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Summary. We consider the problem of hedging a contingent claim, in a market
where prices of traded assets can undergo jumps, by trading in the underlying asset
and a set of traded options. We give a general expression for the hedging strategy
which minimizes the variance of the hedging error, in terms of integral represen-
tations of the options involved. This formula is then applied to compute hedge
ratios for common options in various models with jumps, leading to easily compu-
table expressions. The performance of these hedging strategies is assessed through
numerical experiments.
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1 Introduction

The Black–Scholes model and generalizations of it where the dynamics of
prices Xt = (X1

t , . . . , Xm
t ) of several assets is described by a diffusion process

driven by Brownian motion

dXt = Xtσ(t,Xt)dWt + Xtµtdt (1)

have strongly influenced risk management practices in derivatives markets
since the 1970s. In such models, the question of hedging a given contingent
claim with payoff Y paid at a future date T can be theoretically tackled via a
representation theorem for Brownian martingales: by switching to a (unique)
equivalent martingale measure Q, we obtain a unique self-financing strategy
φt such that

Y = EQ[Y |F0] +
∫ T

0

φtdXt Q − a.s. (2)
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This representation then holds almost surely under any measure equivalent
to Q, thus yielding a strategy φt with initial capital c = EQ[Y |F0] which
“replicates” the terminal payoff Y almost-surely. On the computational side,
φt can be computed by differentiating the option price C(t, St) = EQ[Y |Ft]
with respect to the underlying asset(s) Xt. These ideas are central to the use
of diffusion models in option pricing and hedging.

Stochastic processes with discontinuous trajectories are being increasingly
considered, both in the research literature and in practice, as realistic alter-
natives to the Black–Scholes model and its diffusion-based generalizations.
A natural question is therefore to examine what becomes of the above asser-
tions in presence of discontinuities in asset prices. It is known that, except in
very special cases [25], martingales with respect to the filtration of a discon-
tinuous process X cannot be represented in the form (2), leading to market
incompleteness. Far from being a shortcoming of models with jumps, this
property corresponds to a genuine feature of real markets: the impossibility
of “replicating” an option by trading in the underlying asset.

A natural extension, due to Föllmer and Sondermann [18], has been to
approximate the target payoff Y by optimally choosing the initial capital c
and a self-financing trading strategy (φ1

t , . . . , φ
m
t ) in the assets X1, . . . , Xm in

order to minimize the quadratic hedging error [7, 18]:

minimize E

(
c +

m∑
i=1

∫ T

0

φi
tdXi

t − Y

)2

. (3)

Unlike approaches based on other (non-quadratic) loss functions, quadratic
hedging has the (great) advantage of yielding linear hedging rules, which
correspond to observed market practices.

The expectation in (3) can be understood either as being computed
under an “objective” measure meant as a statistical model of price fluctua-
tions [2,17,19,27] or as being computed under a martingale (“risk-adjusted”)
measure [6, 7, 16, 18, 24]. Whereas the first choice may seem more natural,
there are practical and theoretical motivations for using a risk-adjusted
(martingale) measure fitted to market prices of options for computing the
hedging performance.

• When X is a martingale, problem (3) is related to the Kunita-Watanabe
decomposition of Y , which has well-known properties guaranteeing the
existence of a solution under mild conditions [22]. By contrast, quadratic
hedging with discontinuous processes under an arbitrary measure may
lead to negative “prices” or not have a solution in general [2].

• Ideally, the probability measure used to compute expectations in (3)
should reflect future uncertainty over the lifetime of the option. When
using the “statistical” measure as estimated from historical data, this
only holds if increments are stationary. On the other hand, the risk-
adjusted measure retrieved from quoted option prices using a “calibration”
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procedure [4, 9, 10] is naturally interpreted as encapsulating the market
anticipation of future scenarios.

• More generally, the use of “statistical” measures of risk such as variances
or quantiles computed with “statistical” models has been questioned by
Aı̈t-Sahalia and Lo [1], who advocate instead the use of corresponding
quantities computed using a risk-adjusted measure, estimated non-
parametrically from prices of options observed in the market. These
quantities, they argue, not only reflect probabilities of occurrence of the
states of nature but also the risk premia attached to them by the market
so are more natural as criteria for measuring risk.

The purpose of this work is to study the quadratic hedging problem
(3) when underlying asset prices are modeled by a process with jumps. In
accordance with the above remarks, we will assume that the expectation in
(3) is computed using a martingale measure estimated from observed prices of
options. With respect to the existing literature, our contribution can be seen
as follows:

• Though quadratic hedging with the underlying asset in presence of
jumps has been previously studied by several authors, the correspond-
ing expressions for hedging strategies are not always explicit and involve
for instance the carré-du-champ operator [7], the Malliavin derivative [6]
or various Laplace transforms and path-dependent quantities [20].

• While previous work has focused on hedging with the underlying asset(s),
as we will see in Section 4, switching from naive delta-hedging to the
optimal quadratic hedging strategy reduces the risk only marginally. By
contrast, we study hedging strategies combining underlying assets with a
set of available options that lead to an important reduction of the residual
risk.

• While previous work has exclusively focused on European options without
path-dependence (calls and puts), hedging exotic options is often more
important in practice than hedging call and puts. We provide easy to
compute expressions for hedge ratios for Asian and barrier options.

