The open-dense orbit Theorem

Abdelghani Zeghib

UMPA, ENS-Lyon http://www.umpa.ens-lyon.fr/~zeghib/

Tlemcen, CIMPA School Geometric, Stochastic, and PDE Control April 14, 2014

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

April 16, 2014 1 / 48

1 An integrability Problem

- 2 A partially algebraic situation
- Oifferential Geometry
- Partially Algebraic Geometry 4
- 6 Control Theory
- The example again 6

3

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

April 16, 2014 2 / 48

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

(CN	DC	ENIC	-Lyon)
	к э,	EIN3	-Lyon)

The open-dense orbit Theorem

April 16, 2014 3 / 48

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

An integrability Problem

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

April 16, 2014 3 / 48

- B

Subject, Objects

N a manifold (open subset of \mathbb{R}^n)

P a plane field of dimension *d*: $x \to P(x) \subset T_x N$ a linear *d*-space,

Say, locally $P(x) = \text{Span}\{X_1, \dots, X_d\}$, $\{X_i\}$ a system of smooth linearly independent vector fields

But the X_i are not part of the data

Any vector field X such that $X(x) \in P(x)$ is called tangent, or a section of P

Case d = 1A direction field

Leaves

Definition

A submanifold F is a **leaf** of P iff $T_x F = P(x)$ for any $x \in F$

In particular dim $F = \dim P = d$

Remark: "Integral variety": S if $T_x S \subset P(x)$

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

April 16, 2014 5 / 48

- B

< ロ > < 得 > < 回 > < 回 >

Leaves

Definition

A submanifold F is a **leaf** of P iff $T_x F = P(x)$ for any $x \in F$

In particular dim $F = \dim P = d$

Remark: "Integral variety": S if $T_x S \subset P(x)$

Integrability Domain

Definition

```
The integrability domain of P is

\mathcal{D} = \{x \text{ such that there exists a leaf } F \text{ containing } x \}
```

Example: d = 1, $\mathcal{D} = N$ (classical theorem of integration of ODE)

Definition

Involutivity (or Infinitesimal integrability) domain: $\mathcal{D}^{\infty} \subset \mathcal{D}$ set of points x where any iterated bracket of a finite family of vector fields $\{X_i\}$ tangent to P, is tangent to P at x: $[X_1, [X_2, \dots, [X_{k-1}, X_k]](x) \in P(x)$

- P is involutive iff $\mathcal{D}^{\infty} = N$

イロト イ得ト イヨト イヨト

Example (Frobenius Theorem, completely integrable = involutive) $\mathcal{D} = \mathbf{N} \iff \mathcal{D}^{\infty} = \mathbf{N}$

In general:

 $\mathcal{D}\subset\mathcal{D}^\infty$

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Tentative

Restrict P to \mathcal{D}^{∞} , and apply Frobenius Theorem !?

Difficulties:

- Topological structure: \mathcal{D}^∞ closed but \mathcal{D} is not necessarily?
- ''Differentiable'' structure: even closed, \mathcal{D}^∞ may be ''fractal''
- (No fractal Frobenius Theorem is available!)
- (Fractional derivative people?)
- Worse: even if \mathcal{D}^∞ is smooth, P is not necessarily tangent to it (in order to apply Frobenius Theorem)

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Examples

$$N = \mathbb{R}^{3}$$

$$P = \ker \omega, \ \omega = dz - f(x)dy$$

$$d\omega = -f'(x)dx \wedge dy$$

$$f \text{ flat at } 0: \ f(x) = f^{(n)}(0) = 0, \forall n$$
and $f'(x) \neq 0$, for $x \neq 0$

$$\mathcal{D}^{\infty} = \text{the plane } \{x = 0\}$$
But $\mathcal{D} = \emptyset$

 ω is a topological contact structure...

프 문 문 프 문

Image: A matched block of the second seco

Analytic case

Theorem (Hermann, Nagano) If P is (real) analytic, then $\mathcal{D} = \mathcal{D}^{\infty}$

э

Find intersection, dictionary, duality, ... between this section and previous talks, e.g. with F. Jean's course.

