Transport equation on a network of circles with a persistently excited damping

Guilherme Mazanti joint work with Yacine Chitour and Mario Sigalotti

> CIMPA Research School - Algeria Geometric, stochastic and PDE control Tlemcen, Algeria April 12th to 24th, 2014

CMAP, École Polytechnique Team GECO, Inria Saclay France

Outline

Introduction

- Persistently excited systems in finite dimension
- Persistently excited systems in infinite dimension
- 2 Transport equation on a network of circles
 - The model
 - Motivation
 - Hypotheses
 - Main result
 - Explicit solution
 - Exponential convergence of the coefficients
- 3 Discussion on the result
 - Remarks
 - Open problems

• We consider:

$$\dot{x} = Ax + \alpha(t)Bu.$$

- $x \in \mathbb{R}^d$: state; $u \in \mathbb{R}^m$: control; $\alpha \in \mathcal{G} \subset L^{\infty}(\mathbb{R}_+; [0, 1])$.
- Linear time-invariant control system: $\dot{x} = Ax + Bu$.
- $\alpha(t)$: activity of the control u(t) at time t.
- If $\alpha(t) \in \{0,1\}$: switched system between

$$\dot{x} = Ax$$
 and $\dot{x} = Ax + Bu$.

Introduction
00000

Transport equation on a network of circles

Discussion 00

Introduction PE systems in finite dimension

$$\dot{x} = Ax + \alpha(t)Bu, \qquad \alpha \in \mathcal{G}$$

- If $\alpha(t) \equiv 0$, there is no action of the control on the system.
- The class G should ensure a sufficient amount of action of the control on the system.
- Persistently exciting (PE) signals: for $T \ge \mu > 0$, we say that $\alpha \in \mathcal{G}(T, \mu)$ if $\alpha \in L^{\infty}(\mathbb{R}_+; [0, 1])$ and

$$\forall t \in \mathbb{R}_+, \quad \int_t^{t+T} \alpha(s) ds \ge \mu.$$

• Persistently excited (PE) system: system with $\alpha \in \mathfrak{G}(\mathcal{T}, \mu)$.

Theorem (A. Chaillet, Y. Chitour, A. Loría, M. Sigalotti, 2008)

Suppose that the pair (A, B) is controllable and that the matrix A is skew-symmetric. Then, for every $T \ge \mu > 0$, there exists constants $C \ge 1$, $\gamma > 0$ such that, for every $x_0 \in \mathbb{R}^d$ and every $\alpha \in \mathfrak{G}(T, \mu)$, the corresponding solution of

$$\dot{x} = (A - \alpha(t)BB^{\mathsf{T}})x$$

satisfies

$$\|x(t)\| \leq C e^{-\gamma t} \|x_0\|.$$

- $u = -B^{\mathsf{T}}x$ is a feedback that stabilizes the system.
- More information on switched systems, PE systems and their stability: course by Yacine Chitour on Saturday and Sunday.

$$\dot{z} = Az + \alpha(t)Bu, \qquad z \in X, \ u \in U, \ \alpha \in \mathfrak{G}(T, \mu).$$

X, U Banach spaces.

$$\begin{cases} \partial_{tt}^{2} u(t,x) = \partial_{xx}^{2} u(t,x) - \alpha(t)\chi(x)\partial_{t}u(t,x), & x \in [0,L], \\ u(t,x) = 0, & x \in \{0,L\}. \end{cases}$$

$$\dot{z} = Az + \alpha(t)Bu, \qquad z \in X, \ u \in U, \ \alpha \in \mathfrak{G}(T, \mu).$$

X, U Banach spaces.

$$\begin{cases} \partial_{tt}^{2} u(t,x) = \partial_{xx}^{2} u(t,x) - \alpha(t)\chi(x)\partial_{t}u(t,x), & x \in [0,L], \\ u(t,x) = 0, & x \in \{0,L\}. \end{cases}$$

$$\dot{z} = Az + \alpha(t)Bu, \qquad z \in X, \ u \in U, \ \alpha \in \mathfrak{G}(T, \mu).$$

X, U Banach spaces.

