QBSDEs with unbounded terminal data

KHALED BAHLALI

IMATH, Université de Toulon & CNRS, I2M, Aix-marseille Université

CIMPA, Tlemcen, 12-24 avril 2014

Some previous results in Quadratic BSDEs

- The summarized way
 - Essaky-Hassani result on reflected BSDEs

- A simple QBSDE
 - Proof

4 Usual QBSDE

References

The BSDE under consideration is

$$Y_t = \xi + \int_t^T H(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s$$
 (1)

Usually, the BSDE $eq(\xi, H)$ is called quadratic if there exist $\alpha, \beta, \gamma > 0$ such that for every (t, y, z),

$$|H(t, y, z)| \le \alpha + \beta |y| + \gamma |z|^2.$$
 (2)

Kobylanski, 1997, and 2000,

The BSDE under consideration is

$$Y_t = \xi + \int_t^T H(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s$$
 (1)

$$|H(t, y, z)| \le \alpha + \beta |y| + \gamma |z|^2.$$
 (2)

- Kobylanski, 1997, and 2000,
- Dermoune-Hamadene-Ouknine, 1997,

The BSDE under consideration is

$$Y_t = \xi + \int_t^T H(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s$$
 (1)

$$|H(t, y, z)| \le \alpha + \beta |y| + \gamma |z|^2. \tag{2}$$

- Kobylanski, 1997, and 2000,
- Dermoune-Hamadene-Ouknine, 1997,
- Lepeltier–San Martin 1998,

The BSDE under consideration is

$$Y_t = \xi + \int_t^T H(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s$$
 (1)

$$|H(t, y, z)| \le \alpha + \beta |y| + \gamma |z|^2.$$
 (2)

- Kobylanski, 1997, and 2000,
- Dermoune-Hamadene-Ouknine, 1997,
- Lepeltier–San Martin 1998,
- Briand-Hu, 2006 and 2008,

The BSDE under consideration is

$$Y_t = \xi + \int_t^T H(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s$$
 (1)

$$|H(t, y, z)| \le \alpha + \beta |y| + \gamma |z|^2.$$
 (2)

- Kobylanski, 1997, and 2000,
- Dermoune-Hamadene-Ouknine, 1997,
- Lepeltier–San Martin 1998,
- Briand-Hu, 2006 and 2008,
- Tevzadze, 2008 existence and uniqueness for quadratic-Lipshitz and bounded terminal condition.

The BSDE under consideration is

$$Y_t = \xi + \int_t^T H(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s$$
 (1)

$$|H(t, y, z)| \le \alpha + \beta |y| + \gamma |z|^2.$$
 (2)

- Kobylanski, 1997, and 2000,
- Dermoune-Hamadene-Ouknine, 1997,
- Lepeltier–San Martin 1998,
- Briand-Hu, 2006 and 2008,
- Tevzadze, 2008 existence and uniqueness for quadratic-Lipshitz and bounded terminal condition.
- Barrieu-El Karoui, 2012-2013, with more or less similar conditions,

The BSDE under consideration is

$$Y_t = \xi + \int_t^T H(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s$$
 (1)

$$|H(t, y, z)| \le \alpha + \beta |y| + \gamma |z|^2.$$
 (2)

- Kobylanski, 1997, and 2000,
- Dermoune-Hamadene-Ouknine, 1997,
- Lepeltier–San Martin 1998,
- Briand-Hu, 2006 and 2008,
- Tevzadze, 2008 existence and uniqueness for quadratic-Lipshitz and bounded terminal condition.
- Barrieu-El Karoui, 2012-2013, with more or less similar conditions,
- Essaky-Hassani, 2011 and 2013, for stochastic quadratic BSDE and others conditions.

The summarized way

Our Aproach consists to derive the existence of solutions for the BSDE without reflection from solutions of a suitable 2-barriers Reflected BSDE.

To this end, we use the result of Essaky & Hassani which establishes the existence of solutions for reflected QBSDEs without assuming any integrability condition on the terminal datum.

For the self-contained, we state the Essaky & Hassani result of in the following theorem.

Theorem

(Essaky-Hassani (JDE 2013)). Let L and U be continuous processes and ξ be a \mathcal{F}_T measurable random variable. Assume that

- $L_{\tau} < \tilde{c} < U_{\tau}$.
- 2) there exists a semimartingale which passes between the barriers L and U.
- 3) H is continuous in (y, z) and satisfies for every (s, ω) , every $y \in [L_s(\omega), U_s(\omega)]$ and every $z \in \mathbb{R}^d$.

$$|f(s, \omega, y, z)| \le \eta_s(\omega) + \frac{C_s(\omega)}{2}|z|^2$$

where $\eta \in \mathbb{L}^1([0,T] \times \Omega)$ and C is a continuous process.