100	-			
	RS	ENS-	Lyon)	

The open-dense orbit Theorem

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで April 16, 2014

The Theorem

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

April 16, 2014

イロト イポト イヨト イヨト

12 / 48

э

Partially algebraic Functions

B topological space $f: B \times \mathbb{R}^m \to \mathbb{R}$ is **partially algebraic** if $f(x, X) = \sum_I a_I(x) X^I$ $I = (i_1, \dots, i_m)$ multi-index $X^I = X^{i_1} \dots X^{i_m}$ $a_I: B \to \mathbb{R}$ continuous

Equivalently $f \in C^0(B)[X_1, \ldots, X_m]$

Exercise

Compare with the weaker notion: f is such that $f_b : u \in \mathbb{R}^m \to f(b, u)$ is polynomial for any $b \in B$ Reminiscent of the exercise: $f : \mathbb{R} \to \mathbb{R}$, such that for any x, there exists n such that the derivative $f^n(x) = 0$ Prove that f is polynomial.

くロト く得ト くヨト くヨト 二日

Generalizations

• $N \rightarrow B$ a linear fiber bundle,

(of fiber type \mathbb{R}^m , basis *B*, and projection map $\pi : N \to B$), They are generalization of product of spaces, but only locally:

B is covered by a family of open sets U_i over which *N* is a product: $T_i : \pi^{-1}(U_i) \to U_i \times \mathbb{R}^m$ On $U_i \cap U_j$: the transition $T_{ji} = T_j \circ T_i^{-1}$ has a **partially linear** form:

$$(x, u) \in (U_i \cap U_j) \times \mathbb{R}^m \to (x, A_x(u) \in (U_i \cap U_j) \times \mathbb{R}^m)$$

where $A: U_i \cap U_j \rightarrow GL(m, \mathbb{R})$

• Vector fiber bundle: family of vector spaces (linear algebra with parameter)

• Partially algebraic functions can be coherently defined on linear fiber bundle since transitions are fiberwise linear

• Smooth category: If *B* manifold, $f(x, X) = \sum a_I(x)X^I$, $a_I : B \to \mathbb{R}$ smooth,

Equivalently, $f \in C^{\infty}(B)[X_1, \ldots, X_m]$

Henceforth: work (often) in the smooth category

Other partially algebraic objects

Partially algebraic vector fields

Partially algebraic plane fields

Fact: The Brackets of two partially algebraic vector fields is partially algebraic.

More:

- Partially algebraic sets (latter on)
- Partially algebraic diffeomorphisms...

(CN	RS	ENP	S-1 \	uon'	۱.
	к э ,		3-L	yun	,

The open-dense orbit Theorem

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで April 16, 2014

The Theorem

Theorem (Integrability and Openness)

Let $\pi : N \to B$ be a linear fiber bundle and P a partially algebraic plane field on N.

There exists an open dense subset B' such that:

- Over B', $\mathcal{D} = \mathcal{D}^{\infty}$ (i.e. $\mathcal{D} \cap \mathcal{N}' = \mathcal{D}^{\infty} \cap \mathcal{N}'$, where $\mathcal{N}' = \pi^{-1}(B')$)
- The projection $\pi(\mathcal{D} \cap N')$ is closed in B'

Reformulation

Corollary: If the projection of \mathcal{D} is dense in B, then it contains an open dense set

Re-formulation: Up to neglecting a subset $C \subset B$ (singularity set, catastrophe set, corrupted set...) which is closed and has **empty interior**, we have \mathcal{D} equals \mathcal{D}^{∞} , and has a closed projection in B

The projection of a closed set in not necessarily closed? Construct a smooth curve $c : \mathbb{R} \to \mathbb{R}^3$, with c injective ("open" Joran curve) and $X = c(\mathbb{R})$ a closed subset of \mathbb{R}^3 (X is a closed 1-dimensional of \mathbb{R}^3) such that the projection of X on \mathbb{R}^2 is dense.

(e.g. construct an injective curve which contains a lattice \mathbb{Z}^3 in \mathbb{R}^3 ...)

Exercise

(negligible vs negligible)

A closed subset X with empty interior in \mathbb{R}^n may have a positive Lebesgue measure.

