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Definitions and notations

The BSDE under consideration is

Yt = ξ +
∫ T

t
H(s, Ys, Zs)ds−

∫ T

t
ZsdWs (1)

It will be referred as eq(ξ, H).
• Ft := FW

t .
• S2 := {Y which is Ft -adapted and E sup

0≤t≤T
|Yt |2 < ∞ }

• M2 := {Z which is Ft -adapted and E
∫ T

0 |Zs|2ds < ∞ }
• L2 := { Z which is Ft -adapted and

∫ T
0 |Zs|2ds < ∞P-a.s.}

• La
t (Y ) := the local time of Y at time t at the level a.

Definition

A solution of the BSDE eq(ξ, H) is an Ft–adapted processes (Y , Z )
which satisfy BSDE eq(ξ, H) for each t ∈ [0, T ] and such that Y is
continuous and

∫ T
0 |Zs|2ds < ∞ P− a.s., that is (Y , Z ) ∈ C × L2
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Previous results in BSDEs and Quadratic BSDEs

Usually, the BSDE eq(ξ, H) is called quadratic if there exist α, β, γ > 0
such that for avery (t , y , z),

|H(t , y , z)| ≤ α + β|y |+ γ|z|2. (2)

Kobylanski, 1997, and 2000,

Dermoune-Hamadene-Ouknine, 1997,
Lepeltier–San Martin 1998,
Briand-Hu, 2006 and 2008,
Barrieu-El Karoui, 2012-2013, with more or less similar conditions,
Essaky-Hassani, 2011 and 2013, for stochastic quadratic BSDE
and others conditions.
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An example of Quadratic BSDEs

The following simple example shows that the exponential integrability
of the terminal condition is not necessary for the existence of solutions.

Let f be continuous function with compact support, consider the
following simple BSDE

Yt = ξ +
∫ T

t
f (Ys) Z 2

s ds−
∫ T

t
ZsdWs (3)

We shall refer to this equation as eq(ξ, f (y)z2)
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Let u ∈ C2(R). Itô’s formula gives

u(Yt ) = u(ξ)−
∫ T

t
u′(Ys)ZsdWs

+
∫ T

t

(
u′(Ys)f (Ys)−

1
2

u
′′
(Ys)

)
Z 2

s ds

A solution to remove the last (quadratic) term is

u(x) :=
∫ x

0
exp

(
2
∫ y

0
f (t)dt

)
dy ,

u ∈ C2(R) moreover u′ and u′′ are bounded.
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Put, Ȳt := u(Yt ), Z̄t := u′(Yt )Zt , our BSDE becomes

Ȳt = u(ξ)−
∫ T

t
Z̄sdWs

But u is a quasi-isometry: ∃ m and M s.t.

∀ x , y ∈ R, m |x − y | ≤ |u(x)− u(y)| ≤ M |x − y | .

Therefore eq(ξ, f (y)Z 2) has a unique solution if and only if
eq(u(ξ), 0) has a unique solution.

But, we know that eq(u(ξ), 0) has a unique solution if
u(ξ) ∈ L2(Ω).

This is equivalent to ξ ∈ L2(Ω) since u is a quasi-isometry.
Remark: Neither the local Lipschitz on y nor the convexity
condition on z are needed for the uniqueness.
The following examples also are covered by our result.

f (y) = 1[a,b](y), f (y) = 1[a,b](y)−1[c,d ](y), f (y) :=
1

(1 + y2)
√
|y |
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Removing the quadratic term

Lemma

Let f belongs to L1(R). The function

u(x) :=
∫ x

0
exp

(
2
∫ y

0
f (t)dt

)
dy

satisfies following properties

1 1
2u′′(x)− f (x)u′(x) = 0.

2 u is a one to one function from R onto R.
3 Both u and its inverse u−1 belong to C1(R) ∩W 2

1,loc(R).
where W 2

p, loc := {u : R 7→ R ; u, u′, u′′ ∈ Lp
loc(R)}.

