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Definitions and notations

The BSDE under consideration is

Yt = ξ +
∫ T

t
H(s, Ys, Zs)ds−

∫ T

t
ZsdWs (1)

It will be referred as eq(ξ, H).
• Ft := FW

t .
• C := the space of continuous and Ft –adapted processes.
• S2 := {Y which is Ft -adapted and E sup

0≤t≤T
|Yt |2 < ∞ }

• M2 := {Z which is Ft -adapted and E
∫ T

0 |Zs|2ds < ∞ }
• L2 := { Z which is Ft -adapted and

∫ T
0 |Zs|2ds < ∞P-a.s.}

Definition

A solution of the BSDE eq(ξ, H) is an Ft–adapted processes (Y , Z )
which satisfy BSDE eq(ξ, H) for each t ∈ [0, T ] and such that Y is
continuous and

∫ T
0 |Zs|2ds < ∞ P− a.s., that is (Y , Z ) ∈ C × L2.
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The summarized way

Our Approach consists to derive the existence of solutions for the
BSDE without reflection from solutions of a suitable 2-barriers
Reflected BSDE.

To this end, we use the result of Essaky & Hassani which establishes
the existence of solutions for reflected QBSDEs without assuming any
integrability condition on the terminal datum.

For the self-contained, we state the Essaky & Hassani result in the
following theorem.
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Theorem

(Essaky–Hassani (JDE 2013)). Let L and U be continuous processes
and ξ be a FT measurable random variable. Assume that
1) LT ≤ ξ ≤ UT .
2) there exists a semimartingale which passes between the barriers
L and U.
3) H is continuous in (y , z) and satisfies for every (s, ω), every
y ∈ [Ls(ω), Us(ω)] and every z ∈ Rd .

|f (s, ω, y , z)| ≤ ηs(ω) + Cs(ω)
2 |z|2

where η ∈ L1([0, T ]×Ω) and C is a continuous process.
Then, the following RBSDE has a minimal and a maximal solution.

(i) Yt = ξ +
∫ T

t H(s, Ys, Zs)ds +
∫ T

t dK +
s −

∫ T
t dK−s −

∫ T
t ZsdBs

(ii) ∀t ≤ T , Lt ≤ Yt ≤ Ut ,

(iii)
∫ T

t (Yt − Lt )dK +
t =

∫ T
t (Ut − Yt )dK−t = 0, a.s.,

(iv) K +
0 = K−0 = 0, K +, K−, are continuous nondecreasing.

(v) dK +⊥dK−

(2)
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Theorem

Theorem

Assume that there exist positive constants a and b such that ξ satisfies

(HL2) E(|ξ|2) < ∞.

Let the generator H(t , ω, y , z) be continuous in (y , z) for a.e (t , ω)
and satisfies

H(t , y , z) ≤ a + b|y |+ c|z| (3)

for some positive constants a, b and c.
Then, the BSDE (ξ, H) has at least one solution (Y , Z ) which belongs
to S2 ×M2.
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Proof, H sublinear

Proof. We put g(t , y , z) := a + b|y |+ c|z|.
Let ξ+ := max(ξ, 0) and ξ− := min(ξ, 0).

According to Pardoux-Peng Theorem, the BSDE with the parameters
(ξ+, g) as well as the BSDE with the parameters (−ξ−, −g) have
unique solutions in S2 ×M2.

We denote by (Y g , Z g) [resp. (Y−g , Z−g)] the unique solution of
eq(ξ+, g) [resp. eq(−ξ−,−g)].

Using then the Essaky-Hassani result with

L = Y−g , U = Y g , ηt = a + b(|Y−g
t |+ |Y

g
t |) + 1

2c2, and Ct = 1 ,

we deduce the existence of solution (Y , Z , K +, K−) to the following
Reflected BSDE, s.t. (Y , Z ) belongs to C × L2.
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Proof, H sublinear, continued 1



(i) Yt = ξ +
∫ T

t
H(s, Ys, Zs)ds +

∫ T

t
dK +

s −
∫ T

t
dK−s −

∫ T

t
ZsdWs , t ≤ T ,

(ii) ∀ t ≤ T , Y−g
t ≤ Yt ≤ Y g

t ,

(iii)
∫ T

0
(Yt − Y−g

t )dK +
t =

∫ T

0
(Y g

t − Yt )dK−t = 0, a.s.,

(iv) K +
0 = K−0 = 0, K +, K− are continuous nondecreasing.

