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Smoothness of densities and Tail Estimates for SDEs
with locally smooth coefficients and applications

Stefano De Marco, Université Paris-Est Marne-la-Vallée and Scuola
Normale Superiore, Italy
s.demarco@sns.it

We study smoothness of densities for solutions of SDEs whose coefficients
are smooth and nondegenerate only on an open domain D. Under these as-
sumptions we prove that a smooth density exists on D, and formulate upper
bounds suitable for tail estimates under some additional conditions, mainly
dealing with the growth of coefficients and their derivatives. This specifies
and extends some results by Kusuoka and Stroock in [1], but our approach
is substantially different and based on a technique to estimate the Fourier
transform inspired from [2] and [3]. The study is motivated by models for
financial securities which rely on SDEs with singular (non-lipschitzian or
non-elliptic) coefficients. We apply our results to a square-root type diffusion
(CIR or CEV type) with local coefficients, giving exponential estimates on
the density tail and studying the behaviour at zero.

REFERENCES

[1] S. Kusuoka and D. Stroock. (1985) Application of the Malliavin Calculus,
Part II. Journal of the Faculty of Science of the Univ. of Tokyo.

[2] N. Fournier. (2008) Smoothness of the law of some one-dimensional
jumping S.D.E.s with non-constant rate of jump, Electronic Journal of
Probability.

[3] V. Bally. (2007) Integration by parts formula for locally smooth laws and
applications to equations with jumps I, Preprints Institut Mittag-Leffler.
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Dynamic Risk Indifference Pricing and Hedging in In-
complete Markets

Xavier De Scheemaekere, Université Libre de Bruxelles
xdeschee@ulb.ac.be

In this work, we investigate dynamic pricing and hedging formulas in incom-
plete markets based on the risk indifference principle : we replace the criterion
of maximizing utility by minimizing risk exposure because the latter is more
often used in practice and because it is a natural extension to the idea of
pricing and hedging in complete markets. Using a dual characterization of
dynamic risk measures coming from BMO martingales (see [3]), the risk in-
difference pricing problem reduces to two (zero-sum) stochastic differential
games, which we solve by means of backward stochastic differential equation
(BSDE) theory. We find an explicit formula for the dynamic risk indifference
price in terms of solutions of BSDEs. We follow the spirit of [4] who study a
similar risk indifference pricing problem using PDE techniques. Importantly,
our stochastic analysis approach does not impose Markovian assumptions on
the coefficients and it encompasses the case of dynamic time-consistent risk
measures (as, e.g., risk measures coming from g-expectations ; see [2]). The
work will also include the extension to the jump diffusion case as well as a
Malliavin calculus derivation of a (quasi) hedging formula, as in [1].

REFERENCES

[1] S. Ankirchner, P. Imkeller and G. Dos Reis. Pricing and hedging of de-
rivatives based on non-tradable underlyings. To appear in Mathematical
Finance.

[2] P. Barrieu and N. El Karoui (2008). Optimal derivative design under dy-
namic risk measures. In R. Carmona (Ed.) Indifference pricing : Theory
and Applications. Princeton University Press.

[3] J. Bion-Nadal (2008). Dynamic risk measures : Time consistency and
risk measures from BMO martingales. Finance and Stochastics 12, 219-
244.

[4] B. Øksendal and A. Sulem. Risk indifference pricing in jump diffusion
markets. To appear in Mathematical Finance.
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Connecting Continuous and Discrete Path-Dependent
Options under Exponential Levy Model

El Hadj Aly Dia, Université Paris-Est
diaelhadjaly@yahoo.fr

We consider continuous path-dependent options which depend on the extre-
mal price of the underlying asset during the life of the options. Perhaps, in
exponential Lévy model closed-form formulae are not, in general, available
for pricing these options. Then we need to use a discrete numerical method
for valuating them. In this context, we study the best way to price a conti-
nuous path-dependent option using a discrete one. The reverse issue also
arises when we have an explicit formula for a continuous option, and that
we want to evaluate its discrete version. This is joint work with D. Lamberton.

REFERENCES

[1] Kou, S. G. (2003) On Pricing Of Discrete Barrier Options. Statistica
Sinica 13, 955-964.

[2] Broadie, M., Glasserman, P. and Kou, S. G. (1999) Connecting discrete
and continuous path-dependent options. Finance Stochast. 3, 55-82.