4 u is a quasi-isometry: there exist m and M s.t. for any x , y ∈ R,
m |x − y | ≤ |u(x)− u(y)| ≤ M |x − y |

5 If in addition f is continuous then both u and u−1 are of class C2.
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Theorem

(Essaky–Hassani (JDE 2013)). Let L and U be continuous processes
and ξ be a FT measurable random variable. Assume that
1) LT ≤ ξ ≤ UT .
2) there exists a semimartingale which passes between the barriers
L and U.
3) H is continuous in (y , z) and satisfies for every (s, ω), every
y ∈ [Ls(ω), Us(ω)] and every z ∈ Rd .

|f (s, ω, y , z)| ≤ ηs(ω) + Cs(ω)
2 |z|2

where η ∈ L1([0, T ]×Ω) and C is a continuous process.
Then, the following RBSDE has at least one solution.

(i) Yt = ξ +
∫ T

t H(s, Ys, Zs)ds +
∫ T

t dK +
s −

∫ T
t dK−s −

∫ T
t ZsdBs

(ii) ∀t ≤ T , Lt ≤ Yt ≤ Ut ,

(iii)
∫ T

t (Yt − Lt )dK +
t =

∫ T
t (Ut − Yt )dK−t = 0, a.s.,

(iv) K +
0 = K−0 = 0, K +, K−, are continuous nondecreasing.

(v) dK +⊥dK−

(4)
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The equation eq(ξ, a + by + f (y)z2)

The BSDE under consideration in this subsection is,

Yt = ξ +
∫ T

t
(a + b|Ys|+ f (Ys)|Zs|2)ds−

∫ T

t
ZsdWs (5)

where a, b ∈ R+ and f : R 7−→ R+.

Lemma

Assume that ξ ∈ L2(Ω) and f be continuous and belongs to L1(R).
Then, the BSDE (5) has solution in S2 ×M2 has a minimal and a
maximal solution.

The result remains valid when H(y , z) := a + b|y |+ c|z|+ f (|y |)|z|2) .
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The equation eq(ξ, a + by + f (y)z2)

Proof. Itô’s formula applied to the transformation u defined in Lemma
2 shows that

u(Yt ) = u(ξ) +
∫ T

t
u′(Ys)(a + b|Ys|)ds−

∫ T

t
u′(Ys)ZsdWs (6)

We put,
Y ′ := u(Y ), Z ′ := u′(Y )Z and ξ ′ := u(ξ)

(Y ′, Z ′) satisfies then the BSDE,

Y ′t = ξ ′ +
∫ T

t
G(Y ′s)ds−

∫ T

t
Z ′sdWs (7)

where G(x) := u′(u−1(x)(a + b|u−1(x)|)).
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Proof for equation eq(ξ, a + by + f (y)z2), continued

Proof, continued. Using Lemma 2, one can show that equation (5)
has a (unique) solution if and only if equation (7) has a (unique)
solution.

From Lemma 2, we deduce that the coefficient G of BSDE (7) is
continuous and with linear growth. Moreover, the terminal condition
ξ ′ := u(ξ) is square integrable if and only if ξ is square integrable.

Therefore, according to Lepeltier & San-Martin 97-98, the BSDE (7)
has a minimal and a maximal solution.
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The equation eq(ξ, H) with
H(t , y , z) ≤ a + b|y |+ f (|y |)z2)

Theorem

Assume that

(H1) ξ ∈ L2(Ω)

(H3) |H(s, y , z)| ≤ a + b|y |+ f (|y |)|z|2 := g(y , z) with f continuous
and in L1(R).
(H4) H is continuous in (y , z).
Then, the BSDE eq(ξ, H) has at least one solution in S2 ×M2.

The result remains valid when H(y , z) is dominated by
g(y , z) := a + b|y |+ c|z|+ f (|y |)|z|2).
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Proof for the BSDE eq(ξ, H) with
H(t , y , z) ≤ a + b|y |+ f (y)z2)
Proof.
Let (Y g , Z g) be the maximal solution of BSDE eq(ξ+, g) and
(Y−g , Z−g)) be the minimal solution of BSDE eq(−ξ−,−g).

