larger by an additional term of δ = 0.5, b would weakly
dominate c w.r.t. both the set {f2, f4} and the entire objective set. Thus, we would make
no error. The δ value of 0.5 in the example can be used as a measure to quantify the
difference in the dominance structure induced by {f2, f4} and the entire objective set.
By computing the δ values for all solution pairs, we can then determine the maximum
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error. The meaning of the maximum δ value is that whenever we wrongly assume that
x weakly dominates y w.r.t. an objective subset F ′, we also know that x is not worse
than y in all objectives by an additive term of δ. For F ′ := {f2, f4}, the maximum error
is δ = 0.5; for F ′ := {f1, f4}, the maximum error is δ = 2.5 induced by the solutions b

and d and their f2 values.5

This idea of determining the maximum error can be generalized to a continuous
definition of objective conflict, namely δ-conflicting objective sets, which is based on the
weak (additive) ε-dominance relation �ε

F ′ defined as6

�ε
F ′ := {(x, y) | x, y ∈ A ∧ ∀i ∈ F ′ : fi(x) − ε ≤ fi(y)}

where A ⊆ X and F ′ ⊆ F (cf. Zitzler et al., 2003). Instead of using the number of edges
in which the corresponding relation graphs differ as a degree of conflict, we take a look
at the objective values and how much they have to be adjusted by an additive term δ

such that the corresponding dominance relations are identical.

DEFINITION 4: Let F1 and F2 be two objective sets. We call F1 δ-nonconflicting with F2
if and only if both (�F1⊆�δ

F2
) and (�F2⊆�δ

F1
) holds; otherwise F1 and F2 are denoted as

δ-conflicting.

Definition 4 is useful for changing a problem formulation by considering a different
objective set. When replacing an objective set F1 by another objective set F2 which is δ-
nonconflicting with F1, then after the replacement one can be sure that for any x, y ∈ X,
x either weakly dominates y w.r.t. both objective sets and we make no error, or x
dominates y w.r.t. F2 and x weakly δ-dominates y w.r.t. F1. In other words, we make
an error by considering F2 instead of F1 only if we wrongly assume that x weakly
dominates y, although x does not weakly dominate y w.r.t. F1. In this case, the error is
bounded by δ: y is not better than x in any objective in F1 by an additive term of δ. As
a consequence, we know that for any Pareto-optimal solution w.r.t. �F1 there exists a
Pareto-optimal solution w.r.t. �F2 that weakly δ-dominates the former w.r.t.F1 (and vice
versa). When replacing an objective set by a δ-nonconflicting subset of this objective set,
one can guarantee that the resulting Pareto-optimal set is not worse than the original
Pareto-optimal set by an an additive term of δ in any omitted objective.

Based on the extended notion of conflict, one can canonically generalize the defini-
tions of redundancy and minimal and minimum objective sets as follows.

DEFINITION 5: A set F ′ ⊆ F of objectives is called δ-redundant if and only if there exists an
objective subset F ′′ ⊂ F ′ that is δ-nonconflicting with F ′.

5Note that we always assume that all objective values have the same scale and reference point such
that the small errors δ are comparable among the objectives.

In addition, we assume that an error made close to the Pareto-optimal front is of the same importance
as the same error made far away from the Pareto-optimal front. Situations where a decision maker
prefers extremal solutions with maximal objective function values are not considered here. The same
holds for objective functions for which the possible objective function values are not equally distributed:
the case that, for example, solutions close to extremal values are more unlikely than ones with midrange
values, is not considered in this study. Nevertheless, an incorporation of the decision maker’s preference
and nonlinear objective functions would be extremely useful but remains future work.

6Note that also the multiplicative ε-dominance relation can be used; all the following results apply
to this relation as well.
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DEFINITION 6: Let δ ≥ 0. An objective set F ′′ ⊆ F ′ is denoted as

• δ-minimal w.r.t. F ′ iff F ′′ is both not δ-redundant and δ-nonconflicting with F ′;

• δ-minimum w.r.t. F ′ iff F ′′ is the smallest δ-minimal objective set w.r.t. F ′.

A further aspect that can be of interest is to ask for the minimum error δ that is
possible when restricting the size of the reduced objective set by an upper bound. This
leads to the k-EMOSS problem that will be introduced in the following section.

Example 6 Regarding Figure 1, the set {f1, f3, f4} is 0.5-minimal but not 0.5-minimum
w.r.t. the entire objective set, since the smaller set {f2, f4} is 0.5-minimal as well. Because
no objective set with one objective only induces an error smaller than or equal to 0.5,
the set {f2, f4} is also 0.5-minimum w.r.t. the entire objective set.

4 Computing Minimum Objective Sets

Regarding objective reduction together with the measure of conflict, as defined in the
previous section, there are two perspectives: on the one hand, given an error δ, one
may ask for a δ-minimum objective set; on the other hand, one can ask for a δ-minimal
objective subset of predefined size k with the smallest possible δ-error. These problems
can be formalized as follows.

DEFINITION 7: Given a δ ∈ R and a set A ⊆ X of m solutions, together with the objective
values fi(x) ∈ R where 1 ≤ i ≤ k and x ∈ A, the problem δ-MINIMUM OBJECTIVE SUB-
SET, δ-MOSS for short, is to compute an objective subset F ′ ⊆ F which is δ-minimum w.r.t.
F .

DEFINITION 8: Given a k ∈ N and a set A ⊆ X of m solutions, together with the objective
values fi(x) ∈ R where 1 ≤ i ≤ k and x ∈ A, the problem MINIMUM OBJECTIVE SUBSET
OF SIZE k WITH MINIMUM ERROR, or k-EMOSS for short, is to compute an objective
subset F ′ ⊆ F which has size |F ′| ≤ k and is δ-nonconflicting with F with the minimal
possible δ.

As the set A, we can imagine either the entire search space (A = X), which is only
feasible for small search spaces, or an arbitrary sample of the search space such as a
Pareto front approximation or the population of an MOEA (A ⊂ X). Unfortunately, both
problems are considered to be hard to solve in general as the next theorem states.

THEOREM 2: Both the δ-MOSS problem and the k-EMOSS problem are NP-hard.

For the proof, we refer to Appendix A. In the following, we propose both ex-
act and approximation algorithms to solve the two problems δ-MOSS and k-EMOSS.
Corresponding implementations of the algorithms are freely available for download at
http://www.tik.ee.ethz.ch/sop/download/supplementary/
objectiveReduction/.

4.1 An Exact Algorithm

In the following, we propose an exact algorithm that is exponential in the number k of
objectives involved but polynomial in the number |A| of solutions, and that is suited to
both problem formulations δ-MOSS and k-EMOSS, respectively. The practical use of this
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algorithm is twofold. On the one hand, this algorithm is used later to investigate the
potential of the proposed approach by computing the maximally achievable objective
reduction for some test problems. On the other hand, the exact algorithm provides a
basis to compare the quality of objective subsets computed by heuristic approaches.

Instead of simply considering all 2k possible objective subsets and computing
whether they are minimal w.r.t. the set F of all objectives and the entire set of solu-
tions A, the basic idea of the exact algorithm is to consider solution pairs separately.
This separate information is then combined to get all minimal objective sets for increas-
ing sets of solution pairs. The algorithm considers all solution pairs (x, y) successively
in arbitrary order. The solution pairs considered so far are stored in the set M . The set
SM contains at any time all minimal objective subsets F ′ together with the minimal δ′

value such that F ′ is δ′-nonconflicting with the set F of all objectives when taking into
account only the solution pairs in M .

