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Motivation

Climate modelling

Climate modeling is a grand challenge computational problem, a
research topic at the frontier of computational science.

Simplified models for geophysical flows have been developed with the
aim to capture the important geophysical structures, while keeping
the computational cost at a minimum.

Although successful in numerical weather prediction, these models
have a prohibitively high computational cost in climate modeling.

P. L. Vidale, http://www.met.reading.ac.uk/ vidale/
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Motivation

Thames barrier

The Thames Barrier’s purpose is to prevent London from being
flooded by exceptionally high tides and storm surges.
A storm surge generated by low pressure in the Atlantic Ocean, past
the north of Scotland may then be driven into the shallow waters of
the North Sea. The surge tide is funnelled down the North Sea which
narrows towards the English Channel and the Thames Estuary. If the
storm surge coincides with a spring tide, dangerously high water levels
can occur in the Thames Estuary. This situation combined with
downstream flows in the Thames provides the triggers for flood
defence operations.
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Motivation

Tsunamis

Some isolated waves (solitons) are large and travel without loss of
energy.

This is the case of tsunamis and rogue waves.

Warning: Hence, there is no use trying sending a counterwave to stop a
tsunami!
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Motivation

Sonic boom

Goal: the development of supersonic aircraft that are sufficiently quiet
so that they can be allowed to fly supersonically over land.
The pressure signature created by the aircraft must be such that,
when it reaches the ground, (a) it can barely be perceived by the
human ear, and (b) it results in disturbances to man-made structures
that do not exceed the threshold of annoyance for a significant
percentage of the population.

Juan J. Alonso and Michael R. Colonno, Multidisciplinary Optimization
with Applications to Sonic-Boom Minimization, Annu. Rev. Fluid Mech.

2012, 44:505 – 26.
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Long time numerical simulations

Geometric integration

Numerical integration of the pendulum
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Long time numerical simulations

Standard convergence of numerical schemes referes to convergence in
finite time intervals [0,T ], T <∞.

standard convergence does not ensure a correct asymptotic behavior
as t →∞ for the numerical solutions.

Numerical schemes that do preserve the asymptotic behavior of the
ODE solutions are said to be simplectic or geometric.
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Long time numerical simulations

Joint work with L. Ignat & A. Pozo, Math of Computation, 2014

Consider the 1-D conservation law with or without viscosity:

ut +
[
u2
]
x

= εuxx , x ∈ R, t > 0.

Then2 :

If ε = 0, u(·, t) ∼ N(·, t) as t →∞;

If ε > 0, u(·, t) ∼ uM(·, t) as t →∞,

uM is the constant sign self-similar solution of the viscous Burgers
equation (defined by the mass M of u0), while N is the so-called
hyperbolic N-wave, defined as:

N(x , t) :=

{
x
t , if − 2(pt)

1
2 < x < (2qt)

1
2

0 otherwise

p := −2 min
y∈R

∫ y

∞
u0(x)dx , q := 2 max

y∈R

∫ y

∞
u0(x)dx

2Y. J. Kim & A. E. Tzavaras, Diffusive N-Waves and Metastability in the
Burgers Equation, SIAM J. Math. Anal. 33(3) (2001), 607–633.
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Long time numerical simulations

4 L. I. IGNAT, A. POZO, E. ZUAZUA

Figure 1. Di↵usive wave and N-wave evaluated at t = 10, with �x = 1/10,
M� = 1/10, p� = 1/10 and q� = 1/5.

The rest of this paper is divided as follows: in Section 2 we present some classical facts about
the numerical approximation of one-dimensional conservation laws and obtain preliminary results
that will be used in the proof of the main results of this paper. In Section 3 we prove the main
result, Theorem 1.1, and we illustrate it in Section 4 with a numerical simulation. In Section
5, we discuss the approximation through similarity variables and compare the results to the
approximations obtained directly from the physical ones. Finally, in Section 6 we give some
ideas about how to generalize the results to other numerical schemes and to more general fluxes
(uniformly convex or odd ones).

2. Preliminaries

In this part, following [3] and [7], we recall a few of the well-known results about numerical
schemes for 1D scalar conservation laws. We obtain some new results that will be used in
Section 3 in the proof of Theorem 1.1. We restrict our attention to the Burgers equation, i.e.,
the nonlinear term f is given by

f(u) =
u2

2
.