Using the Essaky & Hassani result, with L = Y−g , U = Y g ,
ηt = a + b(|Y−g

t |+ |Y
g
t | + c2,

Ct = 1 + sups≤t supα∈[0, 1] |f (αY−g
s + (1− α)Y g

s |), we deduce the
existence of a minimal and a maximal solution to the RBSDE,



(j) Yt = ξ +
∫ T

t H(s, Ys, Zs)ds +
∫ T

t dK +
s −

∫ T
t dK−s −

∫ T
t ZsdBs ,

(jj) ∀t ≤ T , Y−g
t ≤ Yt ≤ Y g

t ,

(jjj)
∫ T

t (Yt − Y−g
t )dK +

t =
∫ T

t (Y g
t − Yt )dK−t = 0, a.s.,

(jv) K +
0 = K−0 = 0, K +, K−, are continuous nondecreasing.

(v) dK +⊥dK−

(8)
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Proof, H dominé continued 1

• We shall prove that dK− = dK + = 0.

Since Y g
t and Y−g

t are solutions for BSDEs, we proceed as follows :

1 we apply Tanaka’s formula to (Y g
t − Yt )+,

2 from (jj), we have (Y g
t − Yt )+ = (Y g

t − Yt )

3 we identify the terms of (Y g
t − Yt )+ with those of (Y g

t − Yt ), then
we use properties (jjj) and (v) of the previous RBSDE, to prove
that dK− = 0.

4 Symmetrically, one can show that dK + = 0.
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Proof, H dominé continued 2

• We shall prove the previous claim 3.

Using the fact that: 1− 1{Y g
s >Ys} = 1{Y g

s ≤Ys} = 1{Y g
s =Ys}, we first

show that (Z = Z g)1{Y g
s =Ys}. And next we get∫ t

0
1{Y g

s =Ys}(dK +
s − dK−s ) =

∫ t

0
1{Y g

s =Ys}[g(s, Y g
s , Z g

s )−H(s, Ys, Zs)]ds

+ L0
t (Y

g − Y )

Since
∫ t

0 1{Y g
s =Ys}dK +

s = 0, it holds that

L0
t +

∫ t

0
1{Y g

s =Ys}[g(s, Y g
s , Z g

s )−H(s, Ys, Zs)]ds +
∫ t

0
1{Y g

s =Ys}dK−s = 0

Since the the three terms of the left hand side are positive, we deduce
that,

∫ t
0 1{Y g

s =Ys}dK−s = 0, which implies that dK− = 0.

• It now remains to show that Z ∈ M2.
To this end, we need the following lemma
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Zvonkin 1 for the Proof Z ∈ M2

Lemma

Let f belongs to L1(R) and put K (y) :=
∫ y

0 exp(−2
∫ x

0 f (r )dr )dx. The
function u(x) :=

∫ x
0 K (y) exp(2

∫ y
0 f (t)dt)dy satisfies following

properties

(i) u belongs to C1(R) ∩W2
1,loc(R), and, u(x) ≥ 0 and u′(x) ≥ 0 for

x ≥ 0. Moreover, 1
2u′′(x)− f (x)u′(x) = 1

2 for a.e x.

(ii) The map x 7−→ v(x) := u(|x |) belongs to C1(R) ∩W2
1,loc(R), and

v ′(0) = 0.

(iii) There exists a positive constant c such that for every x ∈ R,
u(|x |) ≤ c|x |2 and u′(|x |) ≤ c(|x |).
(iv) If moreover, f is continuous, then the function v(x) := u(|x |)
belongs to C2(R).
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Proof H dominé continued 3

For N > 0, let τN := inf{t > 0 : |Yt |+
∫ t

0 |v
′(Ys)|2|Zs|2ds ≥ N} ∧ T .

Applying Itô-Krylov’s formula to the function v (defined in the previous
Lemma), it holds that for every t ∈ [0, T ],

u(|Y0|) = u(|Yt∧τN |) +
∫ t∧τN

0
sign(Ys)u′(|Ys|)ZsdWs

+
∫ t∧τN

0

(
sign(Ys)u′(|Ys|)H(s, Ys, Zs)ds− 1

2
u′′(|Ys|)Z 2

s
)
ds

≤ u(|Yt∧τN |) +
∫ t∧τN

0
sign(Ys)u′(|Ys|)ZsdWs

+
∫ t∧τN

0

(
u′(|Ys|)(a + b|Ys|)ds∫ t∧τN

0

(
u′(|Ys|)f (|Ys|)−

1
2

u′′(|Ys|)Z 2
s
)
ds

Since, u′(x)f (x)− 1
2u′′(x) = −1

2 , then passing to expectation and
using the previous Lemma, we get for any N > 0
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Proof H dominé continued 3

