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Motivations

Study of optimal risk transfer structures, Natural question in

Reinsurance.

Pricing of one example of these transfer contracts: Non proportional

layer with reinstatements.

Necessity of a time updating of the risk measures, with the arrival

of new Information. Can be done through the particular case of

BSDEs with jumps.
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Outline

Static framework

Risk Measures and Inf-convolution

An application in Non proportional Reinsurance

Time dynamic framework

An example using Quadratic BSDEs with Jumps

Joint work with Dylan Possamai and Chao Zhou
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Monetary risk measures

Let (Ω,F ,P) be a given probability space.

Key properties of a mapping ρ : X → R ∪ {∞}:

If X ≥ Y P-a.s. then ρ(X ) ≥ ρ(Y ). (Losses orientation)

ρ(X + m) = ρ(X ) + m, m ∈ R. (Cash additivity property: Capital

requirement)

ρ is convex. (Diversification)

If X cannot be used as a hedge for Y (X and Y comonotone variables),

then no possible diversification (comonotonic risk measures):

ρ(X + Y ) = ρ(X ) + ρ(Y ).
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Examples

The Average Value-at-Risk at level α ∈ (0, 1] is a coherent risk

measure given by:

AVaRα(X ) =
1

α

∫ α

0

q̄X (u)du

where q̄X (u) := inf{x ∈ R|P(X > x) ≤ u}, u ∈ (0, 1).

The entropic risk measure defined by:

e(X ) =
1

γ
lnEP[exp (γX )], γ > 0.

is a convex monetary risk measure.

These are two examples of law invariant risk measures.
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Monetary risk measures

Growing need of regulation professionals and VaR drawbacks conducted

to an axiomatic analysis of required solvency capital.

Artzner, Delbaen, Eber, and Heath (1999) (Coherent case)

Frittelli, M. and Rosazza Gianin, E. (2002) (Convex case)

Föllmer, H. and Schied, A. (2004) (Monography)

Bion-Nadal, (2008-2009); Bion-Nadal and Kervarec (2010),

Cheridito, Delbaen, and Kupper (2004) (Dynamic case)

Acciaio (2007, 2009), Barrieu and El Karoui (2008), Jouini,

Schachermayer and Touzi (2006,2008), Kervarec (2008)

(Inf-convolution)

Many other references...
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Robust representation of convex risk measures

Any convex risk measure ρ on L∞(P), which is continuous from above,
has the representation:

ρ(X ) = sup
Q∈M1(P)

{EQ(X )− α(Q)},

where M1(P) = set of P-absolutely continuous probability measures on
F .
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Key property: Comonotonicity

Denneberg (1994)

X and Y are comonotone if there exists a random variable Z such that X
and Y can be written as nondecreasing functions of Z.

Examples (typical reinsurance contracts): (αX , (1− α)X ), α ∈ (0, 1)
or (X ∧ k, (X − k)+), k ∈ R are comonotone.

Let c : F → [0, 1] be a normalized and monotone set function. The
Choquet integral of a random variable X , with respect to c is defined
by: ∫

Xd c :=

∫ 0

−∞
(c(X > x)− 1) dx +

∫ ∞
0

c(X > x)dx

It is a comonotonic monetary risk measure.
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Why using Choquet Integrals ?

Greco (1977), Denneberg (1994), Föllmer and Schied (2004): A

monetary risk measure defined on L∞(P) is comonotone if and only

if it is a Choquet integral.

Many risk measures used in insurance: AVaR, Wang transform,

PH-transform are examples of Choquet integrals.

Goal: Optimal risk transfer between agents using Choquet integrals as

risk measures.
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Focus on Choquet Integrals

G. Choquet, Theory of capacities, 1955:∫
Xd c is convex iif c is submodular[
c(A ∪ B) + c(A ∩ B) ≤ c(A) + c(B), ∀ A, B ∈ F

]
, provided the

probability space is atomless.

c is called decreasing on F if for every decreasing sequence (An) of

elements of F , we have c (
⋂

n An) = lim c(An). In that case
∫
Xd c

is continuous from above.
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Distortion Functions

A non decreasing function ψ : [0, 1]→ [0, 1] with ψ(0) = 0 and

ψ(1) = 1 is called a distortion function (Rem: We do not need ψ to

be càg or càd).