• We implement numerically the proposed hedging strategies and compare
their performance based on Monte Carlo simulations.

The paper is structured as follows. In Section 2 we derive a general
expression for the strategy which minimizes the variance of the hedging error,
as computed under a risk-adjusted measure, in the general framework of Itô
processes with jumps. Section 3 explains how the problem of hedging with
options fits into the framework described in Section 2: we provide sufficient
conditions under which the prices of various options possess the representa-
tion needed to apply the hedging formula. Finally, in Section 4 we apply the
general hedging formula of Section 2 to construct hedging strategies for some
common options and give numerical examples of their performance.
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2 Minimal Variance Hedging in the Jump-Diffusion
Framework

2.1 Model Setup

Consider a d-dimensional Brownian motion W and a Poisson random mea-
sure J on [0,∞) × R with intensity measure dt × ν(dx) defined on a
probability space (Ω,F , P ), where ν is a positive measure on R such that∫

R
(1 ∧ x2)ν(dx) < ∞. J̃ denotes the compensated version of J :

J̃(dt × dz) = J(dt × dz) − dt × ν(dz).

Let (Ft)t≥0 stand for the natural filtration of W and J completed with
null sets.

We consider a market consisting of m traded assets Xi, i = 1, . . . , m that
can be used for hedging a contingent claim Y ∈ FT with E[Y 2] < ∞. We
suppose that the prices of traded assets are expressed using the money mar-
ket account, continuously compounded at the risk-free rate, as numeraire. We
assume that, using market prices of options, we have identified a pricing mea-
sure under which the prices of traded assets X1, . . . , Xm are local martingales.
This can be done using for instance methods described in [4,9]. The evolution
of prices under this probability measure will be described by the following
stochastic integrals:

Xt = X0 +
∫ t

0

σsdWs +
∫

[0,t]×R

γs(z)J̃(ds × dz). (1)

We denote Yt = E[Y |Ft] the value of the option and assume that Yt can be
represented by a stochastic integral:

Yt = Y0 +
∫ t∧τ

0

σ0
sdWs +

∫
[0,t∧τ ]×R

γ0
s (z)J̃(ds × dz). (2)

The initial values X0 and Y0 are deterministic, τ is a stopping time which de-
notes the (possibly random) termination time of the contract (to account for
path-dependent features such as barriers). Such a representation can be
formally obtained by expressing the option price Yt = f(t,Xt) applying an Itô
formula to the function f . In Section 3, we will give various conditions under
which such a representation can indeed be derived, the main obstacle being
the smoothness of f .

We assume the coefficients satisfy the following conditions:

(i) σ : Ω × [0,∞) → R
m ⊗ R

d and σ0 : Ω × [0,∞) → R
d are càglàd Ft-

adapted processes.
(ii) γ : Ω × [0,∞) × R → R

m and γ0 : Ω × [0,∞) × R → R are càglàd
Ft-adapted processes such that, ∀t ∈ [0, T ], ∀z ∈ R,
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‖γt(z)‖2 ≤ ρ(z)At and |γi
t(z)γ0

t (z)| ≤ ρ(z)At, i = 1, . . . ,m,

hold almost surely for some finite-valued adapted process A and some
deterministic function ρ satisfying

∫
R

ρ(z)ν(dz) < ∞.
(iii) We fix a time horizon T and assume

E

∫ T

0

(‖σs‖2 + As)ds < ∞.

These assumptions imply in particular that the stochastic integrals (1)–(2)
exist and define square-integrable martingales. Below we give several exam-
ples of stock price models satisfying (1) and the assumptions (i)–(iii) and in
Section 3 we will show that European and many exotic options can indeed be
represented in the form (2).

Example 1 (Exponential Lévy models). Let L be a Lévy process with charac-
teristic triplet (σ, ν, γ). For eL to be a martingale, the characteristic triplet
must satisfy

∫
|y|>1

eyν(dy) < ∞, and γ +
σ2

2
+

∫
(ey − 1 − y1|y|≤1)ν(dy) = 0.

In this case, Xt = X0e
Lt satisfies the following stochastic differential equation:

Xt = X0 +
∫ t

0

σXsdWs +
∫

[0,t]×R

Xs−(ez − 1)J̃L(ds × dz),

where J̃L is the compensated jump measure of L. From the Lévy-Khinchin
formula,

E[X2
t ] = X2

0 exp{tσ2 + t

∫
R

(ex − 1)2ν(dx)},

hence, Xt is square integrable if
∫
|x|≥1

e2xν(dx) < ∞.

Example 2 (Markov jump diffusions). Let σ : [0,∞) × R
m → R

m ⊗ R
d and

γ : [0,∞)×R×R
m → R

m be deterministic functions satisfying the conditions
of Lipschitz continuity and sublinear growth (see [23, Theorem III.2.32]). Then
the following stochastic differential equation

Xt = X0 +
∫ t

0

σ(s,Xs−)dWs +
∫

[0,t]×R

γ(s, z,Xs−)J̃(ds × dz), (3)

admits a unique strong solution X satisfying the assumptions (i)–(iii) above.
Processes of this type are referred to as (martingale) Markov jump diffusions.