1
2

E

∫ t∧τN

0
|Zs|2ds ≤ 2E

(
sup

0≤s≤T
u(|Ys|)

)
+ E

∫ T

0

(
u′(|Ys|)(a+b|Ys|)

)
ds

We successively use assertion (iii) of the previous Lemma, the fact
that the process Y belongs to S2 and Fatou’s Lemma, to show that,

E

∫ T

0
|Zs|2ds < ∞.

.
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Krylov’s estimates.

Assumptions.
(H2) ∃ηt (ω), and f (y) ; ∀(t , ω, y , z), |H(t , y , z)| ≤ ηt + f (y)|z|2.
For simplicity, we assume in the sequel that ηt = 0.
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Krylov estimate. The case f integrable

Lemma

Let (Y , Z ) ∈ S2 ×L2 be a solution of the BSDE eq(ξ, H). Assume that
H satisfies (H2) with f ∈ L1(R). Then,
-(i)- there exists a postive constant C depending on T , ‖ξ‖L1(Ω) and
‖f‖L1(R) such that for any nonnegative measurable function ψ,

E

∫ T

0
ψ(Ys)Z 2

s ds ≤ C ‖ψ‖L1(R) .

-(ii)- There exists a positive constant C depending on T , ‖ξ‖L1(Ω) and
‖f‖L1(R) such that for any nonnegative measurable function ψ,

E

∫ T∧τR

0
ψ(Ys)Z 2

s ds ≤ C ‖ψ‖L1([−R,R]) ,

where τR := inf{t > 0, |Yt | ≥ R}
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Proof of the Lemma

For simplicity we assume that H(s, y , ) = f (y)z2. The general case
follows by localization. Let a be a real number. By Tanaka’s formula

(Yt − a)− = (Y0 − a)− −
∫ t

0
1{Ys<a}dYs +

1
2

La
t (Y )

= (Y0 − a)− −
∫ t

0
1{Ys<a}H(Ys, Zs)ds +

∫ t

0
1{Ys<a}ZsdWs +

1
2

La
t (Y )

We successively use the fact that the map x− is Lipschitz and the
density occupation formula to get,

1
2

La
t (Y ) ≤ |Yt − Y0|+

∫ t

0
1{Ys<a}f (Ys)Z 2

s ds +
∫ t

0
1{Ys<a}ZsdWs

= |Yt − Y0|+
∫ t

0
1{Ys<a}f (Ys)d〈Y 〉s +

∫ t

0
1{Ys<a}ZsdWs

= |Yt − Y0|+
∫ a

−∞
f (x)Lx

t (Y )dx +
∫ t

0
1{Ys<a}ZsdWs
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Proof of the Lemma

Since E
∫ +∞
−∞ f (x)Lx

t (Y )dx < ∞, then passing to expectation to obtain,

E [La
t (Y )] ≤ 2E|Yt − Y0|+

∫ a

−∞
2f (x)E [Lx

t (Y )] dx

Using Gronwall’s lemma we get

sup
a∈R

E [La
T (Y )] ≤ 2E sup

0≤s≤T
|Ys| exp

(
2||f ||L1(R)

)
= CT exp

(
2||f ||L1(R)

)
.

Now, let ψ ∈ L1
+(R). We use the previous inequality to get,

E

∫ T

0
ψ(Ys)Z 2

s ds = E

∫ T

0
ψ(Ys)d〈Y 〉s

≤
∫ +∞

−∞
ψ(a)ELa

T (Y )da

≤ CT ‖ψ‖L1(R)

The Lemma is proved.
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Krylov’s estimate. The case where f is locally
integrable

Lemma

Let (Y , Z ) ∈ S2 ×L2 be a solution of the BSDE eq(ξ, H). Assume that
H satisfies (H2) with f locally integrable. Assume moreover that,∫ T

0
|H(s, Ys, Zs)|ds < ∞ P− a.s

Let τR := inf{t > 0, |Yt | ≥ R}.
Then, there exists C depending on T , R, ‖ξ‖L1(Ω) and ‖f‖L1([−R,R])

such that for any nonnegative measurable function ψ ∈ L1
loc ,

E

∫ T∧τR

0
ψ(Ys)Z 2

s ds ≤ C ‖ψ‖L1([−R,R]) ,
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Proof of the Lemma

Let τ′N := inf{t > 0 :
∫ t

0 |Zs|2ds ≥ N},
τ′′M := inf{t > 0 :

∫ t
0 |H(s, Ys, Zs)|ds ≥ M}, and put τ := τR ∧ τ′N ∧ τ′′M .