- X may be the image of a Jordan curve: $c : [0,1] \rightarrow \mathbb{R}^n$ continuous and INJECTIVE, such that X = c([0,1]) has positive Lebesgue measure! (or a "closed" Jordan curve, i.e. c(0) = c(1) and $c_{||0,1|}$ injective)

20 / 48

The projection of a closed set in not necessarily closed? Construct a smooth curve $c : \mathbb{R} \to \mathbb{R}^3$, with c injective ("open" Joran curve) and $X = c(\mathbb{R})$ a closed subset of \mathbb{R}^3 (X is a closed 1-dimensional of \mathbb{R}^3) such that the projection of X on \mathbb{R}^2 is dense. (e.g. construct an injective curve which contains a lattice \mathbb{Z}^3 in $\mathbb{R}^3...$)

Exercise

(negligible vs negligible) A closed subset X with empty interior in \mathbb{R}^n may have a positive Lebesgue measure.

- X may be the image of a Jordan curve: $c : [0,1] \rightarrow \mathbb{R}^n$ continuous and INJECTIVE, such that X = c([0,1]) has positive Lebesgue measure! (or a "closed" Jordan curve, i.e. c(0) = c(1) and $c_{||0,1|}$ injective)

Prove the Theorem in the case m = 0, i.e. N = B. (somehow empty statement!)

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

3 × 4 3 × April 16, 2014

< A >

э

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで April 16, 2014

The example: Affine transformation groups

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

April 16, 2014

Affine maps in \mathbb{R}^n

```
(Exercise)
```

 \Leftrightarrow

```
f: \mathbb{R}^n \to \mathbb{R}^n affine if it has the form f(x) = A(x) + a, A \in Lin(\mathbb{R}^n)
(notation \mathcal{L}(\mathbb{R}^n), End(\mathbb{R}^n), Mat_n(\mathbb{R}))
```

f sends an (affine) line to an (affine) line

```
\iff
Graph(f) is an affine subspace in \mathbb{R}^n \times \mathbb{R}^n
```

Localization

A **local** affine map: $f : U \to V$, U, V open subsets in \mathbb{R}^n ... Graph(f) open subset in an affine subspace...

▲ロト ▲撮 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

Isometries

$$(\mathbb{R}^n, \langle, \rangle)$$

f isometric if $f(x) = Ax + b$, $A \in O(n)$
(f preserves the distance)

On $\mathbb{R}^n \times \mathbb{R}^n$, consider the symmetric bilinear form $b((u_1, v_1), (u_2, v_2) = \langle u_1, u_2 \rangle - \langle v_1, v_2 \rangle$

b is non-degenerate (pseudo-scalar product) of signature (n, n)

f isometric \iff Graph(f) is an isotropic affine subspace of $(\mathbb{R}^n \times \mathbb{R}^n, b)$

1/ It suffices for Graph(f) to be an isotropic submanifold (i.e. its tangent space is everywhere isotropic) in order to be an affine subspace.

2/ Affine and isometries are solutions of a system of PDE equations. Write them?

A tautological plane field

A plane field P of dimension n on $N = (\mathbb{R}^n \times \mathbb{R}^n) \times \text{Lin}(\mathbb{R}^n)$ Tangent space of N ...

 $P(x, y, A) = \{0, 0\} \times Graph(A)$

Let f affine with linear part A and f(x) = y, f(u) = A(u) + y - A(x) $c : u \in \mathbb{R}^n \rightarrow (u, f(u), A) \in N$, F = Image (c)F is a leaf of P through (x, y, A)The projection of F on $\mathbb{R}^n \times \mathbb{R}^n$ is Graph(f)

{ leaves of P } ~ (marked) local affine maps i.e. $\{(x, y, f)/f(x) = y, f \text{ affine }\}$

Variants:

• f affine transformation = f in addition bijective Adapted construction: replace $Lin(\mathbb{R}^n)$ by $GL_n(\mathbb{R})$ $\mathbb{R}^n \times \mathbb{R}^n \times GL_n(\mathbb{R})$

• Similar construction on $\mathbb{R}^n \times \mathbb{R}^n \times O(n)$: projection of leaves are graphs of isometries...