(v) dK +⊥dK−

(4)
Now, if we show that dK + = dK− = 0, then the proof is finished. We
shall prove this property.

Since Y g
t is a solution to BSDE eq(ξ, g), then Tanaka’s formula

applied to (Y g
t − Yt )+ shows that,
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Proof, H sublinear, continued 2

(Y g
t − Yt )+ = (Y g

0 − Y0)+ +
∫ t

0
1{Y g

s >Ys}[f (s, Ys, Zs)− g(s, Y g
s , Z g

s )]ds

+
∫ t

0
1{Y g

s >Ys}(dK +
s − dK−s ) +

∫ t

0
1{Y g

s >Ys}(Z
g
s − Zs)dWs

+ L0
t (Y

g − Y )

where L0
t (Y

g − Y ) denotes the local time at time t and level 0 of the
semimartingale (Y g − Y ).

Since Y g ≥ Y , then (Y g
t − Yt )+ = (Y g

t − Yt ).

Therefore, identifying the terms of (Y g
t − Yt )+ with those of (Y g

t − Yt )
and using the fact that 1− 1{Y g

s >Ys} = 1{Y g
s ≤Ys} = 1{Y g

s =Ys}, we show
that (Z − Z g)1{Y g

s =Ys} = 0.

Using the previous equalities, we deduce that,
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Proof, H sublinear, continued 3

∫ t

0
1{Y g

s =Ys}(dK +
s − dK−s ) =

∫ t

0
1{Y g

s =Ys}[g(s, Y g
s , Z g

s )− f (s, Ys, Zs)]ds

+ L0
t (Y

g − Y )

Since
∫ t

0 1{Y g
s =Ys}dK +

s = 0, it holds that

0 ≤
∫ t

0
1{Y g

s =Ys}[g(s, Y g
s , Z g

s )− f (s, Ys, Zs)]ds + L0
t (Y

g − Y )

= −
∫ t

0
1{Y g

s =Ys}dK−s ≤ 0 ≥ 0

This shows that ,
∫ t

0 1{Y g
s =Ys}dK−s = 0, and hence dK− = 0.

Arguing symmetrically, one can show that dK + = 0.

Therefore, (Y , Z ) satisfies the initial non reflected BSDE.
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Proof, H sublinear, continued 4

Since both Y g and Y−g belong to S2, so it is for Y .

Using standard arguments in BSDEs, we show that E
∫ T

0 |Zs|2ds < ∞.
This complete the proof.
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Logarithmic nonlinearity

Theorem

Let a, b, c0 be positive real numbers, and assume that,

( H.1) E[|ξ|e2c0T +1] < +∞.

Then, the BSDE

Yt = ξ +
∫ T

t
(a + b|Ys|+ c0|Ys|| ln |Ys||)ds−

∫ T

t
ZsdWs (5)

has a unique solution such that

E
(

sup
t∈[0,T ]

|Yt |e
2c0t +1) < ∞ and E

∫ T

0
|Zs|2ds < ∞ (6)

To prove this theorem we need some a priori estimates and
approximations. This will be given in the following Lemmas.
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Estimate of Y

Lemma

Let C ≥ 2c0. Let (Y , Z ) be a solution to BSDE (5) such that
E supt∈[0,T ] |Yt |e

Ct +1 < ∞ and E
∫ T

0 |Zs|2ds < ∞. Then, there exists a
constant K = KT such that:

E sup
t∈[0,T ]

|Yt |e
Ct +1 ≤ KT

(
E|YT |(e

CT +1) + a(eCT + 1)T exp[b(eCT + 1)T
)
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Estimate of Y , idea of the proof