Then, the following RBSDE has a minimal and a maximal solution.

- (iii) $\int_{t}^{T} (Y_{t} L_{t}) dK_{t}^{+} = \int_{t}^{T} (U_{t} Y_{t}) dK_{t}^{-} = 0$, a.s.,
- (iv) $K_0^+ = K_0^- = 0$, K^+ , K^- , are continuous nondecreasing.
- $dK^+\perp dK^-$

The equation $eq(\xi, a+b|y|+\frac{1}{2}z^2)$

Theorem

Let a and b be positive real numbers. Assume that ξ satisfies

(HExp)
$$\mathbb{E} \exp[(e^{2bT}+1)|\xi|] < \infty$$

Then, the BSDE

$$Y_t = \xi + \int_t^T (a+b|Y_s| + \frac{1}{2}|z|^2) ds - \int_t^T Z_s dW_s, \quad 0 \le t \le T$$
 (4)

has a unique solution (Y, Z) such that

$$\mathbb{E}\big(\sup_{0 \le s \le T} \exp([e^{2bs} + 1]|Y_s|)\big) < \infty \quad and \quad \mathbb{E}\int_0^T |Z_s|^2 ds < \infty. \tag{5}$$

Proof simple QBSDE

Proof. We put $g(y, z) := a + b|y| + \frac{1}{2}|z|^2$. Let (Y, Z) be a solution to BSDE (4). By Itô's formula we have,

$$e^{Y_{t}} = e^{Y_{T}} + \int_{t}^{T} e^{Y_{s}} g(s, Y_{s}, Z_{s}) ds - \int_{t}^{T} e^{Y_{s}} Z_{s} dW_{s} - \frac{1}{2} \int_{t}^{T} e^{Y_{s}} |Z_{s}|^{2} ds$$

$$= e^{\xi} + \int_{t}^{T} e^{Y_{s}} \left[(a + b|Y_{s}| + \frac{1}{2}|Z_{s}|^{2}) - \frac{1}{2}|Z_{s}|^{2} \right] ds - \int_{t}^{T} e^{Y_{s}} Z_{s} dW_{s}$$

$$= e^{\xi} + \int_{t}^{T} e^{Y_{s}} (a + b|Y_{s}|) ds - \int_{t}^{T} e^{Y_{s}} Z_{s} dW_{s}$$

We set, $\overline{Y_t} = e^{Y_t}$, $\overline{Z_t} = e^{Y_t}Z_t$ and $\overline{\xi} = e^{\xi}$.

It is not difficult to see that $\overline{Y}>0$ and $(\overline{Y},\overline{Z})$ satisfies the BSDE

$$\overline{Y}_t = \overline{\zeta} + \int_t^T (a\overline{Y}_s + b\overline{Y}_s|\ln \overline{Y}_s|)ds - \int_t^T \overline{Z}_s dW_s$$
 (6)

Hence,

according to Theorem on BSDEs with logarithmic nonlinearity (Slide 2), the previous equation has a unique solution which satisfy the inequalities

$$\mathbb{E}\left(\sup_{t\in[0,T]}|Y_t|^{e^{2c_0t}+1}\right)<\infty\quad\text{ and }\quad \mathbb{E}\int_0^T|Z_s|^2ds<\infty \tag{7}$$

Therefore, the BSDE (4) has a unique solution too. Indeed, Let (Y^1, Z^1) and (Y^2, Z^2) be two solutions to BSDE (4).

Then, for $i=1,2,\ \bar{Y}^i>0$ and $\bar{Y}^i_t=e^{Y^i_t}$ and $\bar{Z}^i_t=e^{Y^i_t}Z^i_t$ are solutions to the logarithmic BSDE (6) which satisfy inequalities (7).

Hence, according to Theorem on Logarithmic BSDEs, $(\bar{Y^1}, \bar{Z^1}) = (\bar{Y^2}, \bar{Z^2})$ from which we deduce that $(Y^1, Z^1) = (Y^2, Z^2)$.

It remains to prove inequalities (5).

It is not difficult to show that $\mathbb{E}\left(\sup_{0\leq s\leq T}\exp([e^{2bs}+1]|Y_s|)\right)<\infty$. To prove that Z belongs to \mathcal{M}^2 , we need the following simple Lemma.

Lemma

The function $u(x) := e^x - x - 1$ satisfies the differential equation, u''(x) - u'(x) = 1 and has the following properties:

- (i) u belongs to $C^2(\mathbb{R})$,
- (ii) for every $x \ge 0$, $u(x) \ge 0$ and $u'(x) \ge 0$.
- (iii) The map $x \longmapsto v(x) := u(|x|)$ belongs to $C^2(\mathbb{R})$, v'(0) = 0 and $u'(|x|) \le e^{|x|}$.

We now prove that Z belongs to \mathcal{M}^2 .