The algorithm uses a subfunction δmin(F1,F2), that computes for two solutions
x, y ∈ A and two objective sets F1,F2 the minimal δ error such that F1 and F2 are δ-
nonconflicting w.r.t. the solution set {x, y}. To guarantee that the set SM contains only
pairs (F ′, δ′) such that F ′ is always δ′-minimal w.r.t. F with the smallest δ′ possible,
the union � of two sets of objective subsets is done with simultaneous deletion of not
δ′-minimal pairs (F ′, δ′) as follows:

S1 � S2 := {(F1 ∪ F2, max{δ1, δ2}) | (F1, δ1) ∈ S1 ∧ (F2, δ2) ∈ S2

∧ �∃(F ′
1, δ

′
1) ∈ S1, (F ′

2, δ
′
2) ∈ S2 : (F ′

1 ∪ F ′
2 ⊂ F1 ∪ F2 ∧ max{δ′

1, δ
′
2} ≤ max{δ1, δ2})

∧ �∃(F ′
1, δ

′
1) ∈ S1, (F ′

2, δ
′
2) ∈ S2 : (F ′

1 ∪ F ′
2 ⊆ F1 ∪ F2 ∧ max{δ′

1, δ
′
2}< max{δ1, δ2})}

The full procedure is detailed in Algorithm 1. Note that the running time of Algorithm 1
is polynomial in the number m := |A| of solutions but exponential in the number k of
objectives. Nevertheless, the exact algorithm is applicable for instances with only a
few objectives and a moderate number of solutions as the experimental results show
(Section 4.3).

THEOREM 3: Algorithm 1 solves both the δ-MOSS and the k-EMOSS problem exactly in time
O(m2 · k · 2k).

For details and the very technical correctness proof, we refer to Appendix C. The
upper bound for the running time of the exact algorithm can be derived by computing
the maximum size of the set SM . As SM contains at most O(2k) objective subsets of
size O(k), the computation of SM � S{(x,y)} in line 9 is possible in time O(k · 2k). The
outer loop will be finished after at most O(m2) iterations. Thus, the entire algorithm
runs in time O(m2 · k · 2k). Note that the exact algorithm can be easily parallelized,
as the computation of the sets S{(x,y)} are independent for different pairs (x, y). It can
also be accelerated if line 9 of Algorithm 1 is tailored to either the δ-MOSS or the k-
EMOSS problem by including a pair (F ′, δ′) into SM∪{(x,y)} only if δ′ ≤ δ, and |F ′| ≤ k,
respectively.

4.2 Heuristics

The three heuristic algorithms we propose in this section are better suited for large
instances of the δ-MOSS problem and k-EMOSS, respectively, than the proposed exact
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Algorithm 1 An exact algorithm for the problems δ-MOSS and k-EMOSS
1: Init:
2: M := ∅, SM := ∅
3: for all pairs x, y ∈ A, x �= y of solutions do
4: S{(x,y)} := ∅
5: for all objective pairs i, j ∈ F , not necessary i �= j do
6: compute δij := δmin({i} ∪ {j},F) w.r.t. x, y
7: S{(x,y)} := S{(x,y)} � ({i} ∪ {j}, δij )
8: end for
9: SM∪{(x,y)} := SM � S{(x,y)}

10: M := M ∪ {(x, y)}
11: end for
12: Output for δ-MOSS: (smin, δmin) in SM with minimal size |smin| and δmin ≤ δ

13: Output for k-EMOSS: (s, δ) in SM with size |s| ≤ k and minimal δ

algorithm. They are much faster but therefore do not guarantee to find a δ-minimum
objective set. Nevertheless, the sizes of the objective sets and the δ errors are close to
the sizes and errors of the δ-minimal sets found by the exact algorithm, respectively, see
Section 4.3. In addition, for the case of 0-MOSS, the greedy algorithm proposed below
has the best approximation ratio possible (see Brockhoff and Zitzler, 2006b, for details).

4.2.1 A Greedy Algorithm for δ-MOSS
The general idea of the proposed approximation algorithm for δ-MOSS is to adapt
the well-known greedy algorithm for the set cover problem7 to compute an objective
subset F ′, δ-nonconflicting with the set F of all objectives in a greedy way. Starting
with an empty set F ′ of objectives, the algorithm chooses in each step the objective fi

the addition of which removes most of the edges in the relation graph of �F ′ that are
not contained in the relation graph for all objectives, that is, F . Since we are interested
in approximating the δ-MOSS problem, that is, finding a δ-nonconflicting objective set,
we do not care about the remaining edges in �F ′ which imply an error of at most δ.
This idea is formalized with the following generalization of the weak ε-dominance, the
(δ1, δ2)-dominance relation.

DEFINITION 9: Let δ1, δ2 ∈ R and F1,F2 be two objective subsets. The (δ1, δ2)-dominance
relation �δ1,δ2

F1,F2
on X is defined as x �δ1,δ2

F1,F2
y :⇐⇒ f1(x) − δ1 ≤ f1(y) ∧ f2(x) − δ2 ≤ f2(y)

for all x, y ∈ X.

The (δ1, δ2)-dominance relation states that w.r.t. objective set F1 a solution δ1-dominates
another and w.r.t. objective set F2 the same solution δ2-dominates the second. Within
the greedy algorithm for δ-MOSS, the details of which are depicted as Algorithm 2, all
edges in �0,δ

F ′∪{i},F\(F ′∪{i}) are not considered; that means we do not care about solutions
inducing an error of at most δ in the objectives in F \ (F ′ ∪ {i}), those which are not
taken. For the proof of the polynomial running time and the correctness stated in
Theorem 4, we refer to Appendix B.

7See for example Garey and Johnson (1990) for details.
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Algorithm 2 A greedy algorithm for δ-MOSS.
1: Init:
2: compute the relations �i for all 1 ≤ i ≤ k and �F
3: F ′ := ∅
4: R := A × A\ �F
5: while R �= ∅ do
6: i∗ = argmin

i∈F\F ′
{|(R ∩ �i)\ �0,δ

F ′∪{i},F\(F ′∪{i}) |}

7: R := (R ∩ �i∗ )\ �0,δ

F ′∪{i∗},F\(F ′∪{i∗})
8: F ′ := F ′ ∪ {i∗}
9: end while

Algorithm 3 A greedy algorithm for k-EMOSS
1: Init:
2: F ′ := ∅
3: while |F ′| < k do
4: F ′ := F ′ ∪ argmin

i∈F\F ′

{
δmin (F ′ ∪ {i},F) w.r.t. A

}

5: end while

THEOREM 4: Given the objective vectors f (x1), . . . , f (xm) ∈ Rk and a δ ∈ R, Algorithm 2
always provides an objective subset F ′ ⊆ F , δ-nonconflicting with F := {f1, . . . , fk} in time
O(min{k3 · m2, k2 · m4}).

Note that Algorithm 2 does not necessarily yield a δ-minimal objective set. How-
ever, by simply checking whether an additional omission of single objectives in the
computed set F ′ leaves the dominance relation unchanged, a δ-minimal set can be
guaranteed. The asymptotic running time will stay the same, since the additional check
of δ-minimality can be done in time O(k2 · m2). Furthermore, for a slightly modified
version of Algorithm 2, known results for the set cover problem (Slavı́k, 1996; Feige,
1998) can be used to prove that the algorithm’s �(log |A|) approximation ratio is optimal
for the case of δ = 0 (see Brockhoff and Zitzler, 2006b, for details).

4.2.2 A Greedy Algorithm for k-EMOSS
A simple greedy heuristic to approximate the k-EMOSS problem is to choose the k
objectives iteratively. Starting with an empty set F ′ of objectives in each of the k steps,
the algorithm chooses the next objective fi to be included into F ′ as the objective
yielding the smallest δ such that F ′ ∪ {fi} is δ-nonconflicting with the entire objective
set, see Algorithm 3. Algorithm 3 obviously always computes an objective subset of
size k which is δ-nonconflicting with the entire objective set but does not guarantee to
find the set with minimal δ.

