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Control

Control	
  theory	
  and	
  applica0ons	
  

Applica0on	
  domains	
  of	
  control	
  theory:	
  

Mechanics	
  

Vehicles	
  (guidance,	
  dampers,	
  ABS,	
  ESP,	
  …),	
  
Aeronau<cs,	
  aerospace	
  (shu=le,	
  satellites),	
  robo<cs	
  	
  

Electricity,	
  electronics	
  

RLC	
  circuits,	
  thermostats,	
  regula<on,	
  refrigera<on,	
  computers,	
  internet	
  
and	
  telecommunica<ons	
  in	
  general,	
  photography	
  and	
  digital	
  video	
  

Chemistry	
  

Chemical	
  kine<cs,	
  engineering	
  process,	
  petroleum,	
  dis<lla<on,	
  petrochemical	
  industry	
  

Biology,	
  medicine	
  

Predator-­‐prey	
  systems,	
  bioreactors,	
  epidemiology,	
  
medicine	
  (peacemakers,	
  laser	
  surgery)	
  	
  

Economics	
  

Gain	
  op<miza<on,	
  control	
  of	
  financial	
  flux,	
  
Market	
  prevision	
  

E. Zuazua (Ikerbasque – BCAM – CIMI) Control & Design Tlemcen, April 2014 3 / 57



Control

Control theory

The main issues are:

Controllability

Steer the system from an initial state to a prescribed final one.

Optimal control

One aims moreover at minimizing some criterion, minimal cost of control
for instance.

Stabilization

Once a trajectory has been planned, one aims at stabilizing it in order to
make it robust, insensitive to perturbations, by means of feedback controls.

Observability and parameter identification

Recover the complete state from partial information.
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Control

THE ORIGINS:

“. . . if every instrument could accomplish its own work, obeying
or anticipating the will of others . . .
if the shuttle weaved and the pick touched the lyre without a
hand to guide them, chief workmen would not need servants, nor
masters slaves.”

Chapter 3, Book 1, of the monograph “Politics” by Aristotle (384-322 B.
C.).

Main motivation: The need of automatizing processes to let the human
being gain in liberty, freedom, and quality of life.
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Control

An example: noise reduction

Acoustic noise reduction
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Control

An example: noise reduction

Noise reduction is a subject to research in many different fields.
Depending on the environment, the application, the source signals, the
noise, and so on, the solutions look very different. Here we consider noise
reduction for audio signals, especially speech signals, and concentrate on
common acoustic environments such an office room or inside a car. The
goal of the noise reduction is to reduce the noise level without distorting
the speech, thus reduce the stress on the listener and - ideally - increase
intelligibility.
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Control

Other applications of noise reduction
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Control

Gaussian filters:

u(x) = [G (·) ? f (·)](x); G (x) = (4π)−N/2 exp(−|x |2/4).

E. Zuazua (Ikerbasque – BCAM – CIMI) Control & Design Tlemcen, April 2014 9 / 57



Control

Control in an information rich World, SIAM, R. Murray Ed., 2003.
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The Calculus of Variations

The Calculus of Variations

x
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The Calculus of Variations

Calculus of variations deals with maximizing or minimizing functionals,
as opposed to ordinary calculus which deals with maximizing and
minimizing ordinary functions.

The curve of shortest length, geodesic, connecting two points.

Fermat’s principle: light follows the path of shortest optical length
connecting two points, where the optical length depends upon the
material of the medium.

Leonhard Euler(1707-1783): For since the fabric of the universe
is most perfect and the work of a most wise creator, nothing at
all takes place in the universe in which some rule of the
maximum or minimum does not appear.
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The Calculus of Variations

Geodesic curves
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The Calculus of Variations

Fermat’s principle/Snellious law

sin(θ1)

sin(θ2)
=

v1

v2
=

n2

n1
.

Named after the dutch astronomer Willebrord Snellius (1580 - 1626).
Pierre de Fermat (1601 - 1665).
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The Calculus of Variations
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The Calculus of Variations

To find x s. t.

T =

√
a2 + x2

v1
+

√
b2 + (`− x)2

v2
.