For N > 0, let $\tau_N := \inf\{t > 0 : |Y_t| + \int_0^t |u'(|Y_s|)|^2 |Z_s|^2 ds \ge N\} \wedge T$. Set sgn(x) = 1 if $x \ge 0$ and sgn(x) = -1 if x < 0. Itô's formula gives,

$$u(|Y_{t \wedge \tau_N}|) = u(|Y_0|) + \int_0^{t \wedge \tau_N} \operatorname{sgn}(Y_s) u'(|Y_s|) Z_s dW_s$$

$$+ \int_0^{t \wedge \tau_N} \left[\frac{1}{2} u''(|Y_s|) |Z_s|^2 - \operatorname{sgn}(Y_s) u'(|Y_s|) g(s, Y_s, Z_s) \right] ds$$

Passing to expectation and using the previous simple Lemma, we get for any ${\it N}>0$

$$\begin{split} \mathbb{E}u(|Y_0|) &= \mathbb{E}u(|Y_{t \wedge \tau_N}|) + \mathbb{E}\int_0^{t \wedge \tau_N} \operatorname{sgn}(Y_s) u'(|Y_s|) g(s,Y_s,Z_s) ds \\ &- \frac{1}{2} \mathbb{E}\int_0^{t \wedge \tau_N} u''(|Y_s|) |Z_s|^2 ds \\ &\leq \mathbb{E}u(|Y_{t \wedge \tau_N}|) + \mathbb{E}\int_0^{t \wedge \tau_N} \left[u'(|Y_s|)(a+b|Y_s|) - \frac{1}{2} |Z_s|^2 \right] ds \\ &\leq \mathbb{E}u(|Y_{t \wedge \tau_N}|) + \mathbb{E}\int_0^{t \wedge \tau_N} \left[u'(|Y_s|)(a+b|Y_s|) - \frac{1}{2} |Z_s|^2 \right] ds \\ &\leq \mathbb{E}u(|Y_{t \wedge \tau_N}|) + \mathbb{E}\int_0^{t \wedge \tau_N} \left[u'(|Y_s|)(a+b|Y_s|) - \frac{1}{2} |Z_s|^2 \right] ds \end{split}$$

We successively use the previous simple Lemma and the previous exponential integrability for Y to show that for every N

$$\begin{split} \frac{1}{2} \mathbb{E} \int_0^{t \wedge \tau_N} |Z_s|^2 ds &\leq u(|Y_0|) + \mathbb{E} \int_0^T \left[(a+b|Y_s|)u'(|Y_s|) \right] ds \\ &\leq \mathbb{E} e^{|Y_0|} + \mathbb{E} \int_0^T \left[(ae^{|Y_s|} + b|Y_s|e^{|Y_s|}) \right] ds \\ &\leq \mathcal{K}' \end{split}$$

where K' is a constant not depending on N.

Using Fatou's lemma, we deduce that $\mathbb{E} \int_0^T |Z_s|^2 ds < \infty$. The proof is complete.

Theorem

Theorem

Assume that there exist positive constants a and b such that ξ satisfies **(HExp)**. Let the generator $H(t, \omega, y, z)$ be continuous in (y, z) for a.e (t, ω) and satisfies

$$H(t, y, z) \le a + b|y| + \frac{1}{2}|z|^2$$
 (8)

Then, the BSDE (ξ, H) has at least one solution (Y, Z) which satisfies (5).

Proof, H dominé

Proof. We put $g(t, y, z) := a + b|y| + \frac{1}{2}|z|^2$.

Let
$$\xi^+ := max(\xi, 0)$$
 and $\xi^- := min(\xi, 0)$.

According to the previous Theorem, the BSDE with the parameters (ξ^+, g) as well as the BSDE with the parameters $(-\xi^-, -g)$ have unique solutions satisfying inequalities (5).

We denote by (Y^g,Z^g) [resp. (Y^{-g},Z^{-g})] the unique solution of $eq(\xi^+,g)$ [resp. $eq(-\xi^-,-g)$].

Using then the Essaky-Hassani result with

$$L = Y^{-g}, \ U = Y^g, \ \eta_t = a + b(|Y_t^{-g}| + |Y_t^g|) + \frac{1}{2}c^2, \ \text{and} \ C_t = 1,$$

we deduce the existence of solution (Y, Z, K^+, K^-) to the following Reflected BSDE, such that (Y, Z) belongs to $\mathcal{C} \times \mathcal{L}^2$.

$$\begin{cases} (i) & Y_t = \xi + \int_t^T H(s,Y_s,Z_s) ds + \int_t^T dK_s^+ - \int_t^T dK_s^- - \int_t^T Z_s dW_s, \\ (ii) & \forall \ t \leq T, \ \ Y_t^{-g} \leq Y_t \leq Y_t^g, \\ (iii) & \int_0^T (Y_t - Y_t^{-g}) dK_t^+ = \int_0^T (Y_t^g - Y_t) dK_t^- = 0, \ \text{a.s.}, \\ (iv) & K_0^+ = K_0^- = 0, \ K^+, K^- \ \text{are continuous nondecreasing}. \\ (v) & dK^+ \bot dK^- \end{cases}$$

Now, if we show that $dK^+ = dK^- = 0$, then the proof is finished. We shall prove this property.