More general results will be discussed in Section 5 for uniformly convex fluxes and odd fluxes.
First, given a time-step �t and a uniform spatial grid � with space increment �x, we approxi-
mate the conservation law

(2.1)

(
ut +

⇣
u2

2

⌘
x

= 0, x 2 R, t > 0,

u(x, 0) = u0(x), x 2 R,

by an explicit di↵erence scheme of the form:

(2.2) un+1
j = H(un

j�k, . . . , u
n
j+k), 8n � 0, j 2 Z,

where H : R2k+1 ! R, k � 1, is a continuous function and un
j denotes the approximation of

the exact solution u at the node (n�t, j�x). Assuming that there exists a continuous function
g : R2k ! R, called numerical flux, such that

H(u�k, . . . , uk) = u0 � � [g(u�k+1, . . . , uk) � g(u�k, . . . , uk�1)] , � = �t/�x,

E. Zuazua (Ikerbasque & BCAM & CIMI-Toulouse)PDE, Numerics, Control, Large Time Tlemcen, April 2014 12 / 50



Long time numerical simulations

Why in the inviscid case the asymptota is given by a N-wave?

Note that the equation can then be written as

ut + 2uux = 0.

This is a transport equation, driven by the field 2u. Thus, characteristics
departing from points where u < 0 move towards the left while those in
the region u > 0 to the right.
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Long time numerical simulations

And why in the viscous case to a viscous wave?

This occurs already for the heat equation where the asymptotic behavior
of solutions is given by the gaussian heat kernel 3

ut − uxx = 0,

G (x , t) = (4πt)−1/2exp(−|x |2/4t).

Exercise: Prove that, if f ∈ L1(R, 1 + |x |) then

f (x) =

∫
f (x)dxδ + [F ]′,

with F ∈ L1(R).

3J. Duoandikoetxea and E. Z.. Moments, masses de Dirac et décomposition
de fonctions C. R. Acad. Sci. Paris. 315(6). 693-698. 1992.

E. Zuazua (Ikerbasque & BCAM & CIMI-Toulouse)PDE, Numerics, Control, Large Time Tlemcen, April 2014 14 / 50



Long time numerical simulations

There is no contradiction!!!

Vanishing viscosity refers to the limit as ε→ 0 and t fixed;

While the large time behavior refers to passing to the limit as t →∞
for ε fixed.

Both limit processes do not necessarily commute, ε→ 0 and t →∞, the
same as they do not in the numerical approximation of ODEs, where the
issue is rather ∆t → 0 versus t →∞.
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Long time numerical simulations Vanishing viscosity
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Long time numerical simulations Vanishing viscosity

The Hopf-Cole transform

Let u = u(x , t) be a solution of

ut − νuxx + (u2)x = 0.

such that | u(x , t) | + | ux(x , t) |→ 0 as | x |→ ∞.
Then

v = v(x , t) =

∫ x

−∞
u(s, t)ds (1)

solves
vt − νvxx+ | vx |2= 0. (2)

Define then
w = v(x , t/ν)

that satisfies

wt − wxx +
1

ν
| wx |2= 0. (3)
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Long time numerical simulations Vanishing viscosity

On the other hand,
z = w/ν (4)

satisfies
zt − zxx+ | zx |2= 0. (5)

Introduce, at last,
η(x , t) = e−z (6)

that solves the heat equation

ηt − ηxx = 0. (7)

Undoing the change of variables

u = vx
v(·, t/ν) = w(·, t) = νz(·, t) = −ν log(η).

Then

u(x , t) = −ν ηx(x , νt)

η(x , νt)
. (8)
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Long time numerical simulations Vanishing viscosity

The solution η of this heat equation can be obtained by convolution with
the heat kernel:

G (x , t) = (4πt)−1/2 exp
(
− | x |2

/
4t
)
, (9)

so that
η(x , t) =

[
G (·, t) ∗ η0(·)

]
(x), (10)

where η0 is the initial datum of η.
On the other hand,

Gx(x , t) = − x

4
√
πt3/2

exp
(
− | x |2

/
4t
)
. (11)
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Long time numerical simulations Vanishing viscosity