$$\begin{cases} \partial_{tt}^{2} u(t,x) = \partial_{xx}^{2} u(t,x) - \alpha(t)\chi(x)\partial_{t}u(t,x), & x \in [0,L], \\ u(t,x) = 0, & x \in \{0,L\}. \end{cases}$$

$$\dot{z} = Az + \alpha(t)Bu, \qquad z \in X, \ u \in U, \ \alpha \in \mathfrak{G}(T, \mu).$$

X, U Banach spaces.

$$\begin{cases} \partial_{tt}^{2} u(t,x) = \partial_{xx}^{2} u(t,x) - \alpha(t)\chi(x)\partial_{t}u(t,x), & x \in [0,L], \\ u(t,x) = 0, & x \in \{0,L\}. \end{cases}$$

$$\dot{z} = Az + \alpha(t)Bu, \qquad z \in X, \ u \in U, \ \alpha \in \mathfrak{G}(T, \mu).$$

X, U Banach spaces.

$$\dot{z} = Az + \alpha(t)Bu, \qquad z \in X, \ u \in U, \ \alpha \in \mathfrak{G}(T, \mu).$$

X, U Banach spaces.

$$\dot{z} = Az + \alpha(t)Bu, \qquad z \in X, \ u \in U, \ \alpha \in \mathfrak{G}(T, \mu).$$

X, U Banach spaces.

$$\begin{cases} \partial_{tt}^2 u(t,x) = \partial_{xx}^2 u(t,x) - \alpha(t)\chi(x)\partial_t u(t,x), & x \in [0,L], \\ u(t,x) = 0, & x \in \{0,L\}. \end{cases}$$

- Few results are known concerning the stability and the stabilizability of PE systems in infinite dimension.
- [F. Hante, M. Sigalotti, M. Tucsnak, 2012]: generalized observability inequality and unique continuation principle for stability analysis.
- It would be useful to have a "toy model" to understand the effects of PE signals in infinite dimensional systems.

Transport equation on a network of circles

Discussion 00

Transport equation on a network of circles

Transport equation on a network of circles

Discussion 00

Transport equation on a network of circles

Transport equation on a network of circles

Discussion 00

Transport equation on a network of circles

Introduction 00000

Transport equation on a network of circles

Discussion 00

Transport equation on a network of circles The model

$$\begin{cases} \partial_t u_i(t,x) + \partial_x u_i(t,x) \\ + \alpha_i(t)\chi_i(x)u_i(t,x) = 0, & t \in \mathbb{R}_+, \ x \in [0, L_i], \ i \in [\![1, N_d]\!], \\ \partial_t u_i(t,x) + \partial_x u_i(t,x) = 0, & t \in \mathbb{R}_+, \ x \in [0, L_i], \ i \in [\![N_d + 1, N]\!], \\ u_i(t,0) = \sum_{j=1}^N m_{ij}u_j(t, L_j), & t \in \mathbb{R}_+, \ i \in [\![1, N]\!], \\ u_i(0,x) = u_{i,0}(x), & x \in [0, L_i], \ i \in [\![1, N]\!]. \end{cases}$$

- $\alpha_i \in \mathfrak{G}(\mathcal{T},\mu)$ for $i \in \llbracket 1, N_d \rrbracket$.
- χ_i : characteristic function of an interval $[a_i, b_i] \subset [0, L_i]$.
- $M = (m_{ij})_{1 \le i,j \le N}$: transmission matrix.

Transport equation on a network of circles

Discussion 00

Transport equation on a network of circles Motivation

- Understand the effects of PE signals in infinite dimensional systems.
- Inspired by the wave equation on a star-shaped network.
- PDEs on networks:
 - [S. Nicaise, 1987],
 - [G. Lumer, 1980],
 - [R. Dáger, E. Zuazua, 2006],
 - [J. Valein, E. Zuazua, 2009]...
- Stability with intermittent signals: [M. Gugat, M. Sigalotti, 2010].

Transport equation on a network of circles Hypotheses

If $\frac{L_i}{L_j} \in \mathbb{Q}$ for every i, j and the damping intervals are small enough, one may find periodic solutions (depending on M).

Hypothesis

There exist $i, j \in \llbracket 1, N \rrbracket$ such that $\frac{L_i}{L_i} \notin \mathbb{Q}$.

Transport equation on a network of circles Hypotheses

If $\frac{L_i}{L_j} \in \mathbb{Q}$ for every i, j and the damping intervals are small enough, one may find periodic solutions (depending on M).