Since Y_t^g is a solution to BSDE $eq(\xi,g)$, then Tanaka's formula applied to $(Y_t^g-Y_t)^+$ shows that,

$$\begin{split} (Y_t^g - Y_t)^+ &= (Y_0^g - Y_0)^+ + \int_0^t \mathbf{1}_{\{Y_s^g > Y_s\}} [f(s, Y_s, Z_s) - g(s, Y_s^g, Z_s^g)] ds \\ &+ \int_0^t \mathbf{1}_{\{Y_s^g > Y_s\}} (dK_s^+ - dK_s^-) + \int_0^t \mathbf{1}_{\{Y_s^g > Y_s\}} (Z_s^g - Z_s) dW_s \\ &+ L_t^0 (Y^g - Y) \end{split}$$

where $L_t^0(Y^g - Y)$ denotes the local time at time t and level 0 of the semimartingale $(Y^g - Y)$.

Since
$$Y^g \ge Y$$
, then $(Y_t^g - Y_t)^+ = (Y_t^g - Y_t)$.

Therefore, identifying the terms of $(Y_t^g - Y_t)^+$ with those of $(Y_t^g - Y_t)$ and using the fact that $\mathbf{1} - \mathbf{1}_{\{Y_s^g > Y_s\}} = \mathbf{1}_{\{Y_s^g \le Y_s\}} = \mathbf{1}_{\{Y_s^g = Y_s\}}$, we show that $(Z - Z^g)\mathbf{1}_{\{Y_s^g = Y_s\}}$ a.e.

Using the previous equalities, we deduce that,

$$\begin{split} \int_{0}^{t} \mathbf{1}_{\{Y_{s}^{g} = Y_{s}\}} (dK_{s}^{+} - dK_{s}^{-}) &= \int_{0}^{t} \mathbf{1}_{\{Y_{s}^{g} = Y_{s}\}} [g(s, Y_{s}^{g}, Z_{s}^{g}) - f(s, Y_{s}, Z_{s})] ds \\ &+ L_{t}^{0} (Y^{g} - Y) \end{split}$$

Since $\int_0^t \mathbf{1}_{\{Y_s^g = Y_s\}} dK_s^+ = 0$, it holds that

$$0 \leq \int_{0}^{t} \mathbf{1}_{\{Y_{s}^{g} = Y_{s}\}} [g(s, Y_{s}^{g}, Z_{s}^{g}) - f(s, Y_{s}, Z_{s})] ds + L_{t}^{0}(Y^{g} - Y)$$

$$= -\int_{0}^{t} \mathbf{1}_{\{Y_{s}^{g} = Y_{s}\}} dK_{s}^{-} \leq 0 \qquad \geq 0$$

This shows that , $\int_0^t \mathbf{1}_{\{Y_s^g = Y_s\}} dK_s^- = 0$, and hence $dK^- = 0$.

Arguing symmetrically, one can show that $dK^+ = 0$.

Therefore, (Y, Z) satisfies the initial non reflected BSDE.

Since both Y^g and Y^{-g} satisfies inequality (5), so it is for Y. Arguing as in the previous Theorem, one can show that $\mathbb{E} \int_0^T |Z_s|^2 ds < \infty.$ This complete the proof.

- N.V. Krylov 1969 (Theorya), 1987 (livre, Springer), 1987 (Math. Sbornik)
- E.Pardoux, S. Peng, 1990(SCL)
- S. Peng, 1992 (Stochastics)
- K. Bahlali,1999 (Stochastics)
- K. Bahlali, B. Mezerdi, 1996 (ROSE)
- K. Bahlali, A. Elouaflin, E. Pardoux, 2009 (EJP)
- M. Kobylanski, 1997(CRAS) and 2000(AOP).
- Dermoune, Hamadene, Ouknine, 1997 (Stochastics)
- J-P. Lepeltier, J. San Martin, 1998(Stochastics).
- E. Pardoux BSDEs, 1999 (Nonlinear Analysis, Differential Equations and Control).
- N. El Karoui et al. 2008(CRAS), 2012-13(AOP).
- P. Briand, Y. Hu 2006(PTRF) and 08(PTRF).
- Tevzadze, 2008 (SPA).
- E. Essaky, M. Hassani 2011 (BULSM), 2013(JDE).