THEOREM 5: Algorithm 3 needs time O(m2 · k3) to compute an objective subset of size k.

PROOF: The greedy algorithm needs time O(m2 · k3) altogether since at most k loops
with k calls of the δmin subfunction are needed. One call of the δmin function needs time
�(m2 · k) and all other operations need time O(1) each. �
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Figure 3: Example of a tree computed by Algorithm 4. More and more objectives are
omitted from bottom to top. The dashed line corresponds to the situation after the second
objective is omitted, that is, the objective set is reduced to {f1, f4, f5}. The numbers on
the inner nodes denote the δ errors.

4.2.3 A Second Greedy Algorithm for k-EMOSS based on Omission of Objectives
To support the decision making, we present a second greedy algorithm for the k-
EMOSS problem, allowing a kind of hierarchical clustering of the objective set yielding
a visualization of the computed δ-errors in a tree, as depicted in Figure 3. Instead of
constructing a δ-nonconflicting objective set by adding objectives as in Algorithm 3, the
second algorithm removes objectives greedily until the resulting subset has k objectives.
At each step, the objective pair fi, fj with the smallest δ-error between fi and fj

is selected and the objective that maximizes the error between fi and fj is omitted.
Algorithm 4 provides the details. If the algorithm is run with k = 1, each of its steps can
be visualized as an inner node in a tree (cf. Figure 3) which can support the decision
maker with useful information on the measure of conflict between objective pairs.
Starting with the set of all objectives at the leaves, each iteration of the algorithm
corresponds to an inner node where one objective is omitted; the later an objective is
omitted, the closer the corresponding node is to the root.

THEOREM 6: Algorithm 4 needs time O((k − k) · k2 · m2) = O(k3 · m2) to compute an objec-
tive subset of size k.

PROOF: The computation of the minimal δ-error within the δmin
(
fi, fj

)
function costs

O(m2) for each objective pair fi, fj since for all O(m2) possible pairs of solutions the
resulting δ error regarding the two objectives fi, fj can be computed in constant time.
This δmin computation has to be computed for at most O(k2) objective pairs per iteration
of the while loop. The if statement can be executed in constant time because the compu-
tation of the maxima can be done before within line 4 without increasing the running
time asymptotically. At most k − k = O(k) iterations of the while loop result in the
overall running time stated. �

4.3 Validation of the Algorithms

Regarding the proposed objective reduction algorithms, two main questions remain.
First, what is the usefulness of these algorithms regarding concrete problems, in
particular how much can the objective set be reduced? Second, how good are the
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Algorithm 4 A second greedy algorithm for k-EMOSS, based on omitting objectives.
1: Init:
2: F ′ := F
3: while |F ′| > k do
4: (fr, fs) := argmin

fi ,fj ∈F ′

{
δmin

(
fi, fj

)
w.r.t. A

}

5: if max
x,y∈A∧x�fr y

{fs(x) − fs(y)} < max
x,y∈A∧x�fs y

{fr (x) − fr (y)} then

6: F ′ := F ′ \ {fs}
7: else
8: F ′ := F ′ \ {fr}
9: end if

10: end while

objective sets computed by the greedy methods in comparison with the exact algo-
rithm? This section provides first experimental results for both questions, whereas
Section 5 shows how the algorithms can be employed both in decision making and
during search.

The validation of the algorithms regarding the two questions is done in two different
scenarios. On the one hand, the indicator based evolutionary algorithm IBEA, proposed
in Zitzler and Künzli (2004), is used to generate Pareto front approximations for various
test problems that are used as inputs for the objective reduction algorithms. Altogether
four different test problems are considered: the three problems DTLZ2, DTLZ5, DTLZ7
(Deb et al., 2005), and the 0-1-knapsack problem with instances of 100, 250, and 500
items, denoted as KP100, KP250, and KP500 (Laumanns et al., 2004). The population
size μ of IBEA varies with the number k of objectives, that is, μ = 100 for k = 5, μ = 200
for k = 15, and μ = 300 for k = 25. For simplicity, only one IBEA run per problem
instance is performed. Other parameters are chosen according to the standard settings
of the PISA package presented in Bleuler et al. (2003). On the other hand, we consider
a random scenario where the objective values for a set of solutions are generated at
random using a uniform distribution over the interval [0, 1] ⊂ R. This corresponds to
randomly chosen solutions of a problem with objectives, the induced total preorders of
which are chosen uniformly randomly from the set of all total preorders.

4.3.1 Investigating δ-Minimum Objective Sets
To show the potentials of our objective reduction approach, we use the exact Algorithm 1
to compute 0-minimum objective sets in the random scenario and δ-minimum sets for
the entire search space of the 0-1-knapsack problem with seven items.8 The sizes of
the 0-minimum objective sets in the random scenario, averaged over 100 independent
random samples, are shown in Figure 4; the sizes of the δ-minimum sets, averaged over
five knapsack instances, can be found in the left part of Figure 5.

Regarding the random scenario, the resulting sizes of the minimum objective sub-
sets behave similarly for all tested solution set sizes |A|: with increasing numbers of
objectives, the size of the computed minimum set increases up to a specific point,

8With more items, the entire search space of size 2#items would be too large to handle with the exact
algorithm due to its running time.
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Figure 4: Size of the computed minimum sets for different number k of randomly
chosen objectives and the number |A| of solutions.

Figure 5: Comparison of the exact and the greedy algorithm for δ-MOSS on the 0-1-
knapsack problem.

depending on the number of solutions, and further decreases with more objectives. The
larger the search space, that is, the more solutions we generate, the fewer objectives can
be omitted. With 200 solutions and 16 objectives, however, about 25% of the objectives
can be omitted without changing the underlying dominance structure. The investigation
of the 0-1-knapsack problem indicates a similar behavior of the δ-minimum objective
sets: the more objectives are used in the problem formulation, the more objectives can be
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Figure 6: Comparison between the exact and the greedy algorithm for the 0-MOSS
problem on sets with 32 solutions and random objective values. The left plot shows
the size of the computed objective sets averaged over 100 runs for different numbers
of objectives. In the right plot, the average running times of both algorithms are shown
for 100 runs on each number of objectives.

omitted. Similarly, by increasing the allowed δ error, more objectives can be omitted. For
example, the δ-minimum sets contain only 4.4 objectives on average for the 20-objective
knapsack problem if we allow an error of δ = 50; instead, 10.6 objectives are needed to
preserve the dominance relation with no error.

As the running times, depicted in the right-hand plot of Figure 5 for the knapsack
instances and in Figure 6 for the random scenario, indicate, the exact algorithm is not
applicable for larger instances of practical size. Therefore, the greedy algorithms with
their smaller running times have been developed to cope with problem instances with
hundreds of solutions and a few tens of objectives in reasonable time. Because we are—
regarding the quality of the algorithms and the error we make—more interested in
applying the δ-MOSS algorithms within decision making rather than using the k-EMOSS
algorithms during search, we will compare only the algorithms for the δ-MOSS problem
in the following.9

4.3.2 Investigating Approximate Objective Reduction
Before we investigate approximate objective reduction by applying the greedy algo-
rithms, we briefly compare the exact Algorithm 1 to the greedy Algorithm 2 on δ-MOSS.
To this end we use both the random objective problem and the 0-1-knapsack problem
with seven items as described above and the results of which are shown in Figure 6 and
Figure 5, respectively.