Idea of the Proof. Let f (y) := a + b|y |+ c0|y || ln |y ||. Itô’s formula
gives Let u be C1,2 function. Itô’s formula gives,

u(t , Yt ) =u(T , YT )−
∫ T

t
Ys∂yu(s, Ys)ZsdWs

+
∫ T

t

[
Ysf (s, Ys)∂yu(s, Ys)− ∂su(s, Ys)

]
ds

− 1
2

∫ T

t
∂2

yyu(s, Ys)|Zs|2ds

If we can find a C1,2 and positive function u such that[
Ysf (s, Ys)∂yu(s, Ys)− ∂su(s, Ys)

]
≤ a1 + b1u(s, Ys), (7)

then Gronwall Lemma gives the result.
The function u(t , y) = |y |e2c0t +1 satisfies these properties.
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Proof.

Itô’s formula gives

|Yt |e
Ct +1 = |YT |e

CT +1 −
∫ T

t
(eCs + 1)|Ys|(e

Cs)sgn(Ys)ZsdWs

−
∫ T

t
(CeCs ln(|Ys|)|Ys|e

Cs+1 − (eCs + 1)|Ys|(e
Cs)sgn(Ys)f (Ys))ds

− 1
2

∫ T

t
|Zs|2(eCs + 1)(eCs)|Ys|(Cs−1)ds
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Proof estimate of Y , continued

Since C ≥ 2c0, we deduce that,

|Yt |e
Ct +1 ≤ |YT |(e

CT +1) +
∫ T

t
(eCs + 1)|Ys|(e

Cs)(a + b|Ys|)ds

−
∫ T

t
(eCs + 1)|Ys|(e

Cs)sgn(Ys)ZsdWs.

Hence,

E|Yt |e
CT +1 ≤ E|YT |(e

CT +1) + E

∫ T

t
(eCs + 1)|Ys|(e

Cs)(a + b|Ys|)ds

Using Gronwall Lemma, we obtain

E|Yt |e
CT +1 ≤

(
E|YT |(e

CT )+1) + a(eCT + 1)T
)

exp[b(eCT + 1)T ].

Using the BDG inequality, we complete the proof of Lemma 5.
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Estimate of Z

Lemma

Let (Y , Z ) be a solution of BSDE (5) such that
E supt∈[0,T ] |Yt |e

Ct +1 < ∞ and E
∫ T

0 |Zs|2ds < ∞. Then, there exits a
positive constant C1 = C1(C, T , K , c0) such that

E

∫ T

0
|Zs|2ds ≤ C1E

(
1 + |ξ|2 +

∫ T

0
|(a + b|Ys|)|2ds + sup

s≤T
|Ys|e

Cs+1
)

(8)

Proof By Itô’s formula, we have:

|Y0|2 +
∫ T

0
|Zs|2ds = |ξ|2 + 2

∫ T

0
Ysf (s, Ys, Zs)ds− 2

∫ T

0
YsZsdWs

≤ |ξ|2 + 2
∫ T

0
|Ys|(a + b|Ys|) + 2c0|Ys|| ln |Ys||)ds− 2

∫ T

0
YsZsdWs.
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Proof estimate of Z , continued

Since for every y and every γ > 0, we have |y || ln |y || ≤ 1 + 1
γ |y |1+γ,

we use standard arguments in BSDEs to get,

1
2

∫ T

0
|Zs|2ds ≤ |ξ|2 + 2c0T sup

s≤T
|Ys|2 +

∫ T

0
(a + b|Ys|)2ds

+ 2c0T
(
1 +

K (C, T )
(e2c0T − 1)+

)
+ 2c0T sup

s≤T
(|Ys|(e

2c0T +1))− 2
∫ T

0
YsZsdWs

The result follows by passing to expectation.
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Estimate for |YLn|Y ||

Lemma

Let f (y) := a + b|y |+ c0|y || ln |y ||. Assume that ξ satisfies (H.1). Let
(Y , Z ) be a solution to BSDE (5) satisfying Lemma 5 and Lemma 6.
Then, there exists a positive constant ᾱ such that

E

∫ T

0
|f (Ys)|ᾱds ≤ K

[
1 + E

∫ T

0
|Ys|2ds + E

∫ T

0
|Zs|2ds

]
where K is a positive constant which depends on c0 and T .