Some authors define jump-diffusions by allowing the intensity measure
ν to depend on the state [14]. However, whenever the intensity measure ν
in Equation (3) is infinite and has no atom, a model with state-dependent
intensity measure can be transformed to the form (3) by choosing appropriate
coefficients [21, Theorem 14.80].
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Example 3. (Barndorff-Nielsen and Shephard stochastic volatility model).
Under the martingale probability the stochastic volatility model proposed by
Barndorff-Nielsen and Shephard [3] has the following form:

dYt = (−l(ρ) − 1
2
σ2

t )dt + σtdWt + ρdZt (4)

dσ2
t = −λσ2

t dt + dZt, σ2
0 > 0 (5)

where l(θ) = log E(eθZ1), ρ ≤ 0, λ > 0 are constant parameters, W is a
standard Brownian motion and Z is a subordinator without drift, independent
from W . The stock price process Xt = X0e

Yt satisfies the following:

Xt = X0 +
∫ t

0

σsXsdWs +
∫ t

0

∫ ∞

0

Xs−(eρz − 1)J̃(ds × dz),

where J̃ is the compensated jump measure of Z. To check the integrability of
X, we use the formula for the Laplace transform of Yt [8, p. 489]:

E[X2
t ] = X2

0E[e2Yt ] = X2
0 exp

(
−2l(ρ)t + σ2

0ε(λ, t) +
∫ t

0

l(2ρ + ε(λ, t − s))ds

)

where ε(λ, t) = 1−e−λt

λ . A sufficient condition for this to be finite is

l(2ρ + 1/λ) < ∞ ⇐⇒
∫ ∞

1

e(2ρ+1/λ)xν(dx) < ∞,

where ν is the Lévy measure of Z. Under this condition Barndorff-Nielsen and
Shephard’s stochastic volatility model satisfies the hypotheses (i)–(iii) above.

2.2 Minimal Variance Hedging

Consider an agent who has sold at t = 0 the contingent claim with terminal
payoff Y for the price c and wants to hedge the associated risk by trading
in assets (X1, . . . , Xm) = X. We call an admissible hedging strategy a pre-
dictable process φ : Ω× [0, T ] → R

m such that
∫ ·
0
φtdXt is a square integrable

martingale. Denote by A the set of such strategies. The residual hedging error
of φ ∈ A at time T is then given by

εT (c, φ) = c − Y +
∫ T

0

φtdXt. (6)

Proposition 4. Let Y ∈ FT be a square integrable contingent claim and
denote Yt = E[Y |Ft]. Suppose that Xt and Yt admit representations (1) and
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(2) satisfying the hypotheses (i)–(iii) on page 200. Suppose in addition that
the matrix

Mt = σtσ
∗
t +

∫
R

ν(dz)γt(z)γt(z)∗

is almost surely nonsingular for all t ∈ [0, T ], where the star denotes the matrix
transposition. Then the minimal variance hedge (ĉ, φ̂), solution of

E[εT (ĉ, φ̂)2] = inf
(c,φ)∈R×A

E[εT (c, φ)2],

is given by

ĉ = E[Y ] = Y0 (7)

if t > τ(ω) (8)

φ̂t = M−1
t

(
σ0

t σ∗
t +

∫
R

ν(dz)γ0
t (z)γt(z)∗

)
1[0,τ ](t). (9)

Proof. First, for every admissible strategy φ,

E[(εT (c, φ))2] = (c − E[Y ])2 + E

(
E[Y ] − Y +

∫ T

0

φtdXt

)2

.

This shows that the initial capital is given by ĉ = E[Y ]. Substituting c = ĉ
yields

E[εT (ĉ, φ)2] =
∫ T∧τ

0

E‖φtσt − σ0
t ‖2dt +

∫ T

T∧τ

E‖φtσt‖2dt

+
∫ T∧τ

0

dt

∫
R

ν(dz)E(φtγt(z) − γ0
t (z))2

+
∫ T

T∧τ

dt

∫
R

ν(dz)E(φtγt(z))2.

This expression is clearly minimized by the strategy φ̂. Moreover, under the
assumptions of this proposition, almost surely, (φ̂t)0≤t≤T is càglàd and there-
fore admissible.

Remark 5. The left-continuity of hedging strategies in other settings, in parti-
cular when explicit representations are not available, is discussed in [24].

Remark 6 (Tikhonov regularization). Although in the above result we suppose
that the matrix Mt is nonsingular, in some cases it may be badly conditionned
leading to numerically unstable results. To avoid this problem, one can regu-
larize M by adding to it some fraction of the unit matrix: this corresponds to
minimizing
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J(φ) = E[(εT (ĉ, φ))2] + αE

∫ T

0

‖φt‖2dt

for some α > 0. It is easy to check that the solution to the minimization
problem is then given by

φ̂reg
t (ω) = {Mt + αI}−1 ×

(
σ0

t σ∗
t +

∫
R

ν(dz)γ0
t (z)γt(z)∗

)
1[0,τ ](t).

This procedure is also equivalent to adding α to each eigenvalue of M . Fol-
lowing the literature on regularization of inverse problems [15], we choose
the regularization parameter α in such way that the hedging error with the
regularized strategy E[(εT (ĉ, φ̂reg))2] is at its highest acceptable level.