For both problems, the comparison shows the same two aspects. First, the objective
sets computed with the greedy algorithm are not too large in comparison to the mini-
mum sets computed with the exact algorithm. Nevertheless, the difference between the
sizes of the objective sets computed by the two algorithms increase with more objectives.
Secondly, the greedy algorithm is—as expected—much faster than the exact algorithm.
The running time is a large advantage of the greedy algorithm, especially for larger

9In the end it is the error we make in the decision making that matters whereas the quality of the
algorithms is not that important if they are used during search.
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Table 1: Sizes (for δ-MOSS) and relative errors (for k-EMOSS) of objective subsets for
different problems, computed with the Algorithm 2 and 3 respectively. For δ-MOSS, the
δ value is chosen relatively to the maximum spread of the IBEA population after 100
generations; in the case of k-EMOSS the specified size k of the output subset is denoted
relatively to the problem’s number of objectives.

δ-MOSS k-EMOSS

0% 10% 20% 40% 30% 60% 90%

knapsack, 100 items, 5 objectives, 100 solutions 5 5 5 5 0.926 0.516 0.486
knapsack, 100 items, 15 objectives, 200 solutions 11 10 10 9 0.818 0.348 0.000
knapsack, 100 items, 25 objectives, 300 solutions 13 13 13 11 0.597 0.000 0.000
knapsack, 250 items, 5 objectives, 100 solutions 5 5 5 4 0.859 0.697 0.280
knapsack, 250 items, 15 objectives, 200 solutions 11 11 10 9 0.762 0.342 0.000
knapsack, 250 items, 25 objectives, 300 solutions 12 12 12 11 0.575 0.000 0.000
knapsack, 500 items, 5 objectives, 100 solutions 5 5 5 4 0.748 0.504 0.237
knapsack, 500 items, 15 objectives, 200 solutions 15 15 14 10 0.643 0.435 0.278
knapsack, 500 items, 25 objectives, 300 solutions 25 23 17 13 0.472 0.320 0.138
DTLZ2: 5 objectives, 100 solutions 5 5 5 5 0.991 0.970 0.920
DTLZ2: 15 objectives, 200 solutions 13 13 13 13 0.942 0.891 0.000
DTLZ2: 25 objectives, 300 solutions 18 18 18 18 0.832 0.782 0.000
DTLZ5: 5 objectives, 100 solutions 5 5 5 5 0.952 0.906 0.896
DTLZ5: 15 objectives, 200 solutions 11 11 11 11 0.860 0.803 0.000
DTLZ5: 25 objectives, 300 solutions 13 13 13 13 0.820 0.000 0.000
DTLZ7: 5 objectives, 100 solutions 5 5 1 1 0.135 0.134 0.132
DTLZ7: 15 objectives, 200 solutions 10 1 1 1 0.078 0.070 0.000
DTLZ7: 25 objectives, 300 solutions 11 1 1 1 0.050 0.000 0.000

values of δ because the heuristic’s running time decreases with larger δ (cf. the right-
hand plot in Figure 5).

With the scenario of Pareto-front approximations for the DTLZ and knapsack in-
stances with various numbers of objectives, we investigate the ability of the greedy
objective reduction methods to approximate the generalized δ-MOSS andk-EMOSSprob-
lems. To be able to compare the results for the different test problems and the varying
number of objectives, we choose the δ and k values on a relative basis. On the one hand,
the error δ is chosen relative to the spread of the IBEA population after 100 generations,
that is, the difference between the largest and highest objective value in the IBEA pop-
ulation corresponds to an error of δ = 1. On the other hand, the size k of the objective
sets is denoted relative to the number k ∈ {5, 15, 25} of objectives in the problem formu-
lation. We choose four different δ values for the δ-MOSS problem (0%, 10%, 20%, 40%)
and three different values for k (30%, 60%, 90%). Table 1 shows the results.

With δ = 0, the results for the test problems are similar to those for the random
problem. Although an objective reduction is possible while preserving the preorder on
the solutions, further objectives can be omitted if we allow changes of the dominance
structure within the dimensionality reduction. For example, the knapsack instance with
500 items and 25 objectives does not allow an omission of objectives while preserving the
dominance relation on the 300 solutions. Permitting an error of 20%, 8 objectives can be
omitted, while even 12 objectives can be omitted if an error of 40% is allowed. However,
the influence of a greater error δ on the resulting objective set size depends significantly
on the problems. For example, only small errors yield fundamentally smaller objective
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sets for the DTLZ7 instances, while even a large error produces no further reduction
for all DTLZ2 and DTLZ5 instances. By examining the k-EMOSS problem for the 18
instances in Table 1, we see similar results in a different manner. The smaller the chosen
size k of the resulting objective sets, the larger the error in the corresponding dominance
structure.

5 Applications

In this last section, we provide examples where the above algorithms and the definition
of conflict can be useful. In the case of offline analysis where a set of nondominated
solutions is given, the proposed approach cannot only indicate which objectives are
redundant but can also provide insights in the problem itself to make the decision mak-
ing process easier. Section 5.1 will show these benefits exemplary for a radar waveform
problem with nine objectives recently proposed by Hughes (2007). The general question
of whether objective reduction is useful during the search is the subject of Section 5.2
where we show experimentally that the integration of an online objective reduction can
drastically improve the running time of a hypervolume-based search algorithm.

5.1 Offline Objective Reduction

The real and unmodified engineering problem of radar waveform optimization, de-
scribed in Hughes (2007), is to choose a set of waveforms for a pulsed Doppler radar
allowing an unambiguous measure of both range and velocity of targets. The formal-
ization of the radar waveform problem uses nine objectives altogether. Hughes (2007)
states various relationships between these nine objectives due to their definitions, for
example, that the objective pairs 1 & 3, 2 & 4, 5 & 7, and 6 & 8 have a degree of corre-
lation because they are metrics associated with the performance in range and velocity,
respectively.

With the set of more than 22,000 nondominated solutions, collected from multiple
MOEA runs,10 we investigate the usefulness of the objective reduction approach pro-
posed above in a decision maker scenario, where a set of nondominated solutions is
used to learn about the problem and get a deeper insight into the problem itself. To
apply both the exact and the greedy algorithms for δ-MOSS and k-EMOSS, a reduction
of the large set of solutions to a smaller set is necessary and performed by computing
the ε-nondominated solutions out of the normalized original ones. The error ε is chosen
as 6.2% yielding 107 solutions in the reduced set.11 The computation of the smaller
set of ε-nondominated solutions out of the entire set of >22,000 solutions means that
whenever we make a statement of δ error w.r.t. the set of 107 solutions, we can ensure
that the error w.r.t. the set of all known solutions is at most ε + δ.

Computing all δ-minimal sets with the exact algorithm shows that for the reduced
set of 107 solutions two objectives can be omitted without changing the dominance
structure. With respect to the entire set of >22,000 known solutions, that means that
we make only an error of at most 6.2% when omitting the correct two objectives.
Nevertheless, the use of such a reduction is limited. Reducing the set of objectives from

10As provided by Evan Hughes.
11Note that the used error of 6.2% and the resulting solution set size of 107 is more or less arbitrary.

Smaller errors, that is, larger solution sets with up to 5,000 solutions, yield similar results.
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Figure 7: Radar waveform problem: visualization of minimum δ-error between objec-
tive pairs. Errors larger than 0.8 are omitted for clarity and the line width indicates the
δ-error (the thicker, the smaller the error). The arrows point at the objectives that should
be used.

nine to seven still yields a huge amount of information that a decision maker has to
survey, especially if more than 22,000 solutions are to be compared. More useful for
a decision maker would be to learn about the problem, that is, to draw quantitative
conclusions on the relationship between single objectives as stated in Hughes (2007)
qualitatively. The approach of δ-conflict can provide such quantitative statements on
objective pairs. For example, we can compute the minimum δ error between all possible
objective pairs and illustrate them as in Figure 7. A low δ error between an objective pair
predicts that the consideration of only the one objective the arrow points at in Figure 7
while the other objective is omitted does not change the dominance relation with an
error of more than δ. Surprisingly, the smallest error occurs between objectives 4 and 9,
the second smallest between objective pair 1& 7, in contrast to the prediction of Hughes
(2007). These pairwise δ errors can, in addition, be used within the greedy Algorithm 4
to obtain a tree visualization of the objective conflicts. Figure 8 depicts the resulting tree
for the 107 solutions in the radar waveform example together with the δ value on the
inner nodes (bold) such that the corresponding objective set is δ-nonconflicting with the
entire objective set. The tree visualization identifies f4 and f1 as the most unimportant
and f6 as the most important objective(s) regarding the dominance structure between
the 107 objective vectors used.