Proof
It is not difficult to show that for every ε > 0, |y ln y | ≤ 1 + 1

ε |y |1+ε.
We put α := 1 + ε and ᾱ = 2

α . A simple computation gives
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Proof estimate for |YLn|Y || , continued

E

∫ T

0
|f (Ys)|ᾱds ≤ E

∫ T

0
((a + b|Ys|) + c0|y || ln |y ||)ᾱds

≤ E

∫ T

0
((a + b|Ys|) + c0(1 +

1
α− 1

|Ys|α)ᾱds

≤ (1 + c ᾱ
0)E

∫ T

0
((a + b|Ys|)ᾱ + (1 +

1
α− 1

|Ys|)αᾱ)ds

≤ (1 + c ᾱ
0)E

∫ T

0
((1 + (a + b|Ys|))2 + (1 +

1
α− 1

|Ys|)2ds

≤ (1 + c ᾱ
0)
(
4T + E

∫ T

0
((a + b|Ys|)2 +

1
(α− 1)2 )|Ys|2ds

)
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Approximation for f

Lemma

Let f (y) := a + b|y |+ c0|y || ln |y ||. There exists a sequence of
functions (fn) such that,

(a) For each n, fn is bounded and globally Lipschitz in (y , z) a.e. t
and P-a.s.ω.

(b) sup
n
|fn(y)| ≤ a + b|y |+ c0|y || ln |y ||, P-a.s., a.e. t ∈ [0, T ].

(c) For every N, ρN(fn − f ) −→ 0 as n −→ ∞,

where ρN(f ) := E
∫ T

0 sup|y |,|z|≤N |f (s, y , z)|ds.
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Proof, Approximation for f

Proof Let εn : R −→ R+ be a sequence of regularization functions
which satisfy

∫
εn(u)du = 1.

Let ψn from R to R+ be a sequence of smooth functions such that
0 ≤ |ψn| ≤ 1, ψn(u) := 1 for |u| ≤ n and ψn(u) := 0 for |u| ≥ n + 1.

We put, εq,n(y) :=
∫

f (y − u)αq(u)duψn(y).

For n ∈N∗, let q(n) be an integer such that q(n) ≥ n + nα.

It is not difficult to see that the sequence fn := εq(n),n satisfies all the
assertions (a)-(c).
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Approximation for Y , Z , f

Using the previous estimates for Y , Z and f , and standard arguments
of BSDEs, we prove the following estimates.

Lemma

Let f and ξ be as in Theorem 4. Let ξn := ξ ∧ n and (fn) be the
sequence of functions associated to f by the previous Lemma. Denote
by (Y fn , Z fn) the solution of BSDE (ξn, fn). Then, there exit constants
K1, K2, K3 and a universal constant ` such that

a) sup
n

E

∫ T

0
|Z fn

s |2ds ≤ K1

b) sup
n

E sup
0≤t≤T

(|Y fn
t |

2) ≤ `K1 := K2

c) sup
n

E

∫ T

0
|fn(Y fn

s )|ᾱds ≤ K3

where ᾱ is a constant defined on the proof of Lemma 7.

From this Lemma we deduce the following limits.
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Approximation for Y , Z , f , continued

After extracting a subsequence, if necessary, we have

Corollary

There are Y ∈ L2(Ω, L∞[0, T ]), Z ∈ L2(Ω× [0, T ]) and
Γ ∈ Lᾱ(Ω× [0, T ]) such that

Y fn ⇀ Y , weakly star in L2(Ω, L∞[0, T ])

Z fn ⇀ Z , weakly in L2(Ω× [0, T ])

fn(., Y fn , Z fn) ⇀ Γ. weakly in Lᾱ(Ω× [0, T ]).