By Tanaka’s formula we have,

(YT∧τ − a)− = (Y0 − a)− −
∫ T∧τ

0
1{Ys<a}dYs +

1
2

La
T∧τ(Y )

Since the map y 7→ (y − a)− is Lipschitz, we obtain

1
2

La
T∧τ(Y ) ≤ |YT∧τ − Y0|+

∫ T∧τ

0
1{Ys<a}|H(s, Ys, Zs)|ds (9)

−
∫ T∧τ

0
1{Ys<a}ZsdWs

Passing to expectation in inequality (9), and since τ := τR ∧ τ′N ∧ τ′′M ,
we get E

[
La

T∧τ(Y )
]
≤ 4R + 2M. Since a is an arbitrary real number,

we obtain
sup

a
E [La

T∧τ(Y )] ≤ 4R + 2M. (10)
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Proof of the Lemma continued 1

Passing to expectation in inequality (9) and use the occupation density
formula, we obtain,

E [La
T∧τ(Y )] ≤ E|YT∧τ − Y0|+

∫ T∧τ

0
1{Ys<a}f (Ys)Z 2

s ds

≤ E|YT∧τ − Y0|+
∫ T∧τ

0
1{Ys<a}f (Ys)d〈Y 〉s

≤ E|YT∧τ − Y0|+
∫ a

−R
2|f (x)|E [Lx

T∧τ(Y )] dx (11)

Using inequality (10) and Gronwall’s lemma, we get

E
[
La

T∧τR
(Y )

]
≤ 2E sup

0≤t≤T
|Yt | exp

(
2||f ||L1([−R,R])

)
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Proof of the Lemma continued 2

Let now ψ ∈ L1
+(R). Using the previous bound and the occupation

density formula, we get

E

∫ T∧τ

0
ψ(Ys)Z 2

s ds = E

∫ T∧τ

0
1{Ys<a}f (Ys)d〈Y 〉s

≤
∫ R

−R
ψ(a)E

[
La

T∧τR
(Y )

]
da

≤ C(T , R) ‖ψ‖L1([−R,R])

Passing to the limit on N and M, having in mind that
τ := τR ∧ τ′N ∧ τ′′M , we get the desired estimate. The Lemma is proved.
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Itô-Krylov formula

Theorem

Let (Y , Z ) be a solution for BSDE eq(ξ, H). Assume that (H1) holds
with f locally integrable. Then, for any function u belonging to
C1(R) ∩W 2

1,loc(R)

u(Yt∧τR ) = u(Y0) +
∫ t∧τR

0
u′(Ys)dYs +

1
2

∫ t∧τR

0
u′′(Ys)Z 2

s ds

where τR := inf{t > 0, |Yt | ≥ R}.

Proof.
Using Lemma 7 (local Krylov’estimate), the term∫ t∧τR

0 u′′(Ys)Z 2
s ds is well defined.

To establish Itô’s formula, we approximate u by a suitable
sequence of smooth functions un for which Itô’s formula is valid.
We use, once again, Lemma 7 and pass to the limit.
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The equation eq(ξ, f (y)z2)

The following proposition shows that neither the exponential moment
of ξ nor the continuity of the generator are needed to obtain the
existence and uniqueness of the solution to quadratic BSDEs.

Theorem

Assume that ξ ∈ L2(Ω) and f ∈ L1(R). Then the BSDE eq(ξ, f (y)z2)
has a unique solution in S2 ×M2.
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The equation eq(ξ, f (y)z2) continued

Proof. Let (Y , Z ) be a solution of equation eq(ξ, f (y)z2). Since
u(x) =

∫ x
0 exp(

∫ y
0 f (t)dt)dy belongs to C1(R) ∩W 2

1,loc(R), then
Itô-Krylov’s formula (Lemma 9) shows that,

u(Yt ) = u(ξ)−
∫ T

t
u′(Ys)ZsdWs

The function u satisfies : u is invertible and
0 < exp(−‖f‖L1(R)) ≤ u′ ≤ exp(‖f‖L1(R)).