Hypothesis

There exist $i, j \in \llbracket 1, N \rrbracket$ such that $\frac{L_i}{L_i} \notin \mathbb{Q}$.

The total mass $\sum_{i=1}^{N} \int_{0}^{L_{i}} u_{i}(t, x) dx$ is preserved and non-negative initial conditions imply non-negative solutions $\iff M$ is left stochastic.

Hypothesis

1
$$|M|_{\ell^1} \leq 1$$

2 For every $i, j \in [[1, N]]$, we have $m_{ij} \neq 0$.

Transport equation on a network of circles

Discussion 00

Transport equation on a network of circles Main result

Theorem (Y. Chitour, G. M., M. Sigalotti)

For every $T \ge \mu > 0$, there exist $C \ge 1$ and $\gamma > 0$ such that, for every $p \in [1, +\infty]$, every initial condition $u_{i,0} \in L^p(0, L_i)$, $i \in [\![1, N]\!]$, and every choice of signals $\alpha_i \in \mathcal{G}(T, \mu)$, $i \in [\![1, N_d]\!]$, the corresponding solution satisfies

$$\sum_{i=1}^{N} \|u_i(t)\|_{L^p(0,L_i)} \leq C e^{-\gamma t} \sum_{i=1}^{N} \|u_{i,0}\|_{L^p(0,L_i)}, \qquad \forall t \geq 0.$$

Transport equation on a network of circles Main result

- Our proof relies on the explicit formula for the solutions.
- The main difficulty comes from the fact that the α_i are PE and may be zero on several time intervals, switching off the damping.
- It is also important to take into account the fact that L_i ∉ Q for certain i, j and combine it with the persistence of excitation of the α_i.

We can give an explicit formula for the solutions of this system. To simplify: N = 2, no damping, $L_1 < L_2$.

We can give an explicit formula for the solutions of this system. To simplify: N = 2, no damping, $L_1 < L_2$.

We can give an explicit formula for the solutions of this system. To simplify: N = 2, no damping, $L_1 < L_2$.

 $u_1(t,0) = m_{11}u_1(t,L_1) + m_{12}u_2(t,L_2)$

We can give an explicit formula for the solutions of this system. To simplify: N = 2, no damping, $L_1 < L_2$.

$$u_1(t,0) = m_{11}u_1(t-s, L_1-s) + m_{12}u_2(t-s, L_2-s)$$

 $0 \le s \le \min\{t, L_1, L_2\}$

Discussion 00

Transport equation on a network of circles Explicit solution

We can give an explicit formula for the solutions of this system. To simplify: N = 2, no damping, $L_1 < L_2$.

$$u_1(t,0) = m_{11}u_1(t-s, L_1-s) + m_{12}u_2(t-s, L_2-s)$$
$$0 \le s \le \min\{t, L_1, L_2\}$$

We can give an explicit formula for the solutions of this system. To simplify: N = 2, no damping, $L_1 < L_2$.

 $u_1(t,0) = m_{11} [m_{11}u_1(t-s, L_1 - (s - L_1)) + m_{12}u_2(t-s, L_2 - (s - L_1))]$ $+ m_{12}u_2(t-s, L_2 - s)$ $L_1 \le s \le \min\{t, 2L_1, L_2\}$

We can give an explicit formula for the solutions of this system. To simplify: N = 2, no damping, $L_1 < L_2$.

 $u_1(t,0) = m_{11} [m_{11}u_1(t-s, L_1 - (s - L_1)) + m_{12}u_2(t-s, L_2 - (s - L_1))]$ $+ m_{12}u_2(t-s, L_2 - s)$ $L_1 \le s \le \min\{t, 2L_1, L_2\}$

Transport equation on a network of circles

Discussion 00

Transport equation on a network of circles Explicit solution

Transport equation on a network of circles

Discussion 00

Transport equation on a network of circles Explicit solution

Transport equation on a network of circles

Discussion 00

Transport equation on a network of circles Explicit solution

Transport equation on a network of circles

Discussion 00

Transport equation on a network of circles Explicit solution

$$u_{1}(t,0) = \sum_{n=0}^{\left\lfloor \frac{t}{L_{2}} \right\rfloor} \beta_{1,n,t} u_{1,0}(L_{1} - \{t - nL_{2}\}_{L_{1}}) + \sum_{m=0}^{\left\lfloor \frac{t}{L_{1}} \right\rfloor} \beta_{2,m,t} u_{2,0}(L_{2} - \{t - mL_{1}\}_{L_{2}})$$

• Notation:
$$\{x\}_y = x - \lfloor \frac{x}{y} \rfloor y$$
.