"Non-linear case"

 (M, ∇) a manifold endowed with a connection ∇ ... Affine maps are transformations preserving ∇

A connection is a "a tool" allowing one to define **geodesics** Geodesics are generalizations of straight lines...

Riemannian manifolds

(M,g), g Riemannian metric There is a canonical (Levi-Cevita) connection, Its geodesics are the geodesics of g: they are solution of the Euler-Lagrange equation associated to the action $\int g(\dot{\gamma}(t), \dot{\gamma})(t) dt$

Affine map: its sends a geodesic to a geodesic

Isometry: it sends a unit speed geodesic to a unit speed geodesic (it preserves distances)

Totally geodesic submanifolds

(Role of affine subspaces)
F a submanifold of M of dimension d
F is (totally) geodesic (in M) if any geodesic tangent to F is contained
in it (at least locally)

If d = 1, usual geodesics

As in the case of \mathbb{R}^n , a map f is affine \iff Graph(f) is a geodesic submanifold in $M \times M$, endowed with the product metric...

f is isometric \iff Graph(f) is isotropic in $M \times M$ endowed with the pseudo-Riemannian metric $g \oplus (-g)$

30 / 48

Geodesic up to order 1 submanifolds

Consider $\exp_x : T_x M \to M$, the exponential map: for any $u \in T_x M$, $t \to \exp_x(tu)$ is the geodesic defined by u

For $E \subset T_x M$ a *d*-plane, let $\mathcal{E}_x = \exp_x E_x$

In general \mathcal{E}_x is not totally geodesic.

FACT (Shur, Cartan)

Let $1 < d < n = \dim M$. If \mathcal{E}_x is totally geodesic for any x, and any E, then (M, g) has constant sectional curvature...

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ - ヨー のぐぐ

Example

FACT

Let $f: U \subset S^2 \to V \subset S^2$ affine. Then f is isometric (the sphere has no non-trivial (local) affinity)

(It was known before acceptation of Non-Euclidean geometry, that in order to prove Euclid fifth axiom on parallels, it suffices to show existence of non-trivial affinities)

$$\begin{split} M &= \mathbb{S}^2 \times \mathbb{S}^2 \\ \text{Let } E &\subset T_x \mathbb{S}^2 \times T_x \mathbb{S}^2, \\ \mathcal{E}_{(x,x)} &= \exp_{(x,x)} E \text{ is geodesic iff } E \text{ is the graph of the derivative of an} \\ \text{ISOMETRY } T_x \to T_x \\ \text{(The set of such } \mathcal{E} \text{ is a circle, } \dim(Gr^2(T_x \times T_x) = 4) \\ \text{(CNRS, ENS-Lyon)} \\ \end{split}$$

Grassmann manifolds

For E a vector space $Gr^d(E) =$ space of d- linear subspaces of E

 $A \in Lin(E) \rightarrow Graph(A) \in Gr^n(E \times E), n = \dim E$ Its image is the set of planes that are graphs on $E \times 0$

Similarly $GL(E) \rightarrow Gr^n(E \times E)$, its image $Gr^*(E \times E)$, planes that are transversal to $E \times 0$ and $0 \times E$

 $Gr^*(E \times E)$ is a compactification of GL(E)....

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ うらつ

Translation of the transformation problem to an integrability problem

M a manifold $Gr^d(M) o M$, with fiber $Gr^d(\mathcal{T}_x M)$

FACT

There is a n-plane field P on $Gr^{n*}(M \times M)$ such that the projections of its leaves are graphs of local affine transformations $M \to M$.

Equivalently, the projection of a leaf of P is a n-totally geodesic submanifold in $M \times M$.

In addition, P is partially algebraic

- There is a similar construction on a restricted Grassmann bundle yielding graphs of isometries.