Fermat found the problem too difficult for an analytical treatment (I admit
that this problem is not one of the easiest). The computations were then
proudly performed by Leibniz (1684)
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The Calculus of Variations

T ′ =
1

v1

2x

2
√

a2 + x2
− 1

v2

2(`− x)

2
√

b2 + (`− x)2
.

Observing that sin(α1) = x/
√

a2 + x2; sin(α2) = (`− x)/
√

b2 + (`− x)2

we see that this derivative vanishes whenever

sin(θ1)

sin(θ2)
=

v1

v2
.

Furthermore:

T ′′ =
1

v1

a2

(a2 + x2)3/2
+

1

v2

b2

(b2 + (`− x)2)3/2
> 0,

showing that the critical point is the minimizer.
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The Calculus of Variations

Optimal transport

In mathematics and economics, transportation theory refers to the study
of optimal transportation and allocation of resources. The problem was
formalized by the French mathematician Gaspard Monge in 1781 (“Sur la
théorie des déblais et des remblais” (Mém. de l’Acad. de Paris, 1781))
An example: Suppose that we have n books of equal width on a shelf
(the real line), arranged in a single contiguous block. We wish to rearrange
them into another contiguous block, but shifted one book-width to the
right. Two obvious candidates for the optimal transport plan present
themselves:

Move all n books one book-width to the right; (“many small moves”)
Move the left-most book n book-widths to the right and leave all
other books fixed. (“one big move”)

If the cost function is proportional to Euclidean distance
(c(x , y) = α|x − y |) then these two candidates are both optimal. If, on
the other hand, we choose the strictly convex cost function proportional to
the square of Euclidean distance (c(x , y) = α|x − y |2), then the “many
small moves” option becomes the unique minimizer.
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The Calculus of Variations

But the origins of the potential applications of the idea of optimal
transport and geodesic paths goes back to the ancient Egipt where the
“harpenodaptai” had as main task drawing long straight lines on the sand
of the desert.
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The Calculus of Variations

Minimal surfaces

Minimal surfaces are defined as surfaces with zero mean curvature.
Finding a minimal surface of a boundary with specified constraints is a
problem in the Calculus of Variations and is sometimes known as
Plateau’s problem.
Physical models of area-minimizing minimal surfaces can be made by
dipping a wire frame into a soap solution, forming a soap film, which is a
minimal surface whose boundary is the wire frame.
Enneper’s surface:

x = u(1− u2/3 + v 2)/3; y = −v(1− v 2/3 + u2)/3; z = (u2 − v 2)/3.
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The Calculus of Variations

Isoperimetric inequalities

Isoperimetric literally means ”having the same perimeter”. The
isoperimetric problem is to determine a plane figure of the largest possible
area whose boundary has a specified length. The isoperimetric inequality
states, for the length L of a closed curve and the area A of the planar
region that it encloses, that

4πA ≤ L2,

and that equality holds if and only if the curve is a circle.
The closely related Dido’s problem asks for a region of the maximal area
bounded by a straight line and a curvilinear arc whose endpoints belong to
that line. It is named after Dido, the legendary founder and first queen of
Carthage.

Carthage & Cologne
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The Calculus of Variations

The computational version of the Calculus of Variations

J(u∗) = min
u∈U

J(u).

Gradient methods:
uk+1 = uk − ρ∇J(uk).
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The Calculus of Variations

Montecarlo methods:
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Controllability

“Cybernétique” was proposed by the French physicist A.-M. Ampère in the
XIX Century to design the nonexistent science of process controlling. This
was quickly forgotten until 1948, when Norbert Wiener (1894–1964) chose
“Cybernetics” as the title of his famous book.

Wiener defined Cybernetics as “ the science of control and communication
in animals and machines”.

In this way, he established the connection between Control Theory and
Physiology and anticipated that, in a desirable future, engines would obey
and imitate human beings.