[3] Broadie, M., Glasserman, P. and Kou, S. G. (1997) A Continuity Cor-
rection For Discrete Barrier Options. Mathematical Finance, Vol. 7, No.
4, 325-348.
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A Probabilistic Numerical Method for Fully Nonlinear
Parabolic Nonlocal PDEs

Arash Fahim, Ecole Polytechnique and Sharif University of Tech-
nology, Iran
arash.fahim@polytechnique.edu

In this work, the results for probabilistic numerical scheme for fully nonlinear
PDEs of [2] is generalized to work for nonlocal PDEs. The first step and
the most important step of this generalization, is to find a Monte Carlo
approximation of the integral operator of Lévy type for some Lévy measure
ν : ∫

Rd
∗

(
ϕ(t, x + η(t, x, z))− ϕ(t, x)− 11{|z|≤1}Dϕ(t, x)η(t, x, z)

)
dν(z)

which appears in a large class of nonlinear equations (H-J-B equations). Then
the results of convergence and rate of convergence are followed directly by
generalizing some results of [1] to nonlocal PDEs.

REFERENCES

[1] G. Barles, E. R. Jakobsen (2007) Error Bounds For Monotone Ap-
proximation Schemes For Parabolic Hamilton-Jacobi-Bellman Equa-
tions. Math. Comp., 76(240) :1861-1893.

[2] A. Fahim, N. Touzi, X. Warin A Probabilistic Numerical Method for
Fully Nonlinear Parabolic PDEs. Preprint.
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Optimal liquidation in limit order books with stochastic
liquidity

Antje Fruth, TU Berlin, Deutsche Bank Quantitative Products La-
boratory
fruth@math.tu-berlin.de

We consider the problem of optimally placing market orders so as to mi-
nimize the expected liquidity costs from buying a given amount of shares.
The liquidity price impact of market orders is described by an extension of a
model for a limit order book with resilience that was proposed by Obizhaeva
and Wang (2006). We extend their model by allowing for a price impact
which is linear in the number of shares, but is described by a rather gene-
ral stochastic differential equation instead of being constant in time. This is
our main contribution. It turns out that the optimal buying strategy is not
deterministic anymore as in Obizhaeva and Wang, but adapts to the order
book height. We proof that it can be described by a no trading and a dis-
crete trading region. Scaling properties of the value function and convexity
arguments are being used. The barrier is numerically analyzed in the case
of a general geometric Brownian motion and a Cox-Ingersoll-Ross process.
Situations where trading is ’passive’ respectively ’aggressive in the liquidity’
arise. This is joint work with Torsten Schöneborn and Mikhail Urusov.
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Çetin-Jarrow-Protter model of liquidity in a Binomial
market

Selim Gökay, Koc University, Istanbul
selimgokay2003@yahoo.com

We study the Binomial version of the illiquid market model introduced by
Çetin, Jarrow and Protter [1] for continuous time. We develop efficient nu-
merical methods for the analysis of this model. In particular, we study the
liquidity premium that results from the model. In [1] the arbitrage free price
of a European option traded in this illiquid market is equal to the classi-
cal value. However, the corresponding hedge does not exists and the price
is obtained only in L2-approximating sense. Çetin, Soner and Touzi [2] in-
vestigated the super-replication problem using the same supply curve model
but under some restrictions on the trading strategies. They showed that
the super-replicating cost differs from the Black-Scholes value of the claim,
thus proving the existence of liquidity premium. In this paper, we study the
super-replication problem in discrete time but with no assumptions on the
portfolio process. We recover the same liquidity premium as [2] by passing to
the continuous time limit. This is an independent justification of the restric-
tions introduced in [2]. Moreover, we also propose an algorithm to calculate
the option’s price for a Binomial market. This is joint work with Halil Mete
Soner.

REFERENCES

[1] Çetin, Jarrow, R. and Protter, P. (2004) Liquidity risk and arbitrage
pricing theory. Finance and Stochastics, 8, 311-341.

[2] Çetin U., Soner, H.M. and Touzi, N. (2008) Option hedging for small
investors under liquidity costs. To appear in Finance and Stochastics.
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Viscosity and Principal-Agent Problem

Ruoting Gong, Georgia Institute of Technology
rgong@math.gatech.edu

We develop a stochastic control system from a continuous-time Principal-
Agent model in which both the principal and the agent have imperfect in-
formation and different beliefs about the project. We attempt to optimize
the agent’s utility function under the agent’s belief. Via the corresponding
Hamilton-Jacobi-Bellman equation we prove that the value function is jointly
continuous and satisfies the Dynamic Programming Principle. These proper-
ties directly lead to the conclusion that the value function is a viscosity
solution of the HJB equation. Uniqueness is then also established.
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Implied Lévy volatility