Moreover

Yt = ξ +
∫ T

t
Γsds−

∫ T

t
ZsdWs, ∀t ∈ [0, T ]. (9)
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Estimate between the (Y fn, Z fn)
The key estimate is,

Lemma

Let ᾱ be the positive constant defined on the proof of the previous
Lemma, and put M2 := 3c0. For every R ∈N, β ∈]1, min(3− 2

ᾱ , 2)[,
δ′ < (β−1)

(2`+β−1)M2
min(1

2 , κ
β , κ := 3− 2

ᾱ − β) and ε > 0, there exists
N0 > R such that for all N > N0 and T ′ ≤ T :

lim sup
n,m→+∞

E sup
(T ′−δ′)+≤t≤T ′

|Y fn
t − Y fm

t |
β + E

∫ T ′

(T ′−δ′)+

∣∣∣Z fn
s − Z fm

s

∣∣∣2(
|Y fn

s − Y fm
s |2 + νR

) 2−β
2

ds

≤ ε +
`

β− 1
eCN δ′ lim sup

n,m→+∞
E |Y fn

T ′ − Y fm
T ′ |

β.

where CN = 2M2
2 β

(β−1) log N, νR := sup{ 1
N , N ≥ R} and ` is the BDG

constant.
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Proof Estimate between the (Y fn, Z fn), continued 1

Let 0 < T ′ ≤ T . It follows from Itô’s formula that for all t ≤ T ′,∣∣∣Y fn
t − Y fm

t

∣∣∣2 +
∫ T ′

t

∣∣∣Z fn
s − Z fm

s

∣∣∣2 ds

=
∣∣∣Y fn

T ′ − Y fm
T ′

∣∣∣2 + 2
∫ T ′

t

(
Y fn

s − Y fm
s
)(

fn(s, Y fn
s )− fm(s, Y fm

s )
)
ds

− 2
∫ T ′

t
〈Y fn

s − Y fm
s , (Z fn

s − Z fm
s )dWs〉.

For N ∈N? we set, ∆t :=
∣∣∣Y fn

t − Y fm
t

∣∣∣2 + 1
N .

Let C > 0 and 1 < β < min{(3− 2
ᾱ ), 2}. Itô’s formula applied to

et .(∆t )
β
2 shows that,
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Proof Estimate between the (Y fn, Z fn), continued 2

eCt ∆
β
2
t + C

∫ T ′

t
eCs∆

β
2
s ds

= eCT ′∆
β
2
T ′ + β

∫ T ′

t
eCs∆

β
2−1
s

(
Y fn

s − Y fm
s
)(

fn(s, Y fn
s )− fm(s, Y fm

s )
)
ds

− β

2

∫ T ′

t
eCs∆

β
2−1
s

∣∣∣Z fn
s − Z fm

s

∣∣∣2 ds

− β
∫ T ′

t
eCs∆

β
2−1
s 〈Y fn

s − Y fm
s ,

(
Z fn

s − Z fm
s

)
dWs〉

− β(
β

2
− 1)

∫ T ′

t
eCs∆

β
2−2
s

(
(Y fn

s − Y fm
s )(Z fn

s − Z fm
s )
)2

ds

If we put Φ(s) = |Y fn
s |+ |Y fm

s |, then the previous formula becomes,
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Proof Estimate between the (Y fn, Z fn), continued 3

eCt ∆
β
2
t + C

∫ T ′

t
eCs∆

β
2
s ds

= eCT ′∆
β
2
T ′ − β

∫ T ′

t
eCs∆

β
2−1
s 〈Y fn

s − Y fm
s ,

(
Z fn

s − Z fm
s

)
dWs〉

− β

2

∫ T ′

t
eCs∆

β
2−1
s

∣∣∣Z fn
s − Z fm

s

∣∣∣2 ds

+ β
(2− β)

2

∫ T ′

t
eCs∆

β
2−2
s

(
(Y fn

s − Y fm
s )(Z fn

s − Z fm
s )
)2

ds

+ J1 + J2 + J3 + J4,

where

J1 := β
∫ T ′

t
eCs∆

β
2−1
s

(
Y fn

s − Y fm
s
)(

fn(s, Y fn
s )− fm(s, Y fm

s )
)
11{Φ(s)>N}ds.