3 Martingale Representations for Option Prices

In this section we obtain martingale representations of type (1) for the prices
of various options. This will allow us to apply the general formula for hedge
ratios (9) in the case when the asset to be hedged and/or the traded assets
used for hedging are options on other assets.

To obtain explicit formulas for martingale representations, we assume that
the price process X is a Markov process of the form (3). When we need
to mention explicitly the starting value of a Markov process, we denote by
(Xx

t )t≥0 the process started from the initial value X0 = x and by (X(τ,x)
t )t≥τ

the same process started from the value Xτ = x at time t = τ .
In some cases (Asian options, stochastic volatility, . . .), one has to introduce

additional non-traded factors X̃ ∈ R
m̃ such that the extended state process

(X, X̃) is Markovian:

Xt = X0 +
∫ t

0

σ(s,Xs−, X̃s−)dWs +
∫

[0,t]×R

γ(s, z,Xs−, X̃s−)J̃(ds × dz),

X̃t = X̃0 +
∫ t

0

µ̃(s,Xs, X̃s)ds +
∫ t

0

σ̃(s,Xs−, X̃s−)dWs

+
∫

[0,t]×{z:|z|≤1}
γ̃(s, z,Xs−, X̃s−)J̃(ds × dz)

+
∫

[0,t]×{z:|z|>1}
γ̃(s, z,Xs−, X̃s−)J(ds × dz).

Note that the components of X̃ are not necessarily martingales because they
do not represent prices of tradables. For simplicity, unless otherwise men-
tioned, in the rest of this section we assume there are no non-traded factors
and that the price process is one-dimensional (m = 1). We treat separately
the case of general Markov jump diffusions and the case of Lévy processes.
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3.1 European Options

Let X be defined by (3) and H be a measurable function with E[H(XT )2]<∞.
The price of a European-type contingent claim is then a deterministic function
of time t and state Xt:

Ct = E[H(XT )|Ft] = C(t,Xt), (1)

where C(t, x) = E[H(X(t,x)
T )].

Suppose that the option price C(t, x) is continuously differentiable with
respect to t and twice continuously differentiable with respect to x. The Itô
formula can then be applied to show that the price of a European option
satisfies a stochastic differential equation of type (3):

dCt =
∂C(t,Xt)

∂x
σ(t,Xt)dWt

+
∫

R

(C(t,Xt− + γ(t, z,Xt−)) − C(t,Xt−))J̃(dt × dz)

+
{

∂C(t,Xt)
∂t

+
1
2
σ(t,Xt)2

∂2C(t,Xt)
∂x2

+
∫

R

(
C(t,Xt + γ(t, z,Xt))−C(t,Xt)− γ(t, z,Xt)

∂C(t,Xt)
∂x

)
ν(dz)

}
dt

(2)

Note that the first line of the above expression is a local martingale. On the
other hand, from (1), Ct itself is a martingale. Therefore, the sum of the second
and the third line is a finite variation continuous local martingale. This means
that it is zero and we obtain the following martingale representation for Ct:

C(T,XT )≡ H(XT ) = C(0,X0) +
∫ T

0

∂C(t,Xt)
∂x

σ(t,Xt)dWt

+
∫ T

0

∫
R

(C(t,Xt− + γ(t, z,Xt−)) − C(t,Xt−))J̃(dt × dz). (3)

Despite the simplicity of this heuristic argument, a rigorous proof of this
formula requires some work. We start with the case of Lévy processes and
discontinuous payoffs.

Proposition 7. Let H be a measurable function with at most polynomial
growth: ∃p ≥ 0, |H(x)| ≤ K(1 + |x|p), and X be a Lévy process with charac-
teristic triplet (σ, ν, γ) satisfying the following conditions:

(i) σ > 0 or ∃β ∈ (0, 2), lim inf
ε↓0

1
ε2−β

∫ ε

−ε

|y|2ν(dy) > 0; (4)

(ii)
∫
|y|>1

|y|p+1ν(dy) < ∞. (5)

Denote Xx
t ≡ x + Xt. Then
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1. The European option price C(t, x) = E[H(Xx
T−t)] belongs to the class

C∞([0, T ) × R) with
∣∣∣ ∂n+mC
∂xn∂tm (x)

∣∣∣ ≤ K(1 + |x|p), for all n,m ≥ 0.4

2. Suppose in addition that the set of discontinuities of H has Lebesgue
measure zero and that ∫

|y|>1

|y|2pν(dy) < ∞. (6)

Then the process (C(t,Xx
t ))0≤t≤T is a square integrable martingale with

the following representation

C(t,Xx
t ) = C(0, x) +

∫ t

0

∂C(s,Xx
s )

∂x
σdWs

+
∫ t

0

∫
R

(C(s,Xx
s− + z) − C(s,Xx

s−))J̃(ds × dz). (7)

Proof. Part 1. Let φt(u) = E[eiuXt ]. Condition (4) implies

|φt(u)| ≤ K1 exp(−K2|u|α) (8)

for some positive constants K1,K2, α and all t > 0, and therefore that Xt has
a C∞ density pt(x) for all t > 0. For σ > 0 this is straightforward and for
σ = 0 see [26, Proposition 28.3].