Therefore

(Yt , Zt ) is the unique solution of the BSDE eq(ξ, f (y)z2) if and only if

(u(Yt ), u′(Yt )Zt ) is the unique solution to the BSDE eq(u(ξ), 0).

Since, |u(ξ)| ≤ |ξ| exp(‖f‖L1(R)), we deduce that equation eq(u(ξ), 0)
has a unique solution if ξ belongs to L2(Ω).
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Comparison theorem for eq(ξ, f (y)z2)

This is a comparison theorem for measurable generators.

Theorem

Let ξ1, ξ2 be FT –measurable and satisfy assumption (H1). Let f , g be
in L1(R). Let (Y f , Z f ), (Y g , Z g) be respectively the solution of the
BSDEs eq(ξ1, f (y)|z|2) and eq(ξ2, g(y)|z|2). Assume that ξ1 ≤ ξ2
a.s. and f ≤ g a.e. Then Y f

t ≤ Y g
t for all t , P–a.s.

Corollary

Let ξ be FT –measurable and satisfies assumption (H1). Let f , g be in
L1(R). Let (Y f , Z f ), (Y g , Z g) be respectively the solution of the
BSDEs eq(ξ, f (y)|z|2) and eq(ξ, g(y)|z|2). Assume that f = g a.e.
Then Y f

t = Y g
t for all t , P–a.s.
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Proof of comparison.

Proof. According to Theorem 10, the solutions (Y f , Z f ) and (Y g , Z g)
belong to S2 ×M2. For a given function h, we put

uh(x) :=
∫ x

0
exp

(
2
∫ y

0
h(t)dt

)
dy

The idea consists to apply suitably the Ito-Krylov formula to uf (Y
g
T ).

This gives,

uf (Y
g
T ) = uf (Y

g
t ) +

∫ T

t
u′f (Y

g
s )dY g

s +
1
2

∫ T

t
u′′f (Y g

s )d〈Y g
· 〉s

= uf (Y
g
t ) + MT −Mt −

∫ T

t
u′f (Y

g
s )g(Y g

s )|Z g
s |2ds

+
1
2

∫ T

t
u′′f (Y g

s )|Z g
s |2ds

where (Mt )0≤t≤T is a martingale.
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Proof of comparison continued.

Proof, continued Since u′′g (x)− 2g(x)u′g(x) = 0,
u′′f (x)− 2f (x)u′f (x) = 0 and u′f (x) ≥ 0, then

uf (Y
g
T ) = uf (Y

g
t ) + MT −Mt −

∫ T

t
u′f (Y

g
s )
[
g(Y g

s )− f (Y g
s )
]
|Z g

s |2ds

Since,
∫ T

t u′f (Y
g
s )
[
g(Y g

s )− f (Y g
s )
]
|Z g

s |2ds ≥ 0 , then

uf
(
Y g

t
)
≥ uf (Y

g
T ) + MT −Mt

Passing to conditional expectation, and since uf is increasing and
ξ2 ≥ ξ1, we get

uf
(
Y g

t
)
≥ E

[
uf (Y

g
T ) /Ft

]
= E [uf (ξ2) /Ft ]
≥ E [uf (ξ1) /Ft ]

= uf

(
Y f

t

)
Passing to u−1

f , we get Y g
t ≥ Y f

t . The proof finished.
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The equation eq(ξ, a + by + f (y)z2)

The BSDE under consideration in this subsection is,

Yt = ξ +
∫ T

t
(a + b|Ys|+ f (Ys)|Zs|2)ds−

∫ T

t
ZsdWs (12)

where a, b ∈ R+ and f : R 7−→ R+.

Lemma

Assume that ξ ∈ L2(Ω) and f ∈ L1(R). Then, the BSDE (12) has
solution in S2 ×M2 has a minimal and a maximal solution.