Florence Guillaume, KU Leuven
Florence.Guillaume@wis.kuleuven.be

The concept of implied volatility under the Black-Scholes model is one of
the key points of its success and its widespread use since it allows to per-
fectly match model prices and market prices. In fact it gives another, more
convenient and robust, way of quoting plain vanilla European option prices.
Rather than quoting the premium in the relevant currency, the options are
quoted in terms of Black-Scholes implied volatility. Over the years, option
traders have developed an intuition in this quantity. As it turns out, this
model parameter depends on the characteristics of the contract. More preci-
sely, it depends on the strike price and the remaining lifetime of the option.
The precise functional form is called the volatility surface and follows its own
dynamics in the market. This model parameter needs to be adjusted sepa-
rately for each individual contract given the inadequacy of the underlying
Black-Scholes model. separately for each individual contract, is because the
underlying Black-Scholes model is not adequate. By analyzing empirical his-
torical data, it is not hard to see that stock returns tend to be more skewed
and have fatter tails than those the normal distribution can provide. Hence
blind trust in a single implied volatility number and all the numbers derived
from that, like deltas and other hedge parameters could be dangerous. Here a
similar concept is developed but now under a Lévy framework and therefore
based on distributions that match more closely historical returns.

We introduce the concept of implied Lévy volatility, hereby extending the
intuitive Black-Scholes implied volatility into a more general context. The
Lévy models are obtained by replacing the Wiener distribution modeling the
diffusion part of the log-return process by a more empirically founded Lévy
distribution. under the Black-Scholes model, the logarithm of the stock re-
turn follows a normal distribution whereas the empirical log-returns exhibit
some skewness, excess kurtosis and a fatter tail behavior. the Gaussian co-
pula model has become the common model in practice. The extension of this
classical model to the class of one factor Lévy models allows to consider dis-
tributions which fit better the empirical return distribution characterized by
asymmetry, high peak and fatter tails than the Gaussian distribution. The
Lévy space volatility model will arise by multiplying volatility with the un-
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derlying Lévy process, whereas the Lévy time volatility model will arise by
multiplying volatility squared with time. Lévy implied time and space vola-
tility are introduced and a study of the resulting skew-adjustment is made.

The price and Greeks of vanilla options are computed by making use of the
COS method proposed by Fang and Oosterlee. This method rests on Fourier-
cosine series expansions and can be applied for any model if the characteristic
function of the log-price process at maturity T is available.

By switching from the Black-Scholes world to the Lévy world, we introduce
additional degrees of freedom (i.e. parameters that can be set freely) which
can be used in order to minimize the curvature of the volatility surface. We
look how Black-Scholes curves are translated into implied Lévy volatility
curves and vice versa. It is shown that any smiling or smirking Black-Scholes
volatility curve can be transformed into a flatter Lévy volatility curve under
a well chosen parameter set. This gives some evidence to the fact that the
implied Lévy models could lead to flatter volatility curve for more practical
datasets. Hence, implied Lévy volatility model can be of a particular interest
for practitioners facing the problem of pricing barrier options since for the
Black-Scholes model, it is not clear which volatility one should use (the one
of the barrier or the one of the strike).

Model performance is studied by analyzing delta-hedging strategies for short
term ATM vanilla under the Normal Inverse Gaussian and the Meixner mo-
del, both qualitatively and on historical time-series of the S&P500. The Lévy
degrees of freedom can thus be determined such that the absolute value of
the mean and the square root of the variance of the daily hedging error are
minimized. It is shown that using the historical optimal parameters leads to
a significant reduction of the variance of the hedging error (amounting to
more than 50 percents), which is particularly attractive for option hedging.

Moreover, we investigate the Delta hedging performance of a portfolio of li-
quid vanilla options with different strike prices and times to maturity written
on the Nasdaq and traded from the 2nd of January 2000 on. It is shown that
making use of the Lévy models with appropriate degrees of freedom leads
to a significant improvement of the mean and the variance of the Profit and
Loss. This is joint work with José Manuel Corcuera, Peter Leoni and Wim
Schoutens.
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A time-and price-continuous order book model

Marcel Hoeschler, TU Berlin, Deutsche Bank Quantitative Pro-
ducts Laboratory
marcel.hoeschler@gmail.com

Nowadays almost all major stock exchanges such as NYSE and London Stock
Exchange either fully or partially trade via electronic limit order books. Mar-
ket participants can choose to submit limit orders which are stored in the
limit order book or market orders which are immediately executed against
the best available prices. Outstanding limit orders can also be cancelled. The
limit order book is publicly available to all market participants and is an
important indicator for the current liquidity of the asset.