We define a capacity cψ by

cψ(A) = ψ(P(A)), ∀A ∈ F .

For ψ(x) = x , the Choquet integral
∫
Xd cψ is the expectation of X

under the probability measure P. The function ψ is used to distort

the expectation operator EP into the non-linear functional ρψ.

The Choquet integral
∫
Xd c is law invariant under P if and only if

c is a P-distortion (Föllmer and Schied, 2004).
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Inf-convolution

Barrieu and El Karoui (2008): An agent minimizes his risk, under

the constraint that a transaction with the second agent takes

place. The cash-invariance property implies that the problem is

equivalent to the inf-convolution of the agents risk measures.

ρ1 and ρ2 risk measures. Inf-convolution defined by:

ρ1�ρ2(X ) := inf
F∈X
{ρ1(X − F ) + ρ2(F )}.
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Inf-convolution of Choquet integrals

Theorem (K. 2012)

Let ρ1 and ρ2 be two Choquet integrals with respect to continuous set
functions c1 and c2 verifying ρ1�ρ2(0) > −∞ and let X be a r.v. with
no atoms.
We assume furthermore that the two agents ”do not disagree too often”.
Then

ρ1�ρ2(X ) = ρ1 (X − Y ∗) + ρ2(Y ∗)

where Y ∗ is given by:

Y ∗ =
N∑

p=0

(X − k2p)+ − (X − k2p+1)+,

where {kn, n ≤ N} is a sequence of real numbers corresponding to
quantile values of X .
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Inf-convolution of Choquet integrals

Similar result in the law invariant case proven by E. Jouini, W.

Schachermayer and N. Touzi (2008), Optimal risk sharing for law

invariant monetary utility functions.

Means that the inf-convolution of comonotonic risk measures is

given by a generalization of the Excess-of-Loss contract, with more

treshold values. The domain of attainable losses is divided in

”ranges”, and each range is alternatively at the charge of one of the

two agents.
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Pricing Reinsurance Layers with Reinstatements

Once we have these non proportional contracts (layers), what are the

possible pricing techniques ?

In particular, in the case of contracts with reinstatements.
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Pricing Reinsurance Layers with Reinstatements

Motivations:

Pricing in reinsurance, taking into account the cost of capital. Key

issue within Solvency II regulation framework.

Indifference pricing in this context: based on both a concave utility

function and a convex risk measure.

The pricing is possibly not satisfying, due to the presence of

reinstatements.

Goal: give easily computable bounds for the indifference price.

Sundt (1991), Mata (2000), Wahlin and Paris (2001): Pricing

principles.

Albrecher and Haas (2011): Ruin theory.
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The contract payoff

Consider an XL reinsurance contract with retention l and limit m.

Reinsurer’s part: Zi = (Xi − l)+ − (Xi − l −m)+.

Total loss Z =
∑N

i=1 Zi , N = number of claims.

Aggregate deductible L and limit M. In practice, M is expressed as a

multiple of m, M = (k + 1)m, we say the contract contains k

reinstatements.

Payoff: min{(Z − L)+, (k + 1)m}.

Intuition: The insurance company can reconstitute the layer a limited

number of times, by paying a price proportional to the initial price. So

the total paid premium is unknown.
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Indifference price

We say that p0 is the indifference price of a given XL layer relatively to

the pair (U, ρ), if p0 solves the equation

U (R − c ρ(R)) = U
(
RXL − c ρ(RXL)

)
where c is a given cost of capital

and RXL := R + F − p0(1 + Ñ).