This illustrates how the proposed objective reduction approach can be used to
analyze objective relations and to assist in decision making in various application
domains.

5.2 Online Objective Reduction

Besides the advantages of objective reduction in decision making, one may ask whether
objective reduction can also improve the search itself. The following study shows as a
proof-of-principle that the objective reduction methods proposed above can improve a
simple hypervolume-based MOEA by reducing the number of objectives during search.
To this end, we slightly modify the simple indicator-based evolutionary algorithm
SIBEA, proposed by Zitzler et al. (2007). SIBEA starts with randomly choosing the
population P of size μ. Until a certain time limit T is reached, the μ solutions of
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Figure 8: Radar waveform problem: tree visualization of the greedy Algorithm 4 con-
sidering the δ-error for paired objectives. The δ-errors are written at the tree’s inner
nodes (the exact values are given in bold face).

the current population P are randomly selected for recombination and mutation, the
variated solutions are inserted into the population, and the population of the next
generation is determined by the following procedure: after a nondominated sorting of
the population, the nondominated fronts are, starting with the best front, completely
inserted into the new population until the size of the new population is at least μ. For
the first front F , the inclusion of which yields a population size of more than μ, the
solutions x in this front with the smallest hypervolume loss d(x) := IH (F ) − IH (F \ {x})
are successively removed from the new population where the hypervolume loss is
recalculated after each removal. This original SIBEA algorithm from Zitzler et al. (2007)
without any objective reduction is used as a reference and is denoted by SIBEAref. For the
hypervolume computation, the algorithm from the performance assessment package
of Knowles et al. (2006) is used. By deciding every G generations which objectives are
chosen for optimization and which ones are neglected during the next G generations,
we introduce two modified versions of SIBEAref: On the one hand, SIBEArandom chooses
the k considered objectives every G generations randomly, where the number k of
considered objectives is given in advance. On the other hand, SIBEAonline performs an
objective reduction by applying the greedy Algorithm 3 for k-EMOSS on the current
population to compute the objectives which are considered in the next G generations.
For a detailed description of SIBEA, we refer to Zitzler et al. (2007).

To show that SIBEAref can be improved by reducing the number of considered
objectives, we use a slightly modified version of the DTLZ2 problem, known from Deb
et al. (2005) as a test function.12 Figure 9 shows the formal definition of the used function

12Due to two main properties of the original DTLZ2 function, the original DTLZ2 function is slightly
modified toward the used DTLZ2BZ function: On the one hand, the original DTLZ2 function has the
property that the projection of the Pareto front to fewer than k objectives collapses to one optimal
point, that is, when omitting arbitrary objectives, the search always converges to one solution. Every
multiobjective function has this property if all objectives except one are omitted. For the DTLZ function
suite, however, this property even holds for every subset of objectives. To eliminate this property, we
limit the range of the variables. On the other hand, when optimizing only a subset of fewer than k

objectives, the neglected objectives are also optimized at the same time. The reason is the scaling of
all objectives by a function g(xM ), indicating the distance to the real Pareto front. To come up with a
problem where all single objectives have to be optimized simultaneously to reach the Pareto front, we
introduce different scaling functions gi (x), instead of one single scaling function g(xM ).
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Figure 9: Definition of the modified DTLZ2BZ problem.

DTLZ2BZ . In addition, we differentiate in the experiments between two versions of the
DTLZ2BZ function, one unscaled and one scaled version.13 The idea behind the scaled
version is that not all objectives are, in general, equally scaled in practical problems.
A different scaling of the objectives leads to some objectives that have a higher impact
on the hypervolume than other objectives. We expect that especially in this case of
not equally scaled objectives, the objective reduction approach proposed above can
improve hypervolume-based MOEAs considerably compared to a randomly performed
objective reduction.

5.2.1 Experimental Settings
To compare the three versions of SIBEA experimentally, we perform 11 runs for each
combination of algorithm, problem, and chosen objective set size k. As algorithms we
use the three SIBEA versions described above. As problems, we use the above defined
DTLZ2BZ test problem with three, five, and nine objectives, where the chosen objective
set sizes k depend on the number k of all objectives. The 11 runs are performed for
both the unscaled and the scaled version of DTLZ2BZ and the following combinations
of k/k: 3/2, 5/2, 5/3, 9/2, 9/3, 9/4. We fix the computation time to T = 300 s and use
a population size of μ = 50, just as an objective reduction frequency of G = 50. The
populations of the three algorithms after the given time T are compared by computing
their hypervolume indicator. The nonparametric Wilcoxon rank sum test14 is used
to support the hypothesis that one random variable, for example, the hypervolume
indicator of algorithm A, “systematically” produces larger values than another one,

13The unscaled version is described in Figure 9 whereas in the scaled version, the objective value
fi (x) (1 ≤ i ≤ k) is scaled to f ∗

i (x) = maxValue · (fi (x)/maxValue)i if i is even, and to f ∗
i (x) = maxValue ·

(fi (x)/maxValue)1/i if i is odd, where maxValue = 1 + (n − M + 1)/4 is an upper bound for the original
fi (x) values.

14As implemented in the statistical package SPSS, version 15.0, www.spss.com.
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Table 2: Ranking between the hypervolume indicator values of the three algorithms
SIBEAref (IH, no), SIBEArandom (IH, random), and SIBEAonline (IH, online) based on the results
of the Wilcoxon rank sum tests on a significance level of p = 0.05. If the test between two
indicator samples is significant, the sample with the larger mean is assigned a smaller
rank; otherwise the two samples get the same rank. A lower rank is always better. (For
details see Brockhoff and Zitzler, 2007b.)

unscaled DTLZ2BZ scaled DTLZ2BZ

k / k IH, online IH, no IH, random IH, online IH, no IH, random

3 / 2 2 1 3 1 2 3

5 / 2 2 1 3 1 2 3
5 / 3 2 1 3 1 2.5 2.5

9 / 2 2 1 3 1 2 3
9 / 3 1.5 1.5 3 1 2 3
9 / 4 1 2 3 1 2 3

for example, the hypervolume indicator of algorithm B by ranking all values and
comparing the rank sums for both samples.

5.2.2 Results
The statistical tests, the results of which are shown in Table 2 as a ranking between
the three algorithms, support in most cases the hypothesis derived from preliminary
experiments. For all considered problem sizes, the random version SIBEArandom yields
the worst results on the DTLZ2BZ problem (all tests are significant or even highly
significant, except for the scaled DTLZ2BZ problem with k = 5 objectives and k = 3). On
the scaled DTLZ2BZ problems, SIBEAonline performs best (all tests significant or highly
significant), whereas on the unscaled problems, SIBEAref beats SIBEAonline except for the
nine-objective problem and k = 3 and k = 4. The more objectives are considered, the
more SIBEAonline can gain from the performed objective reduction, for example, SIBEAref
can only run for 32 generations in 300 s on scaled DTLZ2BZ with k = 5 objectives whereas
SIBEAonline performs more than 600 generations in the same time if the objective set
is reduced to k = 2 objectives (and about 300 generations if k = 3). These differences
become even larger for higher dimensions (see Brockhoff and Zitzler, 2007a, for details).