In this way we get

uν(x , t) =

∫
R(x − y)e−H(x , y , t)/νdy

2t
∫
R e−H(x , y , t)/νdy

(12)

where

H(x , y , t) =
| x − y |2

4t
+

∫ y

−∞
u0(σ)dσ. (13)
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Long time numerical simulations Vanishing viscosity

The contribution of the integral as ν → 0+4

∫

R
f (y)e−H/νdy (14)

around the minimum y = ξ is

f (ξ)

√
2πν

H ′′(ξ)
e−H(ξ)/ν . (15)

In our case

H ′′(ξ) =
1

2t
. (16)

We get
∫

R
(x − y)e−H/νdy ∼ (x − ξ)

√
πν

t
e−[tu2

0(ξ)+
∫ ξ
−∞ u0(σ)dσ]ν , (17)

∫

R
e−H/νdy ∼

√
πν

t
e−[tu2

0(ξ)+
∫ ξ
−∞ u0(σ)dσ]. (18)

4Carl M. Bender and Steven A. Orszag, Advanced Mathematical Methods
for Scientists and Engineers: Asymptotic Methods and Perturbation Theory ,
Springer, 1999
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Long time numerical simulations Vanishing viscosity

Then

uν(x , t) ∼ (x − ξ)

2t
(19)

where ξ is characterized by the equation

ξ = x − 2tu0(ξ), (20)

corresponding to the minima of H.
Thus

uν(x , t) ∼ u0(ξ). (21)

This is, precisely, the solution obtained by the method of characteristics:

uν(x , t) ∼ u0(ξ). (22)

This is valid when H has only one minimum.

When u0 is increasing and smooth there is only one solution and we
recover the same solution as the one obtained by the method of
characteristics.
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Long time numerical simulations Vanishing viscosity

When H has several minima ξ1, . . . , ξN , each of them provides a
contribution of the same form.

When there are two absolute minima ξ1, ξ2, the asymptotic form of uν
would be:

uν(x , t) ∼ u0(ξ1) + u0(ξ2). (23)

What does it mean?
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Long time numerical simulations Vanishing viscosity

We now consider the Riemann problem

u0(x) =

{
0, x < 0
1, x > 0.

(24)

We get:

When x < 0, this gives ξ = x and then the limit is u = u0(ξ) = 0.

When x > 2t we get ξ = x − 2t and then the solution is u ≡ 1, which
coincides with the result that the method of characteristic yields.

In the intermediate zone we get ξ = x/(1 + 2t) and

u(x , t) =
x

2t
. (25)

The rarefaction wave u = x/2t connects the value u = 0 to the left and
x = 1 to the right.
This is the physical or entropy solution.
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Long time numerical simulations Vanishing viscosity

For the Riemann problem

u0(x) =

{
1, x < 0
0, x > 0

(26)

we get a shock like solution.

The method of vanishing viscosity confirms this is the entropy or physical
solution.

In this case, the function H has two local minima, but when determining
the global one we get either the value u ≡ 0 or u ≡ 1 depending on
whether we are on the left or right of the shock.
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Long time numerical simulations Vanishing viscosity

Shock versus rarefaction waves
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Long time numerical simulations Vanishing viscosity

The Oleinick entropy condition

Physical solutions of the Burgers equation satisfy

ux ≤ 1/2t. (27)

Formally, v = ux satisfies

vt + (2uv)x = vt + 2v2 + 2uvx = 0. (28)

By the maximum principle we deduce that

v ≤ w (29)

where w = w(t) is the solution of

wt + 2w2 = 0 (30)

with initial datum w(0) =∞: w(t) = 1/2t.
This formal argument can be fully justified for the physical solutions that
are obtained as zero viscosity limits.

Note that this is compatible with the structure of shock waves
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Long time numerical simulations Vanishing viscosity

Summary on entropy solutions of the Burgers equation

Entropy solutions are the physical ones

Entropy solutions are characterized by the zero viscosity limit.

Entropy solutions are characterized also by the Oleinick inequality.

Entropy solutions are unique (celebrated result by Kruzkov).

All this can be extended to multi-dimensional scalar conservation laws:

ut + div(~f (u)) = 0.

