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Previous results in BSDEs and Quadratic BSDEs
The BSDE under consideration is
T T
Yt:§+/ H(s, YS,Zs)ds—/ Z.dW, (1)
t t

Usually, the BSDE eq(¢, H) is called quadratic if there exist «, 8,y > 0
such that for every (t,y, z),

H(t,y.2)| < a+Blyl+ 712/ (@)

@ Kobylanski, 1997, and 2000,
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The summarized way

Our Aproach consists to derive the existence of solutions for the BSDE
without reflection from solutions of a suitable 2-barriers Reflected
BSDE.

To this end, we use the result of Essaky & Hassani which establishes
the existence of solutions for reflected QBSDEs without assuming any
integrability condition on the terminal datum.

For the self-contained, we state the Essaky & Hassani result of in the
following theorem.
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Theorem

(Essaky—Hassani (JDE 2013)). Let L and U be continuous processes
and ¢ be a Fr measurable random variable. Assume that
1) Ly <¢ < Ur.
2) there exists a semimartingale which passes between the barriers
L and U.
3) H is continuous in (y, z) and satisfies for every (s, w), every
y € [Ls(w), Us(w)] and every z € RY.
(s, @, .2)| < 75() + 522
where 7 € IL'([0, T] x Q) and C is a continuous process.
Then, the following RBSDE has a minimal and a maximal solution.

) Ye=C+ [ H(s, Ys Zo)ds + [T aKs — [ dKs — [T ZedBs
iy Vt<T, Li<Yi<U,

i) ] (Ye=LodK! = [T (U= YodK; =0, as.,

iv) Ky =K, =0, K', K-, are continuous nondecreasing.

v) dKTLldK~
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The equation eq(¢, a+ bly| + 32?)

Theorem

Let a and b be positive real numbers. Assume that ¢ satifies
(HExp) Eexp[(e®®T +1)¢]] < o0
Then, the BSDE

T T
Y=g+ [ (a+b|YS|+%|z|2)ds—/ ZdWs, 0<t<T (4
t t

has a unique solution (Y, Z) such that

.
E( sup exp([e?® +1]|Ys|)) < oo and IE/O |Zs|?ds < 0. (5)

0<s<T
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Proof simple QBSDE

Proof. We put g(y,z) := a+ bly| + 3|z/2. Let (Y, Z) be a solution to
BSDE (4). By It6’s formula we have,

ei=e

T T 1 T
Yr+/ e ¥og(s, Ys,Zs)ds—/ eZiaWs— 5 [ e%|Z:fas
t

1
_e€+/ *[(a+ bl Ys| + |Zs|2)—§|Zs|2]ds—/t e VsZsaW;

.
= e§+/ a+b|Ys])ds—/ e s ZsdWis
t
Weset, Vi=e", Z=e"Z and ¢ =

It is not difficult to see that Y > 0 and (Y, Z) satisfies the BSDE

_ T __ . T___
Y, = §+/t (aYs+bYs|Ian|)ds—/t ZodW, (6)
Hence,
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Proof simple BSDE, continued 1

according to Theorem on BSDEs with logarithmic nonlinearity (Slide
2), the previous equation has a unique solution which satisfy the
inequalities

. T
E( sup |Y|¥*"*") <o and IE/ |Zs|?ds < (7)
t€[0,T] 0

Therefore, the BSDE (4) has a unique solution too. Indeed,
Let (Y', Z') and (Y?, Z?) be two solutions to BSDE (4).

Then, fori=1,2, ¥/ >0and Y/ = " and Z/ = e {Z! are solutions
to the logarithmic BSDE (6) which satisfy inequalities (7).

Hence, according to Theorem on Logarithmic BSDEs ,
(Y1, Z1) = (Y2, Z2) from which we deduce that (Y, Z') = (Y2, Z?).

It remains to prove inequalities (5).
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Proof, simple BSDE, continued 2

It is not difficult to show that E( supos-7exp([€®?S + 1]| Ys|)) < oo.
To prove that Z belongs to M2, we need the following simple Lemma.

Lemma

The function u(x) := €* — x — 1 satisfies the differential equation,
u"(x) — u'(x) = 1 and has the following properties:

(i) u belongs to C?(R),

(ii) forevery x > 0, u(x) >0 and u'(x) > 0.

) The map x — v(x) := u(|x|) belongs to C?>(R), v'(0) = 0 and
Ix]) < el

il
u'(

We now prove that Z belongs to M?2.

For N> 0, let Ty := inf{t > 0: | V| + [o |t/ (| Ys])|?|Zs|?ds > N} A T.
Set sgn(x) = 1if x > 0and sgn(x) = —1if x < 0.