The derivatives of C can now be estimated as follows (we denote τ = T −t)
∣∣∣∣∂

n+mC(t, x)
∂xn∂tm

∣∣∣∣ ≤
∫

|H(x + z)|
∣∣∣∣∂

n+mpτ (z)
∂zn∂τm

∣∣∣∣ dz

≤ K

∫
(1 + |x + z|p)

∣∣∣∣∂
n+mpτ (z)
∂zn∂τm

∣∣∣∣ dz

≤ K(1 + |x|p)
∥∥∥∥(1 + |z|p)∂n+mpτ (z)

∂zn∂τm

∥∥∥∥
L1

≤ K(1 + |x|p)
∥∥∥∥ 1

1 + |z|

∥∥∥∥
L2

∥∥∥∥(1 + |z|p+1)
∂n+mpτ (z)
∂zn∂τm

∥∥∥∥
L2

≤ K(1 + |x|p)
(∥∥∥∥un ∂mφτ (u)

∂τm

∥∥∥∥
L2

+
∥∥∥∥un ∂p+1+mφτ (u)

∂up+1∂τm

∥∥∥∥
L2

)
.

(9)

4 Here and in all proofs, K denotes a constant which may depend on n, m and τ
and vary from line to line.
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From the Lévy-Khinchin formula, φt(u) = etψ(u) with |ψ(u)| ≤ K(1 + |u|2).
Moreover,

ψ′(u) = −σ2u + iγ +
∫

iy(eiyu − 1|y|≤1)ν(dy),

ψ′′(u) = −σ2 +
∫

(iy)2eiyuν(dy),

ψ(k)(u) =
∫

(iy)keiyuν(dy), 3 ≤ k ≤ p + 1.

Due to the condition (5), the integrals in the above expressions are finite and
we have |ψ′(u)| ≤ K1(1 + |u|) and |ψ(q)(u)| ≤ Kq, 2 ≤ q ≤ p + 1. Therefore,

∣∣∣∣∂
p+1+mφτ (u)
∂up+1∂τm

∣∣∣∣ ≤ K(1 + |u|p+1+2m)|φτ (u)|

and by (8), both terms in (9) are finite.
Part 2. By Part 1, representation (7) is valid for every t < T . By Corollary

25.8 in [26], (6) implies that E[H2(Xx
T )] < ∞. Denote

Mt =
∫ t

0

∂C(s,Xx
s )

∂x
σdWs +

∫ t

0

∫
R

(C(s,Xx
s− + z) − C(s,Xx

s−))J̃(ds × dz).

Then, by Jensen’s inequality,

E〈M〉t = E (C(t,Xx
t ) − C(0, x))2 ≤ 2E[H2(Xx

T )].

This implies that the stochastic integrals
∫ T

0

∂C(s,Xx
s )

∂x
σdWs and

∫ T

0

∫
R

(C(s,Xx
s− + z) − C(s,Xx

s−))J̃(ds × dz)

exist and since X has no jumps at fixed times, Mt → MT a.s. when t → T
and one can pass to the limit t → T in the right-hand side of (7).

It remains to prove that limt→T C(t,Xx
t ) = C(T,Xx

T ) ≡ H(Xx
T ) a.s. Let

Z be a Lévy process independent from FT and with the same law as X. We
need to show limt→T E[H(Xt + ZT−t)|FT ] = H(XT ). Since X has no jumps
at fixed times, Xt + ZT−t → XT a.s. Recalling from part 1 that XT has an
absolutely continuous density and since the set of discontinuities of H has
Lebesgue measure zero, we see that H(Xt + ZT−t) → H(XT ) a.s. Now the
polynomial bound on H enables us to use the dominated convergence theorem
and conclude that limt→T E[H(Xt + ZT−t)|FT ] = H(XT ) a.s.

The above result covers, for example, digital and put options in exponential
Lévy models with either a non-zero diffusion component or stable-like behav-
ior of small jumps (e.g. the tempered stable process [8]) and can be trivially
extended to call options using the put-call parity. To treat other exponential
Lévy models more regularity is needed for the payoff. The following result
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applies to Lévy processes with no diffusion component and finite second
moment, but also to more general Markov processes with jumps:

Proposition 8. Let X be as in (3) with m = 1, σ(s, x) ≡ 0 and γ(s, z, x)
satisfying

|γ(s, z, x) − γ(s, z, x′)| ≤ ρ(z)|x − x′|

|γ(s, z, x)| ≤ ρ(z)(1 + |x|) with
∫

R

ρ2(z)ν(dz) < ∞.

Suppose that the payoff function H is Lipschitz continuous: |H(x) − H(y)| ≤
K|x− y|. Then the process (C(t,Xx

t ))0≤t≤T with C(t, x) = E[H(X(t,x)
T )], is a

square integrable martingale with the representation

C(t,Xx
t ) = C(0, x) +

∫ t

0

∫
R

(C(s,Xx
s− + γ(s, z,Xx

s−))

− C(s,Xx
s−))J̃(ds × dz). (10)

Proof. By Theorem III.2.32 in [23], the stochastic differential equation (3)
admits a non-explosive solution. Since

E[(Xx
t )2] = x2 +

∫ t

0

∫
R

E[γ2(s, z,Xx
s )]ν(dz)ds ≤ x2 + K

∫ t

0

E[1 + |Xx
s |2]ds,

it follows from Gronwall’s inequality that

E[(Xx
t )2] ≤ (x2 + Kt)eKt. (11)