J2 := β
∫ T ′

t
eCs∆

β
2−1
s

(
Y fn

s − Y fm
s
)(

fn(s, Y fn
s )− f (s, Y fn

s )
)
11{Φ(s)≤N}ds.
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Proof Estimate between the (Y fn, Z fn), continued 4

J3 := β
∫ T ′

t
eCs∆

β
2−1
s

(
Y fn

s − Y fm
s
)(

f (s, Y fn
s )− f (s, Y fm

s )
)
11{Φ(s)≤N}ds.

J4 := β
∫ T ′

t
eCs∆

β
2−1
s

(
Y fn

s − Y fm
s
)(

f (s, Y fm
s )− fm(s, Y fm

s )
)
11{Φ(s)≤N}ds.
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Proof Estimate between the (Y fn, Z fn), continued 5

Since |Y fn
s − Y fm

s |2 ≤ ∆s, we have

eCt ∆
β
2
t + C

∫ T ′

t
eCs∆

β
2
s ds

≤ eCT ′∆
β
2
T ′ − β

∫ T ′

t
eCs∆

β
2−1
s 〈Y fn

s − Y fm
s ,

(
Z fn

s − Z fm
s

)
dWs〉

− β

2

∫ T ′

t
eCs∆

β
2−1
s

∣∣∣Z fn
s − Z fm

s

∣∣∣2 ds

+ β
(2− β)

2

∫ T ′

t
eCs∆

β
2−1
s |Z fn

s − Z fm
s |2ds

+ J1 + J2 + J3 + J4,

Passing to expectation, we obtain for every t ,

E
(
eCt ∆

β
2
t + C

∫ T ′

t
eCs∆

β
2
s ds + β

(β− 1)
2

∫ T ′

t
eCs∆

β
2−1
s |Z fn

s − Z fm
s |2ds

)
≤ E(J1 + J2 + J3 + J4)
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Proof Estimate between the (Y fn, Z fn), continued 6

According to BDG inequality, we deduce that

E sup
(T ′−δ)+≤t≤T ′

eCt ∆
β
2
t + C

∫ T ′

(T ′−δ)+
eCs∆

β
2
s ds

+ β
(β− 1)

2

∫ T ′

(T ′−δ)+
eCs∆

β
2−1
s |Z fn

s − Z fm
s |2ds

≤ eCT ′∆
β
2
T ′ +

2`

β− 1
E(J1 + J2 + J3 + J4) + E(J1 + J2 + J3 + J4)

= eCT ′∆
β
2
T ′ +

(2` + β− 1
β− 1

)E(J1 + J2 + J3 + J4
)

(10)

It remains now to estimate E(Ji) for i = 1, 2, 3, 4.

Let κ = 3− 2
ᾱ − β. Since (β−1)

2 + κ
2 + 1

ᾱ = 1, we use Hölder inequality
to obtain,
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Proof Estimate between the (Y fn, Z fn), continued 7

E(J1) ≤ βeCT ′ 1
Nκ

[
E

∫ T ′

t
∆sds

] β−1
2
[

E

∫ T ′

t
Φ(s)2ds

] κ
2

×
[

E

∫ T ′

t
|fn(s, Y fn

s )− fm(s, Y fm
s )|ᾱds

] 1
ᾱ

.

Since |Y fn
s − Y fm

s | ≤ ∆
1
2
s , it easy to see that

J2 + J4 ≤ 2βeCT ′ [2N2 + ν1]
β−1

2

[ ∫ T ′

t
sup

|y |,|z|≤N
|fn(y)− f (y)|ds

+
∫ T ′

t
sup

|y |,|z|≤N
|fm(y)− f (y)|ds

]
.
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Proof Estimate between the (Y fn, Z fn), continued 8

Since ∆t :=
∣∣∣Y fn

t − Y fm
t

∣∣∣2 + 1
N and the generator

f (y) := a + b|y |+ c0|y || ln |y || satisfies for every N > max(e, eb) and
every |y | ≤ N

|f (y)− f (y ′)| ≤ 3c0(ln N)|y − y ′|+ 3c0
ln N
N

.

we then deduce [by putting M2 := 3c0] that,

J3 ≤ βM2

∫ T ′

t
eCs∆

β
2−1
s

[
|Y fn

s − Y fm
s |2 ln N +

ln N
N

]
11{Φ(s)≤N}ds

≤ βM2

∫ T ′

t
eCs∆

β
2−1
s

[
∆s ln N

]
11{Φ(s)≤N}ds.