Sundt (1991), Walhin and Paris (2001) gave conditions under which

we can solve numerically the equation for different criteria.
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Pricing bounds

Proposition (K., 2012)

If P0 is the indifference price of a given XL layer relatively to the pair
(U, ρ), then p1 ≤ P0 ≤ p2,

where p1 :=
A

−Ū(−1− Ñ)
, p2 :=

A

Ū(1 + Ñ)

and A := Ū (R + F )− Ū(R).

Ñ: Fraction of used reinstatements.
Ū(X ) := U(X − c ρ(X )), correspond to a cash-subadditive utility.
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Example

Figure : Semi-deviation utility function and AVaRα risk measure

k = 4 possible reinstatements, ci = 100%, AVaRα with α = 1/200,
semi-deviation utility with δ = 1/2.
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Quadratic BSDEs with Jumps

We will now consider a time dynamic framework for the risk analysis.

Study the arrival of new information and its impact on optimal risk

transfer structures.

The BSDE framework is convenient to do so: Barrieu and El Karoui

(2008), Coquet, Hu, Mémin and Peng (2002), Quenez and Sulem

(2012), Royer (2006).

The quadratic case with jumps allows to consider more examples of

risk measures (entropic) in an insurance framework.
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Quadratic BSDEs with Jumps

Filtration: generated by a Brownian motion B and a Poisson random
measure µ with compensator ν. The solution of the BSDE is rewritten as
a triple (Y ,Z ,U) such that

dYt = gs(Ys ,Zs ,Us)ds − ZsdBs −
∫
Rd\{0}

Us(x)µ̃(dx , ds),

YT = ξ.

Barles, Buckdahn and Pardoux (1997).

Ut : Rd\{0} → R is a function, but plays a role analogous to Z .
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Quadratic BSDEs with Jumps

Define the following function

jt(u) :=

∫
E

(
eu(x) − 1− u(x)

)
ν(dx)

and consider the following BSDE for t ∈ [0,T ] and P− a.s.

yt = ξ+

∫ T

t

(
γ

2
|zs |2 +

1

γ
js(γus)

)
ds−

∫ T

t

zsdBs−
∫ T

t

∫
E

us(x)µ̃(dx , ds).

An application of Itô’s formula gives

yt =
1

γ
ln
(
EP
t

[
eγξ
])
, t ∈ [0,T ],P− a.s.

We recover the entropic risk measure.
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Applications

g-expectation

Let ξ ∈ L∞ and let g be such that the BSDE (g , ξ) has a unique

solution and such that comparison holds. Then for every t ∈ [0,T ], we

define the conditional g -expectation of ξ as follows

Egt [ξ] := Yt ,

E , thus defined, is

Monotone and Time consistent

Convex if g is convex in (y , z , u).

Constant additive if g does not depend on y .

We can define naturally a notion of g -submartingale.
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Inf-convolution of g-expectations

Example: we want to calculate the inf-convolution of the two
corresponding generators g1 and g2 given by

g1
t (z , u) :=

1

2γ
|z |2 + γ

∫
E

(
e

u(x)
γ − 1− u(x)

γ

)
ν(dx),

and

g2
t (z , u) := αz + β

∫
E

(1 ∧ |x |)u(x)ν(dx),

where (γ, α, β) ∈ R∗+ × R× [−1 + δ,+∞) for some δ > 0.

Correspond to the entropic risk measure for the first agent and a linear
risk measure for the second one.
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Inf-convolution of g-expectations

Lemma (Possamai, Zhou, K., 2012)

We have, for any bounded FT -measurable random variable ξT ,

(Eg
1

�Eg
2

)(ξT ) = Eg
1

(F
(1)
T ) + Eg

2

(F
(2)
T ),

F
(2)
T = ξT +

1

2
α2γT + γ

∫ T

0

∫
E

(β(1 ∧ |x |)− ln(1 + β(1 ∧ |x |)))ν(dx)dt

− αγBT − γ
∫ T

0

∫
E

ln(1 + β(1 ∧ |x |))µ̃(dt, dx),

This provides an example of risk sharing which is neither proportional
nor a layer.
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Thank you for your attention
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