E. Zuazua (Ikerbasque – BCAM – CIMI) Control & Design Tlemcen, April 2014 26 / 57



Controllability
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Controllability

Let n,m ∈ N∗ and T > 0 and consider the following linear
finite-dimensional system

x ′(t) = Ax(t) + Bu(t), t ∈ (0,T ); x(0) = x0. (1)

In (1), A is a n × n real matrix, B is of dimensions n ×m and x0 is the
initial sate of the sytem in Rn. The function x : [0,T ] −→ Rn represents
thestate and u : [0,T ] −→ Rm the control.
¿Can we control the state x of n components with only m controls, even if
n >> m?
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Controllability

Theorem

(1958, Rudolf Emil Kálmán (1930– )) System (1) is controllable iff

rank [B, AB, · · · ,An−1B] = n.
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Controllability

J. M. Coron, BCAM, June 2011.
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Controllability

Proof:

From the variation of constants formula:

x(t) = eAtx0 +

∫ t

0
eA(t−s)Bu(s)ds = eAtx0 +

∫ t

0

∑
k≥0

(t − s)k

k!
AkBu(s)ds.

By Cayley2-Hamilton’s 3 theorem Ak for k ≥ n is a linear combination of
I ,A, ...,An−1.

2Arthur Cayley (UK, 1821 - 1895)
3William Rowan Hamilton (Ireland, 1805 - 1865)
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Controllability

An example: Nelson’s car.

Two controls suffice to control a four-dimensional dynamical system.

E. Sontag, Mathematical control theory, 2nd ed.,Texts in Applied
Mathematics,vol.6, Springer-Verlag, NewYork,1998.
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Controllability

The norwegian mathematician Marius Sophus Lie ( 1842 – 1899) observed
that:

exp(A + B) = lim
n→∞

[
exp(A/n) exp(B/n)

]n
.

The same idea inspired Karl Hermann Amandus Schwarz (1843 – 1921)
when introducing the nowadays ubiquitous method of Domain
Decomposition:
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Optimal Design

The optimal pancake
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Optimal Design

Optimal shape design in aeronautics.

Objective: To modify the shape of the airplane so to improve its
efficiency, security, reduce noise, energy consumption, reduce drag,
augment lift,...
Point of view: That of the wind tunnel. The airplane is fixed while
air is flowing around.
Variations: When modifying the shape of the airplane, the way air is
flowing around is modified, and the pressure field it applies into the
airplane as well. The aerodynamical properties of the airplane are
modified.
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Optimal Design

Tools.

Computational fluid mechanics: It allows to simulate the flow of air
around a cavity.

Optimization: It allows building an iterative algorithm to improve
performance.
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Optimal Design

Computed pressure field over the surface of the airplane and flow lines of
particles of air.
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Optimal Design

The method consists on formulating the problem in the context of the
Calculus of Variations. To minimize

J(Ω∗) = min
Ω∈Cad

J(Ω)

where Cad is the class of admissible shapes Ω, and J = is the cost
functional measuring the efficiency of the design (drag, lift,...)
J depends on Ω but not directly, rather thorugh u(Ω), the solution of the
air-dynamics in the exterior of the airplane.
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Optimal Design

Leonhard Euler

(1707-1783) derived the equations for the motion of perfect fluids, in the
absence of viscosity:

ut + u · ∇u = ∇p.

But D’Alembert observed that the flight of birds would be impossible
according to that model.
Claude Louis Marie Henri Navier (1785-1836) and Sir George Gabriel
Stokes (1819-1903) much later incorporated the viscosity term:

ut−ν∆u+u · ∇u = ∇p.
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Optimal Design

There are many open complex problems in the field of Fluid Mechanics.

Fluid Mechanics is one of the most important areas of Physics because of
its impact on our life : air, water, blood,...
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Optimal Design

The millenium problems
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Optimal Design

The science program is still ongoing to a large extent thanks to computers.
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Optimal Design

Pascalina, Blaise Pascal, 1645; ENIAC: Electronic Numerical Integrator
And Computer, 1946; Macbook Air, 2008.
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Optimal Design

The Thames Barrier

E. Zuazua (Ikerbasque – BCAM – CIMI) Control & Design Tlemcen, April 2014 45 / 57



Optimization

Table of Contents

1 Control

2 The Calculus of Variations

3 Controllability

4 Optimal Design

5 Optimization

6 Perpectives

E. Zuazua (Ikerbasque – BCAM – CIMI) Control & Design Tlemcen, April 2014 46 / 57



Optimization

In mathematics, computational science, or management science,
mathematical optimization (alternatively, optimization or mathematical
programming) refers to the selection of a best element from some set of
available alternatives.