If we choose C = CN = β
(2`+β−1

β−1

)
M2 ln N, then we obtain
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Proof Estimate between the (Y fn, Z fn), continued 9

E sup
(T ′−δ)+≤t≤T ′

eCN t ∆
β
2
t + β

(β− 1)
2

∫ T ′

(T ′−δ)+
eCNs∆

β
2−1
s |Z fn

s − Z fm
s |2ds

≤ eCNT ′∆
β
2
T ′

+
(2` + β− 1

β− 1
){

βeCNT ′ 1
Nκ

[
E

∫ T ′

(T ′−δ)+
∆sds

] β−1
2
[

E

∫ T ′

(T ′−δ)+
Φ(s)2ds

] κ
2

×
[

E

∫ T ′

(T ′−δ)+
|fn(s, Y fn

s )− fm(s, Y fm
s )|ᾱds

] 1
ᾱ

+ 2βeCNT ′ [2N2 + ν1]
β−1

2

[ ∫ T ′

(T ′−δ)+
sup
|y |≤N

|fn(y)− f (y)|ds

+
∫ T ′

(T ′−δ)+
sup
|y |≤N

|fm(y)− f (y)|ds
]}

(11)
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Proof Estimate between the (Y fn, Z fn), continued 10

Since T ′ − (T ′ − δ′)+ ≤ δ′, we use the estimates for Y and Z to show
that there exists a positive constant K ′ = K ′(K1, K2, ᾱ, κ, β, `) such that,

E sup
(T ′−δ′)+≤t≤T ′

|Y fn
t − Y fm

t |
β + β

(β− 1)
2

E

∫ T ′

(T ′−δ′)+

∣∣∣Z fn
s − Z fm

s

∣∣∣2(
|Y fn

s − Y fm
s |2 + νR

) 2−β
2

ds

≤ eCN δ′
(
E|Y fn

T ′ − Y fm
T ′ |

β
)
+

eCN δ′

N
β
2

+ K ′
eCN δ′

Nκ

+
(2` + β− 1

β− 1
)
eCN δ′

{
β[2N2 + ν1]

β−1
2
[
ρN(fn − f ) + ρN(fm − f )

]}

Since for δ′ < (β−1)
(2`+β−1)M2

min
(

1
2 , κ

β

)
, the quantities eCN δ′

N
β
2

and eCN δ′

Nκ

tend to 0 as N tends to ∞, we pass to the limits on n, m to complete
the proof.
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Proof of the existence

We now pass to the Proof of the existence. Passing to the limit
first on n, m and next on N, then taking successively T ′ = T ,
T ′ = (T − δ′)+, T ′ = (T − 2δ′)+... in the previous inequality, we
obtain, for every β ∈]1, min

(
3− 2

ᾱ , 2
)
[

lim
n,m→+∞

(
E sup

0≤t≤T
|Y fn

t − Y fm
t |

β + E

∫ T

0

∣∣∣Z fn
s − Z fm

s

∣∣∣2(
|Y fn

s − Y fm
s |2 + νR

) 2−β
2

ds
)

= 0.

But, by Schwarz inequality we have

E

∫ T

0
|Z fn

s − Z fm
s |ds ≤

(
E

∫ T

0

∣∣∣Z fn
s − Z fm

s

∣∣∣2(
|Y fn

s − Y fm
s |2 + νR

) 2−β
2

ds
) 1

2

×
(

E

∫ T

0

(
|Y fn

s − Y fm
s |2 + νR

) 2−β
2 ds

) 1
2

Hence,
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Proof Existence, continued 1

lim
n→+∞

(
E sup

0≤t≤T
|Y fn

t − Yt |β + E

∫ T

0
|Z fn

s − Zs|ds

)
= 0.