The result remains valid when H(y , z) := a + b|y |+ c|z|+ f (|y |)|z|2) .
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The equation eq(ξ, a + by + f (y)z2)

Proof. Itô–Krylov formula applied to the transformation u defined in
Lemma 2 shows that

u(Yt ) = u(ξ) +
∫ T

t
u′(Ys)(a + b|Ys|)ds−

∫ T

t
u′(Ys)ZsdWs (13)

We put,
Y ′ := u(Y ), Z ′ := u′(Y )Z and ξ ′ := u(ξ)

Y ′ and Z ′ satisfies then the BSDE,

Y ′t = ξ ′ +
∫ T

t
G(Y ′s)ds−

∫ T

t
Z ′sdWs (14)

where G(x) := u′(u−1(x)(a + b|u−1(x)|)).
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Proof for equation eq(ξ, a + by + f (y)z2), continued

Proof, continued. Using Lemma 2, one can show that equation (12)
has a (unique) solution if and only if equation (14) has a (unique)
solution.

From Lemma 2, we deduce that the coefficient G of BSDE (14) is
continuous and with linear growth. Moreover, the terminal condition
ξ ′ := u(ξ) is square integrable if and only if ξ is square integrable.

Therefore, according to Lepeltier & San-Martin 97-98, the BSDE (14)
has a minimal and a maximal solution.
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Existence of a viscosity solution.

Assumptions.

(H5) [σ, b are uniformly Lipschitz
]

(H6) σ, b are of linear growth. And, f is continuous and integrable.
(H7) The terminal condition ψ is continuous and with polynomial
growth.

Theorem

Assume (H3)-(H7) hold. Then, u(t , x) := Y (t ,x)
t is a viscosity solution

for the PDE associated to σ(x), b(x), f (u)(∇(u))2 with the terminal
condition ψ.
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]
(H6) σ, b are of linear growth. And, f is continuous and integrable.

(H7) The terminal condition ψ is continuous and with polynomial
growth.

Theorem

Assume (H3)-(H7) hold. Then, u(t , x) := Y (t ,x)
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Touching property.

To prove the existence of viscosity solution, we need the following
touching property.

Lemma
Let (ξ t )0≤t≤T be a continuous adapted process such that

dξ t = β(t)dt + α(t)dWt ,

where β and α are continuous adapted processes such that b,|σ|2 are
integrable. If ξ t ≥ 0 a.s.for all t , then for all t ,

1{ξt =0}α(t) = 0 a.s.,

1{ξt =0}β(t) ≥ 0 a.s.,
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Proof viscosity solution.

We assume, H(x , y , z) := f (y)z2 with some integrable f .
We denote (Xs, Ys, Zs) := (X t ,x

s , Y t ,x
s , Z t ,x

s )
Since X is a Markov diffusion and u(t , x) = Y (t ,x)

t , then

∀s ∈ [0, T ], u(s, Xs) = Ys (15)

Let φ ∈ C1,2. Let (t , x) be a local Maximum of u − φ, which we
suppose global and equal to 0, that is
φ(t , x) = u(t , x) and φ(t̄ , x̄) ≥ u(t̄ , x̄) for all (s̄, x̄).
This and equality (15) imply that

φ(s, Xs) ≥ Ys (16)
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Proof viscosity solution, continued.

We now show that u satisfies the comparison property. We have

Yt = Ys +
∫ s

t
H(Xs, Yr , Zr )dr −

∫ s

t
Zr dWr

φ(s, Xs) = φ(t , Xt ) +
∫ s

t
(

∂φ

∂r
+ Lφ)(r , Xr )dr +

∫ s

t
σDφ(r , Xr )dWr

As φ(s, Xs) ≥ Ys , the touching property shows that, for each s,

11{φ(s,Xs)=Ys}(
∂φ

∂t
+ Lφ)(s, Xs) + H(Xs, Ys, Zs) ≥ 0 a.s.,

11{φ(s,Xs)=Ys}| − Zs + σT Dφ(s, Xs)| ≥ 0 a.s.

As φ(t , x) := φ(t , Xt ) = Yt := u(t , x) for s = t , the second equation
gives Zt = σDφ(t , Xt ) := σDφ(t , x), and the first inequality gives the
expected result .
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