•
$$\beta_{j,n,t}$$
 can be computed from M .

• This formula can be generalized to larger *N* and to take the damping into account.

Theorem

The solution satisfies

$$u_{i}(t,0) = \sum_{j=1}^{N} \sum_{\substack{\mathfrak{n}\in\mathfrak{N}_{j}\\\mathcal{L}(\mathfrak{n})\leq t}} \vartheta^{(i)}_{j,\mathfrak{n}+\left\lfloor\frac{t-L(\mathfrak{n})}{L_{j}}\right\rfloor} \mathbf{1}_{j,L_{j}-\{t-L(\mathfrak{n})\}_{L_{j}},t} u_{j,\mathfrak{0}}\left(L_{j}-\{t-L(\mathfrak{n})\}_{L_{j}}\right)$$

Lemma

Let
$$T \ge \mu > 0$$
. If $\exists C_0 \ge 1, \ \gamma_0 > 0 \ s.t.$

$$\left|\vartheta_{j,\mathfrak{n},x,t}^{(i)}
ight|\leq C_{0}e^{-\gamma_{0}|\mathfrak{n}|_{\ell^{1}}}$$

for every choice of PE signals $\alpha_k \in \mathcal{G}(T, \mu)$, then $\exists C \ge 1, \gamma > 0$ s.t., for every $p \in [1, +\infty]$, every solution satisfies

$$\sum_{i=1}^{N} \|u_i(t)\|_{L^p(0,L_i)} \leq C e^{-\gamma t} \sum_{i=1}^{N} \|u_{i,0}\|_{L^p(0,L_i)}, \qquad \forall t \geq 0$$

It suffices to study the coefficients $\vartheta_{j,n,x,t}^{(i)}$.

Theorem

The coefficients $\vartheta_{j,\mathfrak{n},\mathsf{x},t}^{(i)}$ satisfy

$$\vartheta_{j,\mathbf{0},L_{j,t}}^{(i)} = m_{ij},$$

$$\vartheta_{j,\mathbf{n},L_{j,t}}^{(i)} = \sum_{\substack{k=1\\n_k \ge 1}}^{N} m_{kj} \ \vartheta_{k,\mathbf{n}-\mathbf{1}_k,L_k,t}^{(i)} \ e^{-\int_{t-L(\mathbf{n})+a_k}^{t-L(\mathbf{n})+b_k} \alpha_k(s)ds}.$$

Transport equation on a network of circles

Discussion 00

Transport equation on a network of circles Exponential convergence of the coefficients

Decomposition of the set \mathbb{N}^N .

Transport equation on a network of circles

Discussion 00

Transport equation on a network of circles Exponential convergence of the coefficients

Decomposition of the set \mathbb{N}^N .

Discussion 00

Transport equation on a network of circles Exponential convergence of the coefficients

In $\mathfrak{N}_b(\rho)$:

Lemma

 $\exists \mu \in (0, 1) \text{ s.t., } \forall i, j, n, x, t \text{ and } \forall k \in \llbracket 1, N \rrbracket$, we have

$$\left|\vartheta_{j,\mathfrak{n},x,t}^{(i)}\right| \leq \binom{|\mathfrak{n}|_{\ell^1}}{n_k} \mu^{|\mathfrak{n}|_{\ell^1}}.$$

Discussion 00

Transport equation on a network of circles Exponential convergence of the coefficients

In $\mathfrak{N}_b(\rho)$:

Lemma

 $\exists \mu \in (0, 1) \text{ s.t., } \forall i, j, n, x, t \text{ and } \forall k \in \llbracket 1, N \rrbracket$, we have

$$\left|\vartheta_{j,\mathfrak{n},x,t}^{(i)}\right| \leq \binom{|\mathfrak{n}|_{\ell^1}}{n_k} \mu^{|\mathfrak{n}|_{\ell^1}}.$$