Convex programming

Linear programming

Semidefinite programming

Conic programming

Stochastic programming

Robust programming

Combinatorial optimization

Dynamic programming

Heuristics and metaheuristics

....
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Optimization

An example in logistics

This is a typical and ubiquitous example in linear programming. A
company si , i ≤ 1 ≤ M items in each of the M storage locations. N
clients request rj items each, 1 ≤ j ≤ N. The cost of transportation
between the i-th storage location and the j-th client is cij . We have to
decide about the number of items to be delivered from the i-th storage
location the j-th client, vij .
Of course we want to minimize the cost of transportation. The problem is
then that of minimizing the functional

inf
{vij}

 M∑
i=1

N∑
j=1

cijvij


under the constraints

vij ≥ 0;
N∑
j=1

vij ≤ si ;
M∑
i=1

vij = rj , 1 ≤ i ≤ M; 1 ≤ j ≤ N.
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Optimization

These tools are so much used that nowadays there is plenty of
software available both free and comercial: IPOPT

10/04/12 07:35Ipopt

Página 1 de 3https://projects.coin-or.org/Ipopt

Last modified on 08/30/11 20:01:50

Welcome to the Ipopt home page

Note that these project webpages are based on Wiki, which allows webusers to modify the content
to correct typos, add information, or share their experience and tips with other users. You are
welcome to contribute to these project webpages. To edit these pages or submit a ticket you must
first !register and login.

Introduction

Ipopt (Interior Point OPTimizer, pronounced eye-pea-Opt) is a software package for large-scale
nonlinear optimization. It is designed to find (local) solutions of mathematical optimization problems
of the from

   min     f(x)
x in R^n

s.t.       g_L <= g(x) <= g_U
           x_L <=  x   <= x_U

where f(x): R^n --> R is the objective function, and g(x): R^n --> R^m are the constraint
functions. The vectors g_L and g_U denote the lower and upper bounds on the constraints, and the
vectors x_L and x_U are the bounds on the variables x. The functions f(x) and g(x) can be
nonlinear and nonconvex, but should be twice continuously differentiable. Note that equality
constraints can be formulated in the above formulation by setting the corresponding components of
g_L and g_U to the same value.

Background

Ipopt is written in C++ and is released as open source code under the Eclipse Public License (EPL).
It is available from the ​COIN-OR initiative. The code has been written by ​Carl Laird and ​Andreas
Wächter, who is the COIN project leader for Ipopt.

The Ipopt distribution can be used to generate a library that can be linked to one's own C++, C, or
Fortran code, as well as a solver executable for the ​AMPL modeling environment. The package
includes interfaces to ​CUTEr optimization testing environment, as well as the ​MATLAB and ​R
programming environments. IPOPT can be used on Linux/UNIX, Mac OS X and Windows platforms.

As open source software, the source code for Ipopt is provided without charge. You are free to use
it, also for commercial purposes. You are also free to modify the source code (with the restriction
that you need to make your changes public if you decide to distribute your version in any way, e.g.
as an executable); for details see the CPL license. And we are certainly very keen on feedback from
users, including contributions!

In order to compile Ipopt, certain third party code is required (such as some linear algebra routines,
or the AMPL Solver Library). Those are available under different conditions/licenses.

If you want to learn more about Ipopt, you can find references in the "Papers about Ipopt" section
here.

Download

Latest stable: 

Latest release: 

Download Ipopt (source tarballs). You can also obtain the Ipopt code via Subversion. Please refer to
the ​documentation and the ​General Configuration and Installation Instructions for COIN projects.
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Perpectives

We live more and more on a complex network
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Perpectives

Mathematics are and will be increasingly influenced by the challenge of
dealing with complexity and multidisciplinarity. The following areas will
gain relevance:

Discrete mathematics, combinatorics, graphs,...;

Data mining/Big data;

Statistical learning;

and other fields of research such as neurosciences and social sciences.
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Perpectives

A mathematician is a machine for turning coffee into theorems

Paul Erdös (1913–1996) was a Hungarian mathematician. He published
more papers than any other mathematician in history, working with
hundreds of collaborators. He worked on problems in combinatorics, graph
theory, number theory, classical analysis, approximation theory, set theory,
and probability theory.
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Perpectives

There will be unexpected advances in computing
algorithms...
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Perpectives
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Perpectives
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