Two main statements can be derived from the comparison presented. First, the inte-
gration of online reduction methods into a hypervolume-based evolutionary algorithm
appears to be a promising approach that can improve the quality of the computed Pareto
front approximations with fixed computational resources especially if a large number of
objectives is considered. Second, the used objective reduction strategy highly influences
the outcome of the evolutionary algorithm: using an advanced objective reduction tech-
nique as the δ-conflict based one, presented in this paper, is clearly preferable over a
random choice of the objectives to optimize.

6 Conclusion

This paper addresses the issue of objective reduction in many-objective optimization.
We have investigated the effect of adding or omitting objectives on the Pareto dominance
relation and proposed an objective reduction approach that is based on a general notion
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of objective conflict. The approach allows us to identify objective sets of minimum
size, while ensuring that the Pareto dominance relation is preserved or only slightly
changed according to a certain, predefined error. To this end, an exact algorithm as
well as several heuristics have been proposed, and corresponding implementations are
freely available for download at http://www.tik.ee.ethz.ch/sop/download/
supplementary/objectiveReduction/.

The experimental results have demonstrated that the proposed methodology can be
useful in various domains. On the one hand, the algorithms can be employed to support
the decision making process: they not only may substantially reduce the number of
objectives, but they also reveal relationships between objectives and objective sets,
which may provide valuable information about the underlying problem. On the other
hand, integrating the objective reduction techniques into an evolutionary algorithm
can significantly improve the search efficiency and thereby the quality of the outcome
with fixed computational resources—when the runtime of the selection procedure is
strongly affected by the number of objectives as with hypervolume-based multiobjective
optimizers. There may be many more application areas, for example, in many-objective
scenarios where the computation times needed for the distinct objective functions vary
highly. These topics are the subject of future research.
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Appendix A NP-Hardness Proofs

THEOREM 2: Both the δ-MOSS problem and the k-EMOSS problem are NP-hard.

PROOF: First, we prove the NP-hardness of δ-MOSS by a Turing reduction from the
NP-hard MOSS problem, see Definition 10 and Theorem 7 below. Secondly, we prove
the NP-hardness of k-EMOSS via a Turing reduction from δ-MOSS.

MOSS ≤T δ-MOSS

The idea of this Turing reduction is to compute objective values for all the solutions in
A of a MOSS instance yielding the same weak dominance relation as �F and �i . With
those objective vectors and δ = 0, the δ-MOSS oracle is asked once for a 0-minimum
objective set. This objective set can directly be used as output for the MOSS problem,
since the two problems with δ = 0 ask for the same minimum objective set. It remains
to be shown how the objective values are computed and that it is possible within
polynomial time. Starting with the MOSS instance (A,�F ,�i for all 1 ≤ i ≤ k), the δ-
MOSS instance is computed in time O(k · |A|2) as follows. Choose δ = 0. Assign the
solutions’ ith objective values according to a topological sorting of �i . As there are at
most O(|A|2) edges in the relation graphs of the �i , the topological sorting costs O(|A|2)
per objective, resulting in a running time of O(k · |A|2) in total.

δ-MOSS ≤T k-EMOSS

A δ-minimum objective set w.r.t. F is obviously of size 1 ≤ l ≤ k. Asking the k-EMOSS
oracle with the same objective values as the δ-MOSS instance and all possible sizes
1 ≤ l ≤ k iteratively, the smallest computed objective set that has an error of at most δ is
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a δ-minimum set, that is, it can be taken as output for the δ-MOSS problem. The Turing
transformation can be done in linear time regarding the δ-MOSS instance. �

DEFINITION 10: Given a multiobjective optimization problem with the objective set F =
{f1, . . . , fk}, the problem MINIMUM OBJECTIVE SUBSET (MOSS) is defined as follows:

Instance: The set A ⊆ X of solutions, the generalized weak Pareto dominance relation �F
and for all objective functions fi ∈ F the single relations �i where

⋂
1≤i≤k �i

=�F .

Task: Compute an index I ⊆ {1, . . . , k} of minimum size with
⋂

i∈I �i =�F .

THEOREM 7: The problem MOSS is NP-hard.

PROOF: First, we define theNP-hard problemSET COVER, orSCP for short, as follows
(see Garey and Johnson, 1990).

Given a collection C = {C1, . . . , Ck} of subsets of a finite set S = {1, . . . , m}, compute an index I ⊆
{1, . . . , k} of minimum size with

⋃
i∈I Ci = S.

A Turing transformation SCP ≤T MOSS proves the NP-hardness of MOSS. Starting
from the SCP instance consisting of the set S = {s1, . . . , sm} and the subsets Ci with
1 ≤ i ≤ k, all relations �i as well as �F in the MOSS instance are defined on the basic
set A := {x1, . . . , xm, x′

1, . . . , x′
m}. The relation �F will be the reflexive closure of the

antichain on A, that is, �F only contains the elements (xj , xj ) and (x′
j , x′

j ) for 1 ≤ j ≤ m.
The relations �i with 1 ≤ i ≤ k are all constructed in the same way. They include the
linear order [x1, x′

1, x2, x′
2, . . . , xm, x′

m] as well as the reflexive relations. Additionally,
relation �i contains the element (x′

j , xj ) iff sj �∈ Ci . In addition, we have to compute
another relation �k+1 which is the reverse linear order [x′

m, xm, x′
m−1, xm−1, . . . , x′

1, x1].
After this transformation, we question our MOSS oracle once. The resulting index ISCP
for the SCP problem will be then ISCP := Ioracle \ {k + 1} if the oracle produces Ioracle as
its output.

It remains to be shown that the transformation yields an exact algorithm for SCP
with polynomial running time, under the assumption that there is an exact polyno-
mial time algorithm A for MOSS. Let us assume that (S = {s1, . . . , sm}, C1, . . . , Cl) is the
SCP instance with Ci = {c1, . . . , c|Ci |} ⊆ S. Via the described transformation and the hy-
pothetical algorithm A, we can compute the index ISCP := IA \ {k + 1} as the output
corresponding to the SCP instance S. Obviously, the computation of ISCP is possible in
polynomial time using a polynomial algorithm for MOSS. To complete the proof, we still
have to show (i) why k + 1 ∈ IA is always true, (ii) why IA \ {k + 1} is a correct output
for our SCP instance, and (iii) why the computed index IA \ {k + 1} is minimum.

First, we will take a look at question (i), that is, why �k+1 is always needed to
yield �F as the intersection of some �i . Because in �F no pair x, y ∈ A with x �= y
is comparable, for each pair x, y ∈ A, x �= y, there has to be at least one i ∈ IA where
x ��i y and at least one j ∈ IA with y ��j x. Considering a pair x, y, for all �i with
i ∈ {1, . . . , k}, x �i y holds. By construction, only x ��k+1 y. Consequently, �k+1 is always
needed, to construct �F as the intersection of single �i ’s. Now we show (ii) why
I := IA \ {k + 1} is always a correct output for the given SCP instance. As we have seen
before, k + 1 ∈ IA and therefore, the intersection of the �i ’s contains no pairs (xν, xμ) and
(x′

ν, x′
μ) with 1 ≤ ν < μ ≤ m and no pairs (xν, x′

ν) with 1 ≤ ν ≤ m. The construction of the
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relations �i with i ∈ {1, . . . , k} results in the absence of pairs (xν, xμ) and (x′
ν, x′

μ) with
1 ≤ μ < ν ≤ m in the intersection if there will be at least one i ∈ IA with 1 ≤ i ≤ k. There
only remains the possibility of pairs (x′

ν, xν) with 1 ≤ ν ≤ m in the intersection. To avoid
this, for each ν ∈ {1, . . . , m} there must be at least one i ∈ {1, . . . , k} in IA with x′

ν ��i xν .
By construction of the Turing transformation, this can only occur if cν ∈ Ci . Thus,⋃

i∈IA\{k+1} Ci = {1, . . . , m} = S. Last, we have to show (iii) why the computed index
IA \ {k + 1} is a minimum index for SCP. Assume that IA \ {k + 1} is not a minimum
index for SCP, that is, there is a smaller index J with |J | < |I | and

⋃
j∈J Cj = S. As one

can easily see from the above transformation, J ∪ {k + 1} would be a smaller index for
MOSS than IA. �

Appendix B Correctness and Running Time Proof of the Greedy
Algorithm on δ-MOSS

THEOREM 4: Given the objective vectors f (x1), . . . , f (xm) ∈ Rk and a δ ∈ R, Algorithm 2
always provides an objective subset F ′ ⊆ F , δ-nonconflicting with F := {1, . . . , k} in time
O(min{k3 · m2, k2 · m4}).