We also note for future use that the same method can be used to obtain

E[(X(t,x)
T − X

(t,y)
T )2] ≤ (x − y)2eK(T−t). (12)

The estimate (11) implies that (C(t,Xx
t ))0≤t≤T is a square integrable

martingale and by Theorems III.4.29, III.2.33 in [23], it admits a martin-
gale representation: there exists a measurable function Z : Ω×R× [0, T ] → R

such that

C(t,Xx
t ) = C(0, x) +

∫ t

0

∫
R

Zs(z)J̃(ds × dz). (13)

If we are able to show the existence of

C̃t = C(0, x) +
∫ t

0

∫
R

(C(s,Xx
s− + γ(s, z,Xx

s−)) − C(s,Xx
s−))J̃(ds × dz),

(14)

then (10) will follow since the jumps of (13) and (14) are indistinguishable
and hence C = C̃ (note that this part of the argument does not carry over to
the case σ > 0). By Jensen’s inequality and (12),
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(C(t, x) − C(t, y))2 ≤ E[(H(X(t,x)
T ) − H(X(t,y)

T ))2]

≤ KE[(X(t,x)
T − X

(t,y)
T )2] ≤ K(x − y)2.

The existence and square integrability of (14) now follows from

∫ t

0

∫
R

E(C(s,Xx
s + γ(s, z,Xx

s )) − C(s,Xx
s ))2ν(dz)ds

≤ K

∫ t

0

∫
R

E(γ2(s, z,Xx
s ))ν(dz)ds ≤ K

∫ t

0

E(1 + |Xx
s |)2ds < ∞.

3.2 Asian Options

Exotic options can be introduced via the process of non-traded factors X̃ (see
the beginning of this section): for Asian options, one can take

X̃t =
∫ t

0

Xsds

and the option’s price is then given by

Ct = E[H(X̃T )|Ft] = C(t,Xt, X̃t),

that is, the option’s price is now a function of time and (extended) state and
one can use the theory developed for European options.

3.3 Barrier Options

The value of a knock-out barrier option can be represented as

CB
t = E[H(XT )1τ>T |Ft],

where τ is the first exit time of X from an interval B. For example, in the case
of an up-and-out option with barrier b we have τ = inf{t ≥ 0 : Xt > b}. If X
is a Markov jump-diffusion then, conditionally on the event that the barrier
has not been crossed, the price of a knock-out barrier option only depends on
time and state. Therefore,

CB
t = 1τ>tC

B(t,Xt),

where CB(t, x) =

{
0, x /∈ B

E[H(X(t,x)
T )1τt>T ], x ∈ B

(15)

and τt is defined by τt = inf{s ≥ t : X
(t,x)
s /∈ B}. Furthermore, the above is

equivalent to CB
t = CB(t ∧ τ,Xt∧τ ). Supposing that CB(t, x) possesses the
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required differentiability properties, we can apply the Itô formula up to time τ
obtaining an SDE of type (2):

CB
t = CB

0 +
∫ t∧τ

0

∂CB(s,Xs)
∂x

σ(s,Xs)dWs

+
∫

[0,t∧τ ]×R

(CB(s,Xs− + γ(s, z,Xs−))−CB(s,Xs−))J̃(ds × dz).(16)

However, in the case of barrier options the proof of regularity is much
more involved [12] than for European ones. The following result, based on
Bensoussan and Lions [5], allows to obtain a martingale representation for
barrier options under further assumptions:

Proposition 9. Let X be as in (3) with m = 1 and σ and γ satisfying the
following hypotheses:

(i) There exist K1,K2 with 0 < K1 < K2 such that K1 < σ(t, x) < K2 and∣∣∣∂σ(t,x)
∂x

∣∣∣ < K2 for all t, x.
(ii) There exists a Radon measure m on R \ {0} such that∫

R

|z|m(dz) < ∞

and ∀A ∈ B(R), ∀(t, x)

m(A) ≥ ν({z : γ(t, z, x) ∈ A})

(iii) B is a bounded open interval on R.
(iv) The payoff function H satisfies H ∈ W 1,p

0 (B), 4 < p < ∞. The space
W 1,p

0 (B) denotes the W 1,p(B)-closure of C∞
0 (B), the space of smooth

functions with compact support in B. This implies that the payoff must
tend to zero as one approaches the barrier.

Then the barrier option price CB(t, x) defined by (15) belongs to the space

W 1,2,p = {z ∈ Lp([0, T ] × B) :
∂z

∂t
,
∂z

∂x
,
∂2z

∂x2
∈ Lp([0, T ] × B)}

and the process (CB
t )0≤t≤T is a square integrable martingale satisfying the

representation (16).

Proof. The regularity result is a corollary of Theorems 3.4 and 8.2 in [5]. To
obtain the martingale representation, we can approximate CB(t, x) in W 1,2,p

by a sequence of smooth functions (CB
n ), apply the Itô formula to each Cn

and then pass to the limit using the inequality (III.7.32) in [5]:∣∣∣∣∣E
[∫ T

t

f(s,Xs)ds

]∣∣∣∣∣ ≤ CT,p|f |Lp ∀f ∈ Lp(Rd), p > 2, (17)

where X satisfies the hypotheses (i) and (ii) of the above proposition.
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Corollary 10. Let X be a Lévy process with σ > 0 and
∫
|x|ν(dx) < ∞, let

B be a bounded open interval and suppose that the payoff function H satisfies
H ∈ W 1,p

0 (B), 4 < p < ∞. Then the barrier option price CB(t, x) defined
by (15) belongs to the space W 1,2,p and the process (CB

t )0≤t≤T is a square
integrable martingale satisfying the representation (16).