In this talk I will set up a microstructure model for a limit order book which
includes dependence of incoming limit/market orders and cancellation on key
parameters such as spread and volume imbalance. The model is determined
by the total amount of incoming limit/market orders and cancelled orders.
These quantities are given by continuous (stochastic) processes. I will analyse
conditions under which this infinite-dimensional system can be reduced to a
finite-dimensional model. In this setting, I will give some specific examples
of limit/market order inflow rates and analyse the resulting models. In par-
ticular, I shall analyse key quantities of interest such as the behaviour of the
spread, mid-quote price and time-to-fill.

The results can be used in a variety of applications such as micro-traders,
high-frequency proprietary trading strategies and smart order routing.
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A Robust Regression Monte Carlo Method for Pricing
High-Dimensional American-Style Options

Christian Jonen, University of Cologne
cjonen@math.uni-koeln.de

We propose a new class of regression-based Monte Carlo methods for pri-
cing high-dimensional American-style options. On the basis of the dynamic
programming principle in terms of the optimal stopping time, we fit the
continuation value at every exercise date by robust regression rather than
by ordinary least squares. By using robust regression, we are able to get a
more accurate approximation of the continuation value due to detection of
outliers and leverage points. To prove convergence of our robust regression
Monte Carlo method, we use techniques of the statistical learning theory.
Our method runs with few basis functions, and it turns out that our sug-
gested estimator is unbiased. Moreover, we extend approaches for variance
reduction by importance sampling for American-style options, and we focus
on both stochastic approximation and optimization methods. In comparison
to existing Monte Carlo methods, we improve convergence significantly.
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Constructing time-homogeneous diffusions consistent with
perpetual option prices

Martin Klimmek, University of Warwick
M.Klimmek@warwick.ac.uk

Consider an optimal stopping problem (e.g. the pricing of, and optimal exer-
cise strategy for, a perpetual option) with a one-parameter objective function
(e.g. a call payoff), and suppose we are given the expected discounted values
for the problem (e.g. option prices) for a continuous range of parameter va-
lues (e.g. a range of strikes). Under mild regularity conditions on the payoff
function we show how to construct a time-homogeneous diffusion consistent
with the given values. The forward problem of determining the expected va-
lues given a process is related to the inverse problem through a generalized
duality relation with respect to the log-transformed payoff function.
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Backward stochastic dynamics on a filtered probability
space

Gechun Liang, University of Oxford
liangg@maths.ox.ac.uk

We consider the following backward stochastic dynamics based on a general
filtered probability space (Ω,F , {Ft}t≥0, P ) :{

dYt = −f0(t, Yt, L(M)t)dt−
∑N

i=1 fi(t, Yt)dBi
t + dMt,

YT = ξ ∈ L2(Ω,FT , P )

where L is a given operator to be introduced in the main text, B is an N -
dimensional Brownian motion as given, and M is a square-integrable martin-
gale to be determined. Under adaptedness constraints on Y , we prove that
the equation admits a solution pair (Y,M), which is unique in the sense of
strict solutions to be introduced in the main text. The martingale represen-
tation is not required in order to prove the existence and uniqueness, and
instead we establish the existence and uniqueness of a functional differential
equation, in a form V = L(V ), where L is a non-linear functional. Finally we
indicate a connection between the backward stochastic dynamics discussed
here and a class of non-linear PDEs, namely semi-linear PDEs with non-local
integral term. This is a joint work with Terry Lyons and Zhongmin Qian.
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Conditional Certainty Equivalent

Marco Maggis, Universita’ degli studi di Milano
marco.maggis@gmail.com

In a general dynamic framework we study the conditional version of the
classical notion of the certainty equivalent of a risky position X, defined as
the implicit solution Cs,t of the equation

u(Cs,t(X)(ω), s, ω) = E [u(X, t, ·)|Fs] (ω).

where u(x, t, ω) is a stochastic dynamic utility satisfying natural conditions.
For this analysis we propose a dynamic version of the theory of Musielak-
Orlicz space, which fits very well with stochastic dynamic utilities. It turns
out that for large classes of stochastic dynamic utilities Cs,t is a quasi concave
operator between two Orlicz spaces induced respectively by u(x, t, ω) and
u(x, s, ω). This concept leads to the investigation of quasi concave maps and
their dual representation : to this aim we extend the representation formulas
of quasi concave conditional maps to the dynamic case. This is joint work
with Marco Frittelli.
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A Malliavin calculus approach to general stochastic dif-
ferential games with partial information