Corollary

 $\exists \rho > 0, \ C \ge 1, \ \gamma > 0 \ s.t., \ \forall i, j, x, t \ and \ \forall \mathfrak{n} \in \mathfrak{N}_b(\rho), \ we \ have \\ \left| \vartheta_{j,\mathfrak{n},x,t}^{(i)} \right| \le C e^{-\gamma |\mathfrak{n}|_{\ell^1}}.$

Transport equation on a network of circles

Discussion 00

Transport equation on a network of circles

Discussion 00

Transport equation on a network of circles

Discussion 00

Transport equation on a network of circles

Discussion 00

Transport equation on a network of circles

Discussion 00

Lemma

Let $T \ge \mu > 0$. $\exists \eta \in (0, 1)$ and $K \in \mathbb{N}$ s.t., for every pair of circles $k_1 \in \llbracket 1, N \rrbracket$ and $k_2 \in \llbracket 1, N_d \rrbracket \setminus \{k_1\}$ with $\frac{L_{k_1}}{L_{k_2}} \notin \mathbb{Q}$, every $\alpha_{k_2} \in \mathfrak{G}(T, \mu)$ and every suitable \mathfrak{n} , t, there exists $\mathfrak{r} \in \mathfrak{N}$ with $n_j \le r_j \le K + n_j$, $j \in \{k_1, k_2\}$, and $r_j = n_j$ for $j \in \llbracket 1, N \rrbracket \setminus \{k_1, k_2\}$, such that

$$e^{-\int_{t-L(\mathfrak{r})+a_{k_2}}^{t-L(\mathfrak{r})+b_{k_2}}\alpha_{k_2}(s)ds} \leq \eta$$

Key hypotheses: $\frac{L_{k_1}}{L_{k_2}} \notin \mathbb{Q}$ and $\alpha_{k_2} \in \mathfrak{G}(\mathcal{T}, \mu)$.

Since the decay $e^{-\int_{t-L(n)+a_k}^{t-L(n)+b_k} \alpha_{k_2}(s)ds}$ is "active enough" "often enough", we can obtain the following result.

Lemma

Let $T \ge \mu > 0$ and $\sigma \in (0, 1)$. $\exists \gamma > 0$, $\Lambda_0 \in \mathbb{N}^*$ s.t., $\forall i, j, x, t$ and $\forall \mathfrak{n} \in \mathfrak{N}_c(\sigma)$ with $|\mathfrak{n}|_{\ell^1} \ge \Lambda_0$, we have

$$\left|artheta_{j,\mathfrak{n},x,t}^{(i)}
ight|\leq e^{-\gamma|\mathfrak{n}|_{\ell^{1}}}$$

Since the decay $e^{-\int_{t-L(n)+a_k}^{t-L(n)+b_k} \alpha_{k_2}(s)ds}$ is "active enough" "often enough", we can obtain the following result.

Lemma

Let $T \ge \mu > 0$ and $\sigma \in (0, 1)$. $\exists \gamma > 0$, $\Lambda_0 \in \mathbb{N}^*$ s.t., $\forall i, j, x, t$ and $\forall \mathfrak{n} \in \mathfrak{N}_c(\sigma)$ with $|\mathfrak{n}|_{\ell^1} \ge \Lambda_0$, we have

$$\left|\vartheta_{j,\mathfrak{n},x,t}^{(i)}\right| \leq e^{-\gamma \left|\mathfrak{n}\right|_{\ell^{1}}}.$$

This proves that the coefficients decrease exponentially with $|\mathfrak{n}|_{\ell^1}$, and so our theorem is proved.

Discussion on the result Remarks

- If the damping terms are always active (α_i(t) ≡ 1 for every i), one can also show the exponential convergence of the solutions to zero without the hypothesis L_i ∉ Q for certain i, j.
- With the PE damping, exponential convergence cannot be true in general without this hypothesis.
- If the damping terms are always active, one can replace the hypothesis $|M|_{\ell^1} \leq 1$ by $|M|_{\ell^p} \leq 1$ for a certain $p \in [1, +\infty]$ when $N_d \geq N 1$.
- We do not know if this still holds true for the PE damping.

Discussion on the result Open problems

- To which classes of matrices can we generalize this result? $|M|_{\ell^p} \leq 1$ for a certain $p \in [1, +\infty]$? Orthogonal matrices?
- What about coefficients $m_{ij} = 0$? Can we have some of them? Under which hypotheses?
- Can these ideas be used to study waves on a star-shaped network of strings with a persistently excited damping?