4 Hedging with Options: Examples and Applications

In this section we apply the general hedging formula (9) to options and an-
alyze numerically the performance of the minimal variance hedging strategy
in different settings.

Hedging with the Underlying in an Exponential Lévy Model

Suppose that the price of the underlying asset is given by the exponential of
a Lévy process:

dXt = XtσdWt +
∫

R

Xt−(ez − 1)J̃(dt × dz).

The European option price (1) can then be written as the expectation of a
function of a Lévy process Zt = log(Xt/X0): C(t, x) = E[H(xeZT−t)]. If the
model parameters and the payoff function H(.) satisfy either the hypotheses
of Proposition 7 or those of Proposition 8, we can compute a martingale
representation for C(t,Xt). Applying the general formula (9) we then obtain
the following hedge ratio:

φt =
σ2 ∂C

∂X (t,Xt−) + 1
Xt−

∫
ν(dz)(ez − 1)[C(t,Xt−ez) − C(t,Xt−)]

σ2 +
∫

(ez − 1)2ν(dz)
. (1)

Note that the above equation makes sense in a much more general setting
than for instance the delta-hedging strategy which requires that the option
price be differentiable, a property which can fail in pure-jump models [12].

Case of a Single Jump Size

Assume that the stock price process X1 follows an exponential Lévy model
with a non-zero diffusion component and a single possible jump size:

dX1
t = X1

t σdWt + X1
t−(ez0 − 1)dÑt,

where Ñ is a compensated Poisson process with intensity λ. We want to
hedge a European option Yt = C(t,X1

t ) with the stock and another European
option X2

t = C∗(t,X1
t ). In this case, Proposition 7 applies due to the presence
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of a non-degenerate diffusion component. Denoting ∆X = (ez0 − 1)X and
∆C(t,X) = C(t,Xez0) − C(t,X) we obtain the following hedge ratios:

φ1
t =

∆C∗(t,X1
t−)∂C(t,X1

t−)

∂X − ∆C(t,X1
t−)∂C∗(t,X1

t−)

∂X

∆C∗(t,X1
t−) − ∆X1

t−
∂C∗(t,X1

t−)

∂X

,

φ2
t =

∆C(t,X1
t−) − ∆X1

t−
∂C(t,X1

t−)

∂X

∆C∗(t,X1
t−) − ∆X1

t−
∂C∗(t,X1

t−)

∂X

.

It is easy to see that with these hedge ratios the residual hedging error εT (φ)
is equal to zero.

When the jump size ∆X1 is small, the optimal hedge is approximated by
delta-gamma hedge ratios

δt =
∂C(t,X1

t−)
∂X

− ∂C∗(t,X1
t−)

∂X

(
∂2C(t,X1

t−)
∂X2

/
∂2C∗(t,X1

t−)
∂X2

)

γt =
∂2C(t,X1

t−)
∂X2

/
∂2C∗(t,X1

t−)
∂X2

,

obtained by setting to zero the first and the second derivative of the hedged
portfolio with respect to the stock price. Note however that in general (jump
size not small) the delta-gamma hedging strategy does not eliminate the risk
completely, although the optimal quadratic hedging strategy does.

Barndorff-Nielsen and Shephard Model

Let us reconsider the BNS model introduced in Example 3. This model is not
covered by results of Section 3 but we can check the differentiability of the
option price C(t, x, σ2

0) directly along the lines of the proof of Proposition 7,
using the explicit form of the Fourier transform of the log-price Y [8, p. 489]:

φt(u) = E{eiuYt} = exp
{
−iut l(ρ) − σ2

0

2
(iu + u2)ε(λ, t)

+
∫ t

0

l

(
iρu − 1

2
(iu + u2)ε(λ, s)

)
ds

}
.

Because the diffusion coefficient is bounded from below on any finite time
interval,

|φt(u)| ≤ exp
{
−σ2

0u2

2
ε(λ, t)+

∫ t

0

l

(
−1

2
u2ε(λ, s)

)
ds

}
≤ exp

{
−σ2

0u
2

2
ε(λ, t)

}
.

In addition if
∫ ∞
1

zm+nν(dz)<∞, we can show, as in the proof of Proposition 7,
that ∣∣∣∣∂

m+nφt(u)
∂um∂tn

∣∣∣∣ ≤ C(t)(1 + |u|m+2n) exp
{
−σ2

0u
2

2
ε(λ, t)

}
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and this in turn implies that the price of an option whose payoff does not grow
at infinity faster than |x|m−1 will be n times differentiable in t and infinitely
differentiable in x (at every point with σ > 0). The derivatives with respect
to σ2

0 can be estimated similarly. Applying Proposition 4 yields the following
optimal ratio for hedging with the underlying:

φt =
σ2

t−
∂C
∂X + 1

Xt−

∫
ν(dz)(eρz − 1)[C(t,Xt−eρz, σ2

t− + z) − C(t,Xt−, σ2
t−)]

σ2
t− +

∫
(eρz − 1)2ν(dz)

.