Yeliz Yolcu Okur, University of Oslo
yelizy@math.uio.no

In this paper we consider a general partial information stochastic differential
game where the state process is a controlled Itô-Lévy process. Suppose the
dynamics of a state process X(t) = X(u0,u1)(t, ω) ; t ≥ 0, ω ∈ Ω, is a controlled
Itô-Lévy process has the form

dX(t) = b(t,X(t), u0(t), ω)dt + σ(t,X(t), u0(t), ω)dB(t)

+
∫

R0
γ(t,X(t−), u0(t

−), u1(t
−, z), z, ω)Ñ(dt, dz);

X(0) = x ∈ R.

(1)

where the coefficients b : [0, T ]×R×U ×Ω → R, σ : [0, T ]×R×U ×Ω → R
and γ : [0, T ] × R × U × K × R0 × Ω are given Ft-predictable processes
and U,K are given open convex subsets of R2 and R×R0 respectively. Here
R0 = R− {0}, B(t) = B(t, ω), and η(t) = η(t, ω), given by

η(t) =

∫ t

0

∫
R0

zÑ(ds, dz); t ≥ 0, ω ∈ Ω,

are a 1-dimensional Brownian motion and an independent pure jump Lévy
martingale, respectively, on a given filtered probability space (Ω,F , {Ft}t≥0, P ).
Thus

Ñ(dt, dz) := N(dt, dz)− ν(dz)dt

is the compensated Poisson jump measure of η(·), where N(dt, dz) is the
Poisson jump measure and ν(dz) is the Lévy measure of the pure jump Lévy
process η(·). The processes u0(t) and u1(t, z) are the control processes and
have values in a given open convex set U and K respectively for a.a. t ∈ [0, T ],
z ∈ R0 for a given fixed T > 0. Also, u0(·) and u1(·) are càdlàg and adapted
to a given filtration {Et}t≥0, where

Et ⊆ Ft, t ∈ [0, T ].

{Et}t≥0 represents the information available to the controller at time t. For
example, we could have

Et = F(t−δ)+ ; t ∈ [0, T ], δ > 0 is a constant,
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meaning that the controller gets a delayed information compared to Ft. Let
f : [0, T ]×R×U ×K ×Ω → R and g : R×Ω → R are given F-adapted sto-
chastic processes. Suppose there are two players in the stochastic differential
game and the given performance functionals for players are as follows :

Ji(u0, u1) = Ex
[ ∫ T

0

∫
R0

fi(t,X(t), u0(t), u1(t, z), z, ω)µ(dz)dt + gi(X(T ), ω)
]
,

for i = 1, 2, where µ is a measure on the given measurable space (Ω,F) and
Ex = Ex

P denotes the expectation with respect to P given that X(0) = x.
Suppose that the controls u0(t) and u1(t, z) have the form

u0(t) = (π0(t), θ0(t)); t ∈ [0, T ]

u1(t, z) = (π1(t, z), θ1(t, z)); (t, z) ∈ [0, T ]× R0.

Let AΠ and AΘ denote the given family of controls π = (π0, π1) and θ =
(θ0, θ1) such that they are contained in the set of Et-adapted controls, (1) has
a unique strong solution up to time T and

Ex
[ ∫ T

0

∫
R0

|fi(t,X(t), π0(t), π1(t, z), θ0(t), θ1(t, z), z, ω)|µ(dz)dt+|gi(X(T ), ω)|
]

< ∞,

for i = 1, 2. The partial information non-zero-sum stochastic differential game
problem we consider is the following :
Find (π∗, θ∗) ∈ AΠ ×AΘ (if it exists) such that

(i) J1(π, θ∗) ≤ J1(π
∗, θ∗) for all π ∈ AΠ

(ii) J2(π
∗, θ) ≤ J2(π

∗, θ∗) for all θ ∈ AΘ.