This allows to show that
∫ T

0
fn(s, Y fn

s )ds tends to
∫ T

0
f (s, Ys)|ds as n

tends to ∞. And hence to deduce that (Y , Z ) is a solution to the BSDE
(5). Using Fatou’s Lemma and our a priori estimates, one can show
that (Y , Z ) satisfies inequality (6).
Indeed, the last inequality shows that there exists a subsequence,
which we still denote (Y fn , Z fn), such that

lim
n→+∞

(
|Y fn

t − Yt |+ |Z fn
t − Zt |

)
= 0 a.e. (t , ω). (12)

We have,

E

∫ T

0
|fn(s, Y fn

s )− f (s, Ys)|ds ≤ In
1 + In

2

where

In
1 := E

∫ T

0
|fn(s, Y fn

s )− f (s, Y fn
s )|ds

In
2 := E

∫ T

0
|f (s, Y fn

s )− f (s, Ys)|ds
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Proof Existence, continued 2

where

In
1 := E

∫ T

0
|fn(s, Y fn

s )− f (s, Y fn
s )|ds

In
2 := E

∫ T

0
|f (s, Y fn

s )− f (s, Ys)|ds

we have

In
1 ≤ E

∫ T

0
|fn(s, Y fn

s )− f (s, Y fn
s )|11{|Y fn

s |≤N}ds

+ E

∫ T

0
|fn(s, Y fn

s )− f (s, Y fn
s )| (|Y

fn
s |)(2− 2

ᾱ )

N(2− 2
ᾱ )

11{|Y fn
s ||≥N}ds

≤ ρN(fn − f ) +
2K

1
ᾱ

3 [TK2 + K1]
1− 1

ᾱ

N(2− 2
ᾱ )

.

Passing to the limit on n and N, we show that In
1 tends to 0. We use the

continuity of f and the uniform integrability to show that In
2 tends to 0.
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Proof of uniqueness

Uniqueness. Let (Y , Z ) and (Y ′, Z ′) be two solutions. Arguing as
previously one can show (with M2 := 3c0) that: for every R > 2,
β ∈]1, min

(
3− 2

ᾱ , 2
)
[, δ′ < (β−1)

(2`+β−1)M2
min

(
1
2 , κ

β

)
and ε > 0, there

exists N0 > R such that for all N > N0 and T ′ ≤ T :

E sup
(T ′−δ′)+≤t≤T ′

|Yt − Y
′
t |β + E

∫ T ′

(T ′−δ′)+

∣∣∣Zs − Z
′
s

∣∣∣2(
|Ys − Y ′

s|2 + νR
) 2−β

2

ds

≤ ε +
`

β− 1
eCN δ′E|YT ′ − Y

′
T ′ |β.

Again, taking successively T ′ = T , T ′ = (T − δ′)+, T ′ = (T − 2δ′)+...,
we establish the uniqueness of solution. Theorem 4 is proved.
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Extensions, YLogY and Z
√

LogZ

The previous Theorem can be extended, with the an analogue
integrability condition on ξ, to the case where

H(t , y , z) = a + b|y |+ c|z|+ d |y || ln |y ||+ e|z|
√
| ln |z|| (13)

More generally, using Essaky-Hassan result one can establish the
following theorem.
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H dominated by YLogY + Z
√

LogZ

Theorem

Assume that,

( H.1) H is continuous on (y , z) and, there exit positive real numbers a,
b, c, d and e such that for every t , y , z

|H(t , y , z)| ≤ a + b|y |+ c1|z|+ c0|y || ln |y ||+ e|z|
√
| ln |z||

( H.2) There exists a positive constant C (large enough) such that
E[|ξ|eCT +1] < +∞.

Then, the BSDE with parameters (ξ, H) has a unique solution such
that

E
(

sup
t∈[0,T ]

|Yt |e
Ct +1) < ∞ and E

∫ T

0
|Zs|2ds < ∞ (14)
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