PROOF: We prove the theorem with the help of the Lemmata 1 and 2. If we show that
the invariant

∀(x, y) ∈ R := (A × A) \ R : x �F ′ y ⇐⇒ x �0,δ
F ′,F y (I)

holds during each step of Algorithm 2, the theorem is proved, due to Lemma 2 and the
fact that x �F ′ y ⇐⇒ x �0,δ

F ′,F\F ′ y holds for all (x, y) ∈ A × A if Algorithm 2 terminates,
that is, if R = ∅. We prove the invariant with induction over |R|.

Induction basis: When the algorithm starts, R = (A × A)\ �F , that is, R =�F . For
each (x, y) ∈ R =�F with x �F ′ y, that is, x �∅ y with �∅:= A × A, x �F y holds and
therefore x �0,δ

F ′,F\F ′ y. The other direction x �0,δ
F ′,F\F ′ y ⇒ x �F ′ y always holds trivially.

Thus, the invariant is correct for the smallest possible |R|, after the initialization of the
algorithm.

Induction step: Now let |F ′| > 0. Then, the invariant can only become false, if we
change R (and with it R) in line 7 of Algorithm 2. Note, first, that R becomes only smaller
by-and-by, that is, R contains more and more pairs (x, y) ∈ A × A. Such a pair (x, y),
already contained in R, stays in R forever and fulfills the implication in the invariant (I)
for every F ′′ ⊇ F ′ if the pair fulfills it for at least one F ′ ⊆ F . If a function fi is inserted
into F ′ to gain F ′′ ⊇ F ′, two possibilities for a pair (x, y) ∈ R exist. First, if x ��F ′ y, then
x ��F ′′ y for any F ′′ ⊇ F ′ and also x ��0,δ

F ′′,F\F ′′ y. Second, if x �F ′ y, then x �0,δ
F ′,F\F ′ y by

induction hypothesis. Thus, x �δ
F\F ′ y and x �δ

F\F ′′ y for any F ′′ ⊇ F ′. If x �F ′′ y for
any F ′′ ⊇ F ′, then x �0,δ

F ′′,F\F ′′ y and if x ��F ′′ y for any F ′′ ⊇ F ′ then x ��0,δ
F ′′,F\F ′′ y. Thus,

a pair (x, y) ∈ R will always fulfill the implication in (I) for any F ′′ ⊇ F ′ if it fulfills it
for F ′. Beyond, a pair (x, y) ∈ A × A will only be included in R during the update of R

in line 7 if (i) (x, y) �∈ (R ∩ �i∗ ) or if (ii) (x, y) ∈�0,δ

F ′∪{i∗},F\(F ′∪{i∗}). In case (i), the invariant
stays true because for all new pairs (x, y) in R, (x, y) ∈ R ∧ (x, y) �∈ �i∗ holds. Thus,
(x, y) �∈ ∩i∈(F ′∪{i∗}) �i =�F ′ and, therefore, (x, y) �∈ �0,δ

F ′∪{i∗},F\(F ′∪{i∗}) as well. In the case

(ii), (x, y) ∈�0,δ

F ′∪{i∗},F\(F ′∪{i∗}) and trivially (x, y) ∈�F ′∪{i∗}, that is, the invariant remains
true, too.
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The running time of Algorithm 2 results mainly from the computation of the
relations in line 6. The initialization needs time O(k · m2) altogether. As the relation
�0,δ

F ′∪{i∗},F\(F ′∪{i∗}) is known from line 6, the calculation of the new R in line 7 needs time
O(m2); line 8 needs only constant time. The computation of the relations �0,δ

F ′∪{i},F\(F ′∪{i})
in line 6 needs time O(k · m2) for each i, thus, line 6 needs time O(k2 · m2) altogether.
Hence, the computation time for each while loop cycle lasts time O(k2 · m2). Because
in each loop cycle |F ′| increases by one, there are at most k cycles before Algorithm 2
terminates. On the other hand, Algorithm 2 terminates if R = ∅, that is, after at most
|X × X| = O(m2) cycles of the while loop, if in each cycle |R| decreases by at least one—
which is true due to Theorem 1. The total running time of Algorithm 2 is, therefore,
O(min{k,m2} · k2 · m2) = O(min{k3 · m2, k2 · m4}). �

LEMMA 1: Let F ′ ⊆ F . Then F ′ is δ-nonconflicting with F if and only if �F ′ ⊆�δ
F .

PROOF: Let F ′ ⊆ F . Then for all δ ≥ 0 the relation �F is always a subset of or equal to
�δ

F ′ , because x �F y implies that fi(x) ≤ fi(y) for all fi ∈ F ′ and also fi(x) − δ ≤ fi(y)
holds for all fi ∈ F ′, that is, x �δ

F ′ y for all x, y ∈ X. Thus, F ′ is δ-nonconflicting with F
iff �F ′⊆�δ

F ∧ �F⊆�δ
F ′ , that is, iff �F ′⊆�δ

F . �

LEMMA 2: Let F ′ ⊆ F and δ > 0. Then

(∀x, y ∈ A : x �F ′ y ⇐⇒ x �0,δ
F ′,F\F ′ y

) =⇒ F ′ is δ-nonconflicting with F w.r.t. A.

PROOF: Let F ′ ⊆ F , δ > 0, and (∀x, y ∈ A : x �F ′ y ⇐⇒ x �0,δ
F ′,F\F ′ y), denoted by (∗).

We observe the following two statements:

• Let δ1, δ2, δ
′
1, δ

′
2 ∈ R with δ1 ≤ δ′

1 and δ2 ≤ δ′
2, and F1,F2,F ′

1,F ′
2 be objective sets

with F ′
1 ⊆ F1 and F ′

2 ⊆ F2. Then both �δ1,δ2
F1,F2

⊆�δ′
1,δ

′
2

F1,F2
and �δ1,δ2

F1,F2
⊆�δ1,δ2

F ′
1,F ′

2
holds.

• Furthermore, �δ1,δ2
F1,F2

=�δ1
F1

∩ �δ2
F2

and �δ,δ
F1,F2

=�δ
F1∪F2

.

With these observations, �F ′
(∗)= �0,δ

F ′,F\F ′ = (�0
F ′ ∩ �δ

F\F ′) ⊆�δ
F ′ ∩ �δ

F\F ′ =�δ
F , that is,

F ′ is δ-nonconflicting with F according to Lemma 1. �

Appendix C Correctness and Running Time Proof for the Exact
Algorithm

THEOREM 3: Algorithm 1 solves both the δ-MOSS and the k-EMOSS problem exactly in time
O(m2 · k · 2k).