By using Malliavin calculus, we derive a maximum principle for this general
stochastic differential game. (This is a joint work with Bernt Øksendal and
Ta Thi Kieu An)
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Analysis of Fourier transform valuation formulas and
applications

Antonis Papapantoleon, Vienna University
papapan@fam.tuwien.ac.at

The aim of this article is to provide a systematic analysis of the conditions
required such that Fourier transform valuation formulas are valid in a general
framework : i.e. when the option has an arbitrary payoff function and depends
on the path of the asset price process. An interplay between the conditions
imposed on the payoff function and on the process arises naturally. We also
extend these results to the multi-dimensional case, and discuss the calculation
of Greeks by Fourier transform methods. As an application, we price options
on the minimum of two assets in Lévy and stochastic volatility models. This
is joint work with Ernst Eberlein and Kathrin Glau.
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Differentiability of BSDE driven by continuous martin-
gales and hedging in incomplete markets

Anja Richter, Humboldt-Universität zu Berlin
richtera@math.hu-berlin.de

In this talk we consider quadratic growth BSDE driven by continuous local
martingales. First we derive the Markov property of a forward-backward
system when the driving martingale is a strong Markov process. Then we
establish the differentiability of a FBSDE with respect to the initial value of
its forward component. It enables us to obtain the main result of this talk
that is to describe the control process of the BSDE in terms of a differential
operator of the solution process and the correlation coefficient of the forward
process. This formula generalizes the results obtained by several authors in
the Brownian setting, designed to represent the optimal delta hedge in the
context of cross hedging insurance derivatives that generalizes the derivative
hedge in the Black-Scholes model. It involves Malliavin’s calculus which is
not available in the general martingale setting. Consequently, we propose a
new method based on stochastic calculus techniques. This is a joint work
with Peter Imkeller and Anthony Réveillac.

19



Optimal trading strategies under arbitrage

Johannes Ruf, Columbia University
johannes.ruf@gmail.com

Explicit formulas for optimal trading strategies in terms of minimal required
initial capital are derived to replicate a given terminal wealth in a continuous-
time Markovian context. To achieve this goal this talk does not assume the
existence of an equivalent local martingale measure. Instead a new measure is
constructed under which the dynamics of the stock price processes simplify.
It is shown that delta hedging does not depend on the “no free lunch with
vanishing risk” assumption. However, in the case of arbitrage the problem
of finding an optimal strategy is directly linked to the non-uniqueness of
the partial differential equation corresponding to the Black-Scholes equation.
The recently often discussed phenomenon of “bubbles” is a special case of
the setting in this talk. Several examples at the end illustrate the techniques
described in this work.
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Minimal Sufficient conditions on a primal optimizer in
utility maximization

Nicholas Westray, Deutsche Bank
nicholas.westray@db.com

We continue the study of utility maximization in the nonsmooth setting and
give a counterexample to a conjecture made by Deelstra, Pham and Touzi on
the optimality of random variables valued in an appropriate subdifferential.
We use this as the basis for proving minimal sufficient conditions on a random
variable for it to be a primal optimizer in the case where the utility function
is neither strictly concave nor differentiable.
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A Penalty based Finite Element Method for the Pricing
of American Options

Jan Witte, University of Oxford
jan.witte@maths.ox.ac.uk

In the Black-Scholes framework, the valuation of an American option can be
formulated as a linear complementarity problem (LCP). A certain variational
formulation of this LCP is considered and a finite element method is applied.
A proof of stability and convergence of the finite element method is given.
The finite element discretisation yields a discrete LCP, which is solved using
a penalty method. Regularity properties of the original problem and the
penalised problem are studied.
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Optimal Stock Selling/Buying Strategy with reference
to the Ultimate Average

Yifei Zhong, University of Oxford
zhongy1@maths.ox.ac.uk

We are concerned with the optimal decision to sell or buy a stock in a gi-
ven period with reference to the ultimate average of the stock price. More
precisely, we aim to determine an optimal selling (buying) time so as to maxi-
mize (minimize) the expectation of the ratio of the selling (buying) price to
the ultimate average price over the period. This is an optimal stopping time
problem which can be formulated as a variational inequality problem. The
problem gives rise to a free boundary that corresponds to the optimal sel-
ling (buying) strategy. We provide a partial differential equation approach to
characterize the free boundary (or equivalently, the optimal selling (buying)
region). It turns out that the optimal selling strategy is bang-bang, which
is the same as that obtained by Shiryaev, Xu and Zhou (2008) taking the
ultimate maximum of the stock price as the benchmark, while the optimal
buying strategy can be a feedback one subject to the type of averaging and
parameter values. Moreover, by a thorough characterization of free boundary,
we reveal that the bang-bang optimal selling strategy heavily depends on the
fact that the averaging period starts from time zero, and a feedback optimal
selling strategy is possible if the averaging period starts from a time horizon
earlier than time zero.
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