When there are no jumps in the stock price (ρ = 0) the optimal hedging
strategy is just delta-hedging: φt = ∂C

∂X ; even though there are jumps in the
option price, they cannot be hedged. On the other hand, when ρ �= 0, the
above formula has the same structure as equation (1) for exponential Lévy
models, with the difference that we also have to take into account the effect of
jumps in σ(t) on the option price. The impact of the stochastic volatility on
the optimal hedging strategy with the underlying asset is thus rather limited:
for example, the mean reversion parameter λ does not appear in the hedging
formula.

Numerical Example: Hedging a European put in Merton’s Model

In this example we suppose that the asset X1 follows the Merton (1976) model,

which is an exponential Lévy model with σ > 0 and ν(x) = λ
δ
√

2π
e−

(x−θ)2

2δ2 . We
simulate 10000 trajectories of stock in this model with two different parameter
sets given below:

µ σ λ Jump mean Jump stddev

Model 1: Risk-neutral – 0.1 5 −0.05 0.1
Bullish market Historical 0.2 0.1 5 −0.05 0.1
Model 2: Risk-neutral – 0.1 10 −0.2 0.2
Fear of crash Historical 0.2 0.1 5 −0.05 0.1

The option to be hedged is an out-of-the-money European put with strike
K = 1.2 and time to maturity T = 1. For each price trajectory, we compute
the residual error for hedging this option using three different strategies: delta
hedging, optimal quadratic hedging with stock only, and optimal quadratic
hedging with stock and another European put option with K = 1 and T = 1.

It is important to note that, in this and the following example, the hedge
ratios were precomputed on a grid of time and stock price values with formula
(9) before simulating the price trajectories; details of computations can be
found in [11]. The option prices were evaluated using the following result [12]:

Proposition 11. Let the payoff function H verify the Lipschitz condition and
let h(x) = H(S0e

x) have polynomial growth at infinity. Then forward value

fe(t, x) = E[h(x + Xt)]
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Fig. 1. Histograms of the residual hedging error for a European put with strike
K = 1.2

of a European option is a viscosity solution of the Cauchy problem

∂f

∂t
=

σ2

2

[
∂2f

∂x2
− ∂f

∂x

]
+

∫
R

ν(dy)
[
f(t, x + y) − f(t, x) − (ey − 1)

∂f

∂x
(t, x)

]

(2)

with the initial condition f(0, x) = h(x).

We have used a similar representation for the price of a barrier option [12] and
the numerical scheme proposed in [13] for solving the associated PIDE (2).

The histograms of the hedging error are shown in Figure 1, left graph,
for model 1 and in the right graph for model 2. The table below gives the
variance of the residual hedging error for the two models and the three hedging
strategies used.

Bullish market (left) Fear of crash (right)

Delta hedging: 0.0464 0.1974
Optimal 1 asset: 0.0373 0.1762
Optimal 2 assets: 0.0182 0.0319

First, one can observe that the performance of the optimal quadratic hedg-
ing strategy using the underlying only is very similar to that of delta hedging
in both models. The performance of both strategies is very sensitive to the
difference of Lévy measures under the historical and the risk-neutral proba-
bility: when this difference is important as in model 2, both strategies have
a very poor performance. On the other hand, this numerical example shows
that using options for hedging allows to reduce this sensitivity and achieve an
acceptable performance even in presence of an important jump risk premium,
that is, when the Lévy measure is very different under the “objective” and
the risk-neutral probability.
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Fig. 2. Left: histograms of the residual hedging error for an up and out barrier put
with strike K = 1 and barrier B = 1.2. Right: option price profiles at T = 0.5

Hedging a Barrier Option in Merton’s Model

In this example we continue to work in Merton’s model and we want to hedge
a barrier put with strike K = 1 and barrier at B = 1.2 using the underlying
and a European put option. Figure 2, left graph, depicts the histograms of the
residual hedging error for three strategies: hedging with the underlying asset
only; hedging with the underlying asset and a European put with strike at the
barrier; hedging with stock and a European put with strike K = 1. The model
parameters correspond to model 1 of previous example. This example shows
that a much better hedging performance is achieved by using a European
option with the same strike as that of the barrier option. The right graph
shows the option price profiles of these two options at time T = 0.5. Using
a European option for hedging allows to better reproduce the convexity of
the barrier option price but it does not take into account the discontinuity of
derivative at the barrier.
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in jump-diffusion and exponential Lévy models, SIAM Journal on Numerical
Analysis, 43 (2005).

14. D. Duffie, J. Pan, and K. Singleton, Transform analysis and asset pricing
for affine jump-diffusions, Econometrica, 68 (2000), pp. 1343–1376.

15. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Prob-
lems, vol. 375, Kluwer Academic Publishers Group, Dordrecht, 1996.
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22. J. Jacod, S. Méléard, and P. Protter, Explicit form and robustness of
martingale representations, Annals of Probability, 28 (2000), pp. 1747–1780.

23. J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes,
Springer, Berlin, 2nd ed., 2003.

24. J. Ma, P. Protter, and J. Zhang, Explicit representations and path regularity
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