Open issues in equity derivatives modelling

Lorenzo Bergomi

Equity Derivatives Quantitative Research
Société Générale
lorenzo.bergomi@sgcib.com
Talk Outline

- Equity derivatives at SG
- A brief history of equity derivative products
 - Prehistory – 1997
 - History 1997 – 2003
 - Modern times 2003 –
- Modelling issues, algorithmic issues
- Risk measurement and management
- Conclusion
Equity derivatives at SG

- SG regarded by industry participants as No 1 in equity derivatives
A brief history of equity derivative products

Prehistory – 1997

Products
- Barrier options / Digitals
- Max / Min options
 \(\left(\max\left(S_t - K \right) \right)^+ \)
- Asian options
 \(\left(\frac{1}{N} \sum s_{t_i} - K \right)^+ \)
- Basket options
 \(\left(\frac{1}{N} \sum s_{iT}^T - K \right)^+ \)
- Volatility swaps
 \(\frac{1}{T} \sum \ln \left(\frac{S_k}{S_{k-1}} \right)^2 - \hat{\sigma}_K \)
- Simple cliquets
 \(\left(\frac{S_{i+1}}{S_{i_1}} - K \right)^+ \)

Risks
- Skew: level / dynamics (little)
- same
- Smile
- Correlation (level)
- Smile, VolOfVol
- Forward smile

Models / algos
- Black Scholes / local vol
- PDE / straight Monte Carlo
A brief history of equity derivative products

Capital-guaranteed products distributed by retail networks

- Everest 1997 5 years / 12 stocks
 \[100\% + \min \left(\frac{S^j_T}{S^j_0} \right) \]

- Emerald 2004 10 years / 20 stocks
 Every year, the stock whose performance since \(t = 0 \) is the largest gets frozen and removed from the basket, and its level is floored at 200% of its initial value.
 \[100\% + \text{maximum performance of yearly basket values since } t = 0, \text{floored at 0.} \]

... and many, many, many, other variations

\[\Rightarrow \text{trying to find closed-form formulas for specific exotic payoffs now irrelevant and useless} \]
A brief history of equity derivative products

History - 2 1997 – 2005

- **Variance Swaps** 3 months \(\Rightarrow\) 5 years
 - Pays realized variance – usually measured using daily returns
 \[
 \sum_k \ln \left(\frac{S_k}{S_{k-1}} \right)^2 - \sigma^2 T
 \]
 - stocks / indices

- **Napoleon** 5 years / 1 index
 - Every year, pays coupon reduced by worst of 12 monthly performances of the index.
 \[
 \left(C + \min_k \left(\frac{S_k}{S_{k-1}} \right)^+ \right)
 \]

- **Accumulator** 3 years / 1 index
 - At maturity pays the sum – if it is positive – of the monthly performances, capped and floored.
 \[
 \left(\sum_k \min \left(\frac{S_k}{S_{k-1}} - 1,1\% ,-1\% \right) \right)^+
 \]
Modern times

- **Corridor variance swaps**
 Daily variance only counted when underlying is inside given interval
 \[
 \sum_{k} l_{S_k \epsilon [L,H]} \left(\ln \left(\frac{S_k}{S_{k-1}} \right)^2 - \sigma^2 \Delta t \right) \]
 \([L,H], [L, +\infty), [0,H] \)

- **Correlation swaps**
 Pays realized correlation over 3 years by stocks of an index

- **Gap notes**
 Maturity = 1 year, a series of daily puts on daily returns of an index
 with strikes 85%, 90%

- **Options on realized variance**
 On indices, maturities: 3 months to 2 years
 \[
 \left[\frac{1}{T} \sum_{i=1}^{T} \ln \left(\frac{S_i}{S_{i-1}} \right)^2 - \hat{\sigma}_k^2 \right]^+ \]

- **Timer options**
 Vanilla payoff, paid when realized variance \(Q_t \) reaches set level:
 \[
 Q_t = \sum_{j=1}^{t} \ln \left(\frac{S_{i+1}}{S_i} \right)^2 \]

- **Hybrids**
 Equities / Rates / Forex / Commodities Arbitrary payoffs
Modelling issues – 1

• Why not just delta-hedge?
 • Variance of residual P&L too large ⇒ use other options
 ⇒ Options are hedged with options

• Once we start using options as hedging instruments
 • Less sensitivity to historical parameters, more sensitivity to implied parameters
 ⇒ Model the dynamics of implied parameters

• Example of simple cliquet
 \[
 \frac{S_{T_2}}{S_{T_1}} - 1 \Rightarrow \int_{T_1}^{T_2} \hat{\sigma}_{12} P(\hat{\sigma}_{12}, r, \cdots)
 \]

\[\begin{align*}
\text{Smile 3 mois K = 95 - K= 105}
\end{align*}\]
• **How should calibration be done? Do we really need to calibrate?**
 • *Not compulsory:* charge a hedging cost. We hedge parameter p by trading instrument O so that sensitivity to p vanishes:

$$ \frac{dP}{dp} = \lambda \frac{dO}{dp} $$

• Model price P is adjusted so as to include hedging cost:

$$ \text{Price} = P(\hat{p}) + \lambda (O(p_{\text{Market}}) - O(\hat{p})) $$

$$ \approx P(p = p_{\text{Market}}) $$

• **Then what is the point in calibrating?**
 • Ensures price factors in hedging costs incurred at $t = 0$ – *not future costs*!

\Rightarrow **Necessary to calibrate model on relevant set of hedging instruments**

\Rightarrow **Useless if one is unable to specify how to hedge the exotic with the hedge instruments**
Modelling issues – 3

Volatility risk – models

- « Old models »
 - Local volatility
 - Heston
 - SABR
 - Models based on process of instantaneous variance:
 \[dS = \ldots dt + \sqrt{V} dW_s \]
 - Jump / Lévy
 \[dV = \ldots dt + \ldots dW_v \]

Challenge: Build models that give control on joint dynamics of implied volatilities and spot:

- First step: model dynamics of curve of forward variances
- Next step: model dynamics of the implied volatility surface
 - Direct modelling of dynamics of implied volatilities is a dead end
 - Low-dimensional Markov representation desirable
 - How much freedom are we allowed?
Hybrids

- Equities
- Interest rates
- Forex
- Commodities

Hybrid models are not built by simply gluing together models for each asset class

- Passive hybrids: payoff involves one asset class only
 - Long-dated equity, Forex options
 - Credit / Equity: convertible bonds

- Active hybrids: payoff involves all asset classes
 - Require state-of-the-art models for each asset class
 - Even local vol calibration for equity smiles not easy when interest rates are stochastic
Modelling issues – 5

- Correlation – how do we put together correlation matrices?
 - How do we build the large correlation matrices needed in hybrid modelling?
 - Simpler question: imagine a 1-factor stoch. vol model and a payoff involving 2 securities
 - How do we set the cross-correlations?
 - Even simpler question – how do we measure correlations?
 - Example of European / Japanese stocks – no overlap

```
Europe
  o C o C o C o C
Japan
  o C o C o C o C
```

- Correlation – how do we measure correlation risk?
- Correlation – how to model correlation smile?
Algorithmic issues

- Monte Carlo

 - How can we speed up pricing?
 - Quasi-random numbers
 - Discretization of SDEs?

- Callable / putable options

- Computing sensitivities to
 - Initial conditions
 - Parameters of dynamics (volatilities / correlations, etc..)
Conclusion

- These are exciting times for doing quantitative finance
 - Lots of new instruments / product / algorithmic issues
 - Rich mathematical toolbox from which to pick