Proof

General construction:

On $Gr^d(M) \to M$,

 τ^d geodesic tautological plane field, the projections of its leaves are geodesic d-submanifolds

For
$$S$$
 d -submanifold of M ,
 $Ga^{S} : x \in S \to T_{x}S \in Gr^{d}(M)$ its Gauß map
Let $E \in Gr_{x}^{d}(M) \subset Gr^{d}(M)$, $S = \exp_{x}(E)$,
 $D_{x}(Ga^{S}) : T_{x}S \to T_{E}(Gr^{d}(M))$

Define $\tau^d(E) = \text{Image of } D_x(Ga^S)$

In other words, by definition, the Gauß map of $\exp_x(E)$ is tangent up to order 1 to τ^d at E

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへつ

Other definition

 $T_E(Gr^d(M)) = H_E \oplus V_E$: horizontal + vertical

 V_E tangent space of the fiber

 H_E horizontal space given by the connection

 $D_E \pi : H_E \to T_X M$ isomorphism

 $\tau^{d}(E) =$ inverse image of E(E plays the role of a point in $Gr^{d}(M)$ and a subspace in $T_{x}M$)

Tautologies, examples

- The Liouville form α on $\mathcal{T}*M,$ depends only of the differential structure
- $\omega = d \alpha$ the symplectic structure
- Many similar exterior differential systems on jet bundles...

By means of a Riemannian metric (or merely a connection):

- A canonical parallelism on the frame bundle...

Case d = 1

The geodesic flow is a vector field on TM

 au^1 is the corresponding field directions on the projectivized bundle $\mathbb{P}(TM) = Gr^1(M)$

- 3

3 N A 3 N

Image: A matrix and a matrix

Partial algebraicity

The notion of partial algebraicity extends naturally to projective and then Grassmann bundle...

Geodesic flow: $\ddot{x}^{k} = -\Sigma\Gamma_{ij}^{k}(x)\dot{x}^{i}\dot{x}^{j}$ In phase space $(q, p) \in TM \sim M \times \mathbb{R}^{n}$ $V(q, p) = (p^{1}, \dots, p^{n}, -\Sigma\Gamma_{ij}^{1}(q)p^{i}p^{j}, \dots, -\Sigma\Gamma_{ij}^{n}(q)p^{i}p^{j})$ Quadratic on p^{i}

《曰》 《圖》 《曰》 《曰》 曰

Orbits of the the Isometry Pseudo-group

The pseudo-group of affine transformations is the collection of affines diffeomorphisms between open subsets of M

 $\mathcal{G} = \{U, V, f : U \to V, U, V, \text{ open, and } f \text{ affine } \}$ G: group of global affine transformations

Example: $M = \mathbb{R}^n$, or M an open subset of \mathbb{R}^n , or M a quotient, e.g. $M = \mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ the torus They have essentially the same affine pseudo-group, but different global groups

No dynamics for \mathcal{G} ,

Delicate iteration because of collapse of domains of definition, but one defines orbits $\mathcal{G}(x)$

Definition

M is (affinely) **locally** homogeneous if G has one orbit *M*. (homogeneous if *G* has one orbit)

FACT

The orbit $\mathcal{G}(x)$ is the projection on $\{x\} \times M$ of the integrability domain \mathcal{D} of the n- tautological geodesic plane field on $Gr^{n*}(M \times M)$ In particular if some $\mathcal{G}(x)$ is dense in M, then the projection of \mathcal{D} is dense in $M \times M$

Corollary (Open-dense orbit Theorem, M. Gromov)

If the pseudo-group of affine transformations of M has a dense orbit, then this orbit is open. In other words, some open dense subset of $M' \subset M$ is locally homogeneous

Generalization to more general situations (than connections and metrics): all "rigid" geometric structures.

M' looks like a double coset space $\Gamma \setminus G/H$: algebrico-arithmetic objet. M' = M - C, C singularity set...?

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで April 16, 2014

Partially (real semi-) algebraic Geometry

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

April 16, 2014

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで April 16, 2014

Control Theory

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで April 16, 2014

Control Theory

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

April 16, 2014

イロト イポト イヨト イヨト

45 / 48

3

Control Theory

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで April 16, 2014

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで April 16, 2014

The example

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

April 16, 2014

イロト イポト イヨト イヨト

47 / 48

3

(CNRS, ENS-Lyon)

The open-dense orbit Theorem

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで April 16, 2014