PROOF: To prove the correctness of Algorithm 1, we use Lemma 3. It states that
Algorithm 1 computes for each considered set M of solution pairs a set of pairs (F ′, δ′)
of an objective subset F ′ ⊆ F with the corresponding correct δ′ value (i, ii) that are
minimal (iii, iv). Moreover, the algorithm computes solely minimal pairs (v, vi). With
Lemma 3, the correctness of Algorithm 1 follows directly from lines 12 and 13.

The upper bound on the running time of Algorithm 1 results from the size of the
set SM . For all of the O(m2) solution pairs, the set S{(x,y)} can be computed in time
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O(k3) = o(k · 2k), but the computation time for SM � S{(x,y)} can be exponential in k. As
SM contains at most O(2k) objective subsets of size O(k), the computation of SM � S{(x,y)}
in line 9 is possible in time O(k · 2k) and, therefore, the entire algorithm runs in time
O(m2 · k · 2k). �

For the following Lemma, we use a new short notation for δ errors regarding a set
M of solution pairs.

DEFINITION 11: Let F ′ ⊆ F and M ⊆ A × A. Then δ(F ′,M) := δmin(F ′,F) w.r.t. all solu-
tion pairs (x, y) ∈ M .

LEMMA 3: Given an instance of the δ-MOSS or the k-EMOSS problem, let F1 ⊆ F , F1 �= ∅,
an arbitrary objective set and

M := {(x, y) ∈ X × X | (x, y) considered in Algorithm 1 so far}.

Then there always exists a (F2 ⊆ F1, δ2) ∈ SM , such that the following six statements hold.

(i) δ(F2,M) = δ2

(ii) δ(F1,M) = δ2

(iii) � ∃(F3, δ3) ∈ SM : F3 ⊂ F1 ∧ δ3 ≤ δ2

(iv) � ∃(F3, δ3) ∈ SM : F3 ⊆ F1 ∧ δ3 < δ2

(v) � ∃(F3, δ3) ∈ SM : F3 ⊃ F1 ∧ δ3 ≥ δ2

(vi) � ∃(F3, δ3) ∈ SM : F3 ⊇ F1 ∧ δ3 > δ2

PROOF: The statements (iii)–(vi) hold for any M due to the definition of the �-union
in line 9. We, therefore, prove only (i) and (ii) by mathematical induction on |M|.
Induction basis: Let |M| = 1, that is, M := {(x, y)}.

(a) x and y are indifferent: Thus, ∀i ∈ F : fi(x) = fi(y) and ∀F ′ ⊆ F ,F ′ �= ∅ :
δ(F ′, {(x, y)}) = 0. By definition of �, Algorithm 1 computes S{(x,y)} = {({i}, 0) |
1 ≤ i ≤ k} correctly according to (i) and (ii).

(b) Without loss of generality x �F y ∧ ¬(y �F x): We can divide F into two
disjoint sets F=,F< with F= ∪ F< = F , F< �= ∅, ∀i ∈ F= : x �i y ∧ y �i x, and
∀i ∈ F< : x �i y ∧ ¬ (y �i x), that is, ∀i ∈ F= : fi(x) = fi(y) and ∀i ∈ F< : fi(x) <

fi(y). Furthermore, ∀i ∈ F< : δ({i}, {(x, y)}) = 0 and ∀i ∈ F= : δ({i}, {(x, y)}) =
δ > 0 with δ := maxj∈F<

{fj (y) − fj (x)} independent of the choice of i. There-
fore, S{(x,y)} contains all pairs ({i}, δi) with 1 ≤ i ≤ k

and δi :=
{

0 if i ∈ F<

δ if i ∈ F=
.

Thus (i) and (ii) hold, because for any F ′ ⊆ F , F ′ �= ∅, δ′ := δ(F ′, {(x, y)}) is
either 0 or δ, depending on F ′ ⊆ F= (⇒ δ′ = δ > 0) or F ′ �⊆ F= (⇒ δ′ = 0).

(c) x and y are incomparable: We can divideF into three well-defined disjoint sets
F<, F>, and F= with F< ∪ F> ∪ F= = F , F< �= ∅, F> �= ∅, ∀i ∈ F< : fi(x) <
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fi(y), ∀i ∈ F> : fi(x) > fi(y), and ∀i ∈ F= : fi(x) = fi(y). For all singletons {i}
with 1 ≤ i ≤ k, δi := δ({i}, {(x, y)}) > 0 holds, that is, ({i}, δi) ∈ S{(x,y)} for all
i ∈ F and

δi :=
⎧
⎨

⎩

δ< := maxj∈F>
{fj (x) − fj (y)} if i ∈ F<

δ> := maxj∈F<
{fj (y) − fj (x)} if i ∈ F>

δ= := maxj∈F\{i}{|fj (x) − fj (y)|} if i ∈ F=
.

In addition, S{(x,y)} contains only those pairs ({i, j}, 0) with i ∈ F< ∧ j ∈ F>.
Other pairs ({i, j}, δ) with i �= j ∧ δ > 0 are not in S{(x,y)} due to the �-union in
line 7.

Now, letF ′ ⊆ F . ThenF ′
<,F ′

>,F ′
= ⊆ F ′ can be defined similarly toF>,F>,

and F= for F . The statement (i) holds due to the �-union and (ii) holds since
δ(F ′, {(x, y)}) can only take a value δ′ ∈ {0, δ<, δ>, δ=} and a pair (F2 ⊆ F ′, δ′)
exists in S{(x,y)}:

1. δ(F ′, {(x, y)}) = 0 if F ′
> �= ∅ ∧ F ′

< �= ∅. But then, i ∈ F ′
> and j ∈ F ′

<

exist and ({i, j}, 0) ∈ S{(x,y)}.
2. Without loss of generality δ(F ′, {(x, y)}) = δ< ifF ′

> = ∅ ∧ F ′
< �= ∅. Then

there exists an i ∈ F ′
< and ({i}, δ<) ∈ S{(x,y)}

3. δ(F ′, {(x, y)}) = δ= if F ′
> = ∅ ∧ F ′

< = ∅. Then F ′ ⊆ F= and there exists
at least one i ∈ F ′

= such that ({i}, δ=) ∈ S{(x,y)}.

Induction step: Let F1 ⊆ F be an arbitrary objective set with error δ(F1,M ∪ {(x, y)}).
Assume that (i)–(vi) holds for M and {(x, y)}. Thus, ∃(FM, δM ) ∈ SM with FM ⊆ F1 and
(i)–(vi) and ∃(Fxy, δxy) ∈ S{(x,y)} with Fxy ⊆ F1 and (i)–(vi). To show that an (F2 ⊆ F1, δ2)
exists in SM∪{(x,y)} := SM � S{(x,y)} that fulfills (i) and (ii), we define F2 := FM ∪ Fxy ⊆
F1 and δ2 := max{δM, δxy}. Because δ(FM,M) = δ(F1,M), δ(FM,M) = δ(G,M) holds
for any FM ⊆ G ⊆ F1 and because of δ(Fxy, {(x, y)}) = δ(F1, {(x, y)}), δ(Fxy, {(x, y)}) =
δ(H, {(x, y)}) holds for any Fxy ⊆ H ⊆ F1. Together with FM ∪ Fxy ⊆ F1, this yields
δ(FM ∪ Fxy,M) = δ(F1,M) as well as δ(FM ∪ Fxy, {(x, y)}) = δ(F1,M). This follows (i)
and (ii):

δ2 = max{δ(FM ∪ Fxy,M), δ(FM ∪ Fxy, {(x, y)})}
= δ(FM ∪ Fxy,M ∪ {(x, y)}) (i)

= max{δ(F1,M), δ(F1, {(x, y)})} = δ(F1,M ∪ {(x, y)}) (ii)

�
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