Note however that, in real applications, we often deal with systems, where
theory if much more complex and only partially complete.
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Long time numerical simulations Vanishing viscosity

As we have seen solutions may develop shocks or quasi-shock
configurations.
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Long time numerical simulations Vanishing viscosity

References on the Burgers equation
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E. Hopf, The partial differential equation ut + uux = uxx , Comm.
Pure Appl. Math. 3, 20–230 (1950).
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Long time numerical simulations Conservative numerical schemes
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Long time numerical simulations Conservative numerical schemes

Let us consider now numerical approximation schemes





un+1
j = ujn −

∆t

∆x

(
gn
j+1/2 − gn

j−1/2

)
, j ∈ Z,n > 0.

u0
j = 1

∆x

∫ xj+1/2

xj−1/2
u0(x)dx , j ∈ Z,

The approximated solution u∆ is given by

u∆(t, x) = unj , xj−1/2 < x < xj+1/2, tn ≤ t < tn+1,

where tn = n∆t and xj+1/2 = (j + 1
2 )∆x .

Is the large tine dynamics of these discrete systems, a discrete version of
the continuous one?
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Long time numerical simulations Conservative numerical schemes

3-point conservative schemes

1 Lax-Friedrichs

gLF (u, v) =
u2 + v2

4
− ∆x

∆t

(
v − u

2

)
,

2 Engquist-Osher

gEO(u, v) =
u(u + |u|)

4
+

v(v − |v |)
4

,

3 Godunov

gG (u, v) =





min
w∈[u,v ]

w2

2 , if u ≤ v ,

max
w∈[v ,u]

w2

2 , if v ≤ u.
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Long time numerical simulations Conservative numerical schemes

Numerical viscosity

We can rewrite three-point monotone schemes in the form

un+1
j − unj

∆t
+

(unj+1)2 − (unj−1)2

4∆x
= R(unj , u

n
j+1)− R(unj−1, u

n
j )

where the numerical viscosity R can be defined in a unique manner as

R(u, v) =
Q(u, v)(v − u)

2
=
λ

2

(u2

2
+

v2

2
− 2g(u, v)

)
.

For instance:

RLF (u, v) =
v − u

2
,

REO(u, v) =
λ

4
(v |v | − u|u|),

RG (u, v) =





λ
4 sign(|u| − |v |)(v2 − u2), v ≤ 0 ≤ u,

λ
4 (v |v | − u|u|), elsewhere.
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Long time numerical simulations Conservative numerical schemes

Properties

These three schemes are well-known to satisfy the following properties:

They converge to the entropy solution

They are monotonic

They preserve the total mass of solutions

They are OSLC consistent:

unj−1 − unj+1

2∆x
≤ 2

n∆t

L1 → L∞ decay with a rate O(t−1/2)

Similarly they verify uniform BV loc estimates
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Long time numerical simulations Conservative numerical schemes

Main result

Theorem (Lax-Friedrichs scheme)

Consider u0 ∈ L1(R) and ∆x and ∆t such that λ
∣∣∣un
∣∣∣
∞,∆
≤ 1,

λ = ∆t/∆x . Then, for any p ∈ [1,∞), the numerical solution u∆ given by
the Lax-Friedrichs scheme satisfies

lim
t→∞

t
1
2

(1− 1
p

)
∣∣∣u∆(t)− w(t)

∣∣∣
Lp(R)

= 0,

where the profile w = wM∆
is the unique solution of




wt +

(
w2

2

)
x

= (∆x)2

2 wxx , x ∈ R, t > 0,

w(0) = M∆δ0,

with M∆ =
∫
R u0

∆.
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Long time numerical simulations Conservative numerical schemes

Main result

Theorem (Engquist-Osher and Godunov schemes)

Consider u0 ∈ L1(R) and ∆x and ∆t such that λ
∣∣∣un
∣∣∣
∞,∆
≤ 1,

λ = ∆t/∆x . Then, for any p ∈ [1,∞), the numerical solutions u∆ given
by Engquist-Osher and Godunov schemes satisfy the same asymptotic
behavior but for the hyperbolic N − wave w = wp∆,q∆

unique solution of





wt +
(
w2

2

)
x

= 0, x ∈ R, t > 0,

w(0) = M∆δ0, lim
t→0

∫ x

0
w(t, z)dz =





0, x < 0,

−p∆, x = 0,

q∆ − p∆, x > 0,

with M∆ =
∫
R u0

∆ and
p∆ = −minx∈R

∫ x
−∞ u0

∆(z)dz and q∆ = maxx∈R
∫∞
x u0

∆(z)dz .
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Long time numerical simulations Conservative numerical schemes

Example

Let us consider the inviscid Burgers equation with initial data

u0(x) =





−0.05, x ∈ [−1, 0],

0.15, x ∈ [0, 2],

0, elsewhere.