[t6’s formula gives,
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Proof, simple BSDE, continued 3

tATN
t/\TN 1
+/0 [zu”(\ys!)\zs|2 —sgn(Ys)U'(|Ys|)g(s, Ye, Zs) | ds

Passing to expectation and using the previous simple Lemma, we get
forany N >0
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Proof, simple BSDE, continued 4

tATN
Eu(|Yo|) = Eu(] Yiaryl) +IE/ sgn(Ys)u'(| Ys|)g(s, Ys, Zs)ds
——]E/ "(|Ys|)| Zs|2ds

o
smuunmwﬂﬁ/o (Yel) @+ b1Ysl) - 126 05

t/\TN B

>
< Eu(|Yiney ) +E [ |0 (1¥el) @+ bl Yel) - 5126 s

tIANTN T

-
SIEU(IYMTNI)HE/O u'(|¥sl)(a+ bl Ys|) — 5|Zs[| ds
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Proof, simple BSDE, continued 5

We successively use the previous simple Lemma and the previous
exponential integrability for Y to show that for every N

1 tATN 5 T ,
SE [ 12205 <u(1Yol) + E [ [(a+ bl Ye])u/(| Ve])] ds
T
< Eel ¥l +1E/ [(ae'ys| +b[Ys|e‘YS|} ds
0
<K'

where K’ is a constant not depending on N.

Using Fatou’s lemma, we deduce that E fOT |Zs|2ds < oo. The proof is
complete.
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Theorem

Theorem

Assume that there exist positive constants a and b such that ¢ satisfies

(HExp). Let the generator H(t, w, y, z) be continuous in (y, z) for a.e
(t, w) and satisfies

’
H(t, y, z) < a+ bly| +§]z]2 (8)

Then, the BSDE (&, H) has at least one solution (Y, Z) which satisfies
(5)-
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Proof, H dominé

Proof. We put g(t,y, z) := a+ bly| + |z|>.
Let ¢ := max(¢ 0)and & := min(&,0).

According to the previous Theorem, the BSDE with the parameters
(%, g) as well as the BSDE with the parameters (—&~, —g) have
unique solutions satisfying inequalities (5).

We denote by (Y9, 29) [resp. (Y~9,Z79)] the unique solution of
eq(c", g) [resp. eq(—¢~, —g)l.

Using then the Essaky-Hassani result with
L=Y9, U=Y9, n,=a+b(|Y; 9 +|Y?|)+ic? and Ci=1,

we deduce the existence of solution (Y, Z, K+, K~) to the following
Reflected BSDE, such that (Y, Z) belongs to C x £2.
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Proof, H dominé, continued 1

(i) Yt:§+/TH(s, Ys,Zs)ds+/Tsz+—/Tsz‘—/TstWs
(i Vt<T, \%‘g <Y<Y/ t t t

(iif) /OT(Yt — Y 9)dK; = /OT(Ytg — Y})dK; =0, as.,

(iv) K =K, =0, K K~ are continuous nondecreasing.

L (v) dKT LdK~

9)
Now, if we show that dK™ = dK~ = 0, then the proof is finished. We
shall prove this property.

Since Y7 is a solution to BSDE eq(¢, g), then Tanaka’s formula
applied to (Y7 — Y;)* shows that,
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Proof, H dominé, continued 2

t
(Y2 =YDt =(Yd - Yo" +/ 1{Yg>ys}[f(s, Ys, Zs) — 9(s, Y3, Z9)|ds

t
/ 1(vgs v,y (K, s_)+/0 1{Y§>YS}(Z§q_Zs)dWS
+L0(Y9-Y)
where L9(Y9 — Y) denotes the local time at time t and level 0 of the
semimartingale (Y9 —Y).
Since Y9 > Y, then (Y — Y1)t = (Y7 — V).

Therefore, identifying the terms of (Y7 — Y;)* with those of (Y7 — Y;)
and using the factthat 1 —1,yo_y, = 1y9_y, = 17y9_y,,, We show

Using the previous equalities, we deduce that,
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Proof, H dominé, continued 3

t t
/0 1,0y, (dKS — dK; ) = /O 1,y0_y.,9(s, Y€, Z8) — 1(s, Ye, Zs)]ds
+L9(Y9—Y)

Since [y 1;ys_y,,dKs" = 0, it holds that
t
0< /0 1,ye_y,l0(s, Y2, 28) — (s, Ye, Zs)]ds + LO(Y9 — Y)
t
- —/O 1ys_y, dKs <0 >0

This shows that , f0t1{ysgzys}sz‘ =0, and hence dK~ = 0.
Arguing symmetrically, one can show that dK™ = 0.
Therefore, (Y, Z) satisfies the initial non reflected BSDE.
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Proof, H dominé, continued 4

Since both Y9 and Y9 satisfies inequality (5), so it is for Y.

Arguing as in the previous Theorem, one can show that
E fOT |Zs|2ds < co. This complete the proof.
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Proof, simple BSDE, continued
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