The parameters that describe the asymptotic N-wave profile are:

M = 0.25 , p = 0.05 and q = 0.3.

We take ∆x = 0.1 as the mesh size for the interval [−350, 800] and
∆t = 0.5. Solution to the Burgers equation at t = 105:
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Long time numerical simulations Conservative numerical schemes

Similarity variables

Let us consider the change of variables given by:

s = ln(t + 1), ξ = x/
√
t + 1, w(ξ, s) =

√
t + 1 u(x , t),

which turns the continuous Burgers equation into

ws +

(
1

2
w2 − 1

2
ξw

)

ξ

= 0, ξ ∈ R, s > 0.

The asymptotic profile of the N-wave becomes a steady-state solution:

Np,q(ξ) =

{
ξ, −√2p < ξ <

√
2q,

0, elsewhere,
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Long time numerical simulations Conservative numerical schemes

Examples

Convergence of the numerical solution using Engquist-Osher scheme
(circle dots) to the asymptotic N-wave (solid line). We take ∆ξ = 0.01
and ∆s = 0.0005.
Snapshots at s = 0, s = 2.15, s = 3.91, s = 6.55, s = 20 and s = 100.
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Long time numerical simulations Conservative numerical schemes

Examples

Numerical solution using the Lax-Friedrichs scheme (circle dots), taking
∆ξ = 0.01 and ∆s = 0.0005. The N-wave (solid line) is not reached, as it
converges to the diffusion wave.
Snapshots at s = 0, s = 2.15, s = 3.91, s = 6.55, s = 20 and s = 100.
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Inverse design for the Burgers equation

The problem of inverse design, motivated by the problem of sonic-boom,
and more precisely by the determination of the profile of the initial
signature so to make sure it is acceptable when reaching earth, according
to present regulations, can be formulated as an optimization or control
problem in which the initial datum of the PDE under consideration.

Juan J. Alonso and Michael R. Colonno, Multidisciplinary Optimization
with Applications to Sonic-Boom Minimization, Annu. Rev. Fluid Mech.

2012, 44:505 – 26.
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Inverse design for the Burgers equation

Consider the minimization of the functional

J(u0) =
1

2

∫ ∞

−∞
|u(x ,T )− ud(x)|2dx .

associated to the solutions of the Burgers equation

{
∂tu + ∂x(u2)− εuxx = 0

u(x , 0) = u0(x).

The minimization problem above can be proved to have a solution for a
large class of targets and within reasonable classes of initial data.
What about its numerical computation?
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Inverse design for the Burgers equation

The discrete approach

The discrete version of the functional:

J∆(u0
∆) =

∆x

2

∞∑

j=−∞
(uN+1

j − udj )2,

where u∆ = {ukj } solves a numerical discretization of the PDE based on
some of the conservative schemes for conservation laws mentioned above.

In view of the very different asymptotic behavior of numerical solutions in
large times, we also expect a different performance of the discrete
optimization achieved.
In fact, we expect Engquist-Osher to perform well, but Lax-Friedrisch to
have difficulties to recover the correct inverse design.
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Inverse design for the Burgers equation

E. Zuazua (Ikerbasque & BCAM & CIMI-Toulouse)PDE, Numerics, Control, Large Time Tlemcen, April 2014 46 / 50



Inverse design for the Burgers equation

Is the iterative algorithm trapped in a local minimizer?

E. Zuazua (Ikerbasque & BCAM & CIMI-Toulouse)PDE, Numerics, Control, Large Time Tlemcen, April 2014 47 / 50



Inverse design for the Burgers equation

This is what the IPOPT software do (N. Allihverdi)
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Inverse design for the Burgers equation

And this is the bad performance of the recovered initial profile when
employing EO dynamics.
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Conclusions

Lots to be done on:

Development of numerical algorithms preserving large time
asymptotics for nonlinear PDEs (other works of our team on
dispersive equations, dissipative wave equations,...)

Impact on inverse design.

Important applications.

All this needs to be made in a multidisciplinary environment so to assure
impact on Engineering and Sciences
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