A Direct Proof of the Bichteler-Dellacherie Theorem and Connections to Arbitrage

Bezirgen Veliyev, University of Vienna
(joint with Mathias Beiglböck and Walter Schachermayer)

August 23, 2010
Paris, European Summer School in Financial Mathematics
We have a filtered probability space \((\Omega, F, (F_t)_{0 \leq t \leq T}, \mathbb{P})\) satisfying the usual conditions and a real-valued, càdlàg, adapted process \(S = (S_t)_{0 \leq t \leq T}\).
We have a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\) satisfying the usual conditions and a real-valued, càdlàg, adapted process \(S = (S_t)_{0 \leq t \leq T}\). For the talk, we assume that \(S\) is locally bounded.
We have a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\) satisfying the usual conditions and a real-valued, càdlàg, adapted process \(S = (S_t)_{0 \leq t \leq T}\). For the talk, we assume that \(S\) is locally bounded.

Theorem (Bichteler ’79,’81; Dellacherie ’80)

\(S\) is a good integrator if and only if \(S\) is a semimartingale.
We have a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\) satisfying the usual conditions and a real-valued, càdlàg, adapted process \(S = (S_t)_{0 \leq t \leq T}\). For the talk, we assume that \(S\) is locally bounded.

Theorem (Bichteler '79,'81; Dellacherie '80)

\[S \text{ is a good integrator if and only if } S \text{ is a semimartingale.}\]

Theorem (DS 94)

\[\text{If a locally bounded process } S \text{ satisfies NFLVR for simple integrands, then } S \text{ is a semimartingale.}\]
We have a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\) satisfying the usual conditions and a real-valued, càdlàg, adapted process \(S = (S_t)_{0 \leq t \leq T}\). For the talk, we assume that \(S\) is locally bounded.

Theorem (Bichteler '79,'81; Dellacherie '80)

\(S\) is a good integrator if and only if \(S\) is a semimartingale.

Theorem (DS 94)

If a locally bounded process \(S\) satisfies NFLVR for simple integrands, then \(S\) is a semimartingale.
We have a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\) satisfying the usual conditions and a real-valued, càdlàg, adapted process \(S = (S_t)_{0 \leq t \leq T}\). For the talk, we assume that \(S\) is locally bounded.

Theorem (Bichteler '79,'81; Dellacherie '80)

\(S\) is a good integrator if and only if \(S\) is a semimartingale.

Theorem (DS 94)

If a locally bounded process \(S\) satisfies NFLVR for simple integrands, then \(S\) is a semimartingale.
We have a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\) satisfying the usual conditions and a real-valued, càdlàg, adapted process \(S = (S_t)_{0 \leq t \leq T}\). For the talk, we assume that \(S\) is locally bounded.

Theorem (Bichteler '79, '81; Dellacherie '80)

\(S\) is a good integrator if and only if \(S\) is a semimartingale.

Theorem (DS 94)

If a locally bounded process \(S\) satisfies NFLVR for simple integrands, then \(S\) is a semimartingale.
We have a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\) satisfying the usual conditions and a real-valued, càdlàg, adapted process \(S = (S_t)_{0 \leq t \leq T}\). For the talk, we assume that \(S\) is locally bounded.

Theorem (Bichteler '79,’81; Dellacherie ’80)

S is a good integrator if and only if S is a semimartingale.

Theorem (DS 94)

If a locally bounded process \(S\) satisfies NFLVR for simple integrands, then \(S\) is a semimartingale.

\[
\begin{align*}
S \text{ is a good integrator} & \quad \Rightarrow \quad \text{weak-NFLVR} & \quad \Leftarrow \quad \text{NFLVR} \\
\text{NFLVR} & \quad \Downarrow \quad S \text{ is a semimartingale}
\end{align*}
\]
We have a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\) satisfying the usual conditions and a real-valued, càdlàg, adapted process \(S = (S_t)_{0 \leq t \leq T}\). For the talk, we assume that \(S\) is locally bounded.

Theorem (Bichteler ’79,’81; Dellacherie ’80)

\[S \text{ is a good integrator if and only if } S \text{ is a semimartingale.} \]

Theorem (DS 94)

If a locally bounded process \(S\) satisfies NFLVR for simple integrands, then \(S\) is a semimartingale.

\[S \text{ is a good integrator} \quad \xrightarrow{BD} \quad \text{weak-NFLVR} \quad \xrightarrow{} \quad S \text{ is a semimartingale} \]
We have a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\) satisfying the usual conditions and a real-valued, càdlàg, adapted process \(S = (S_t)_{0 \leq t \leq T}\). For the talk, we assume that \(S\) is locally bounded.

Theorem (Bichteler '79,'81; Dellacherie '80)

\(S\) is a good integrator if and only if \(S\) is a semimartingale.

Theorem (DS 94)

If a locally bounded process \(S\) satisfies NFLVR for simple integrands, then \(S\) is a semimartingale.
A simple integrand is a stochastic process of the form

\[H_t = \sum_{j=1}^{n} h_j \mathbb{1}_{[\tau_{j-1}, \tau_j]}(t) \]

where \(0 = \tau_0 \leq \tau_1 \leq \cdots \leq \tau_n = T\) are stopping times and \(h_j \in L^\infty(\Omega, \mathcal{F}_{\tau_{j-1}}, \mathbb{P})\). Denote by \(SI\) the vector space of simple integrands.
A simple integrand is a stochastic process of the form

$$H_t = \sum_{j=1}^{n} h_j \mathbb{1}_{[\tau_{j-1}, \tau_j]}(t)$$

where $0 = \tau_0 \leq \tau_1 \leq \cdots \leq \tau_n = T$ are stopping times and $h_j \in L^\infty(\Omega, \mathcal{F}_{\tau_j-1}, \mathbb{P})$. Denote by SI the vector space of simple integrands.

For each S, we may well-define the integration operator

$$I : SI \rightarrow L^0(\Omega, \mathcal{F}, \mathbb{P})$$

$$\sum_{j=1}^{n} h_j \mathbb{1}_{[\tau_{j-1}, \tau_j]} \mapsto \sum_{j=1}^{n} h_j(S_{\tau_j} - S_{\tau_{j-1}}) =: (H \cdot S)_T.$$
A simple integrand is a stochastic process of the form

$$H_t = \sum_{j=1}^{n} h_j \mathbb{1}_{]\tau_{j-1},\tau_j]}(t)$$

where $0 = \tau_0 \leq \tau_1 \leq \cdots \leq \tau_n = T$ are stopping times and $h_j \in L^\infty(\Omega, \mathcal{F}_{\tau_{j-1}}, \mathbb{P})$. Denote by SI the vector space of simple integrands.

For each S, we may well-define the integration operator

$$I : SI \rightarrow L^0(\Omega, \mathcal{F}, \mathbb{P})$$

$$\sum_{j=1}^{n} h_j \mathbb{1}_{]\tau_{j-1},\tau_j]} \mapsto \sum_{j=1}^{n} h_j(S_{\tau_j} - S_{\tau_{j-1}}) =: (H \cdot S)_T.$$

S is a good integrator if I is continuous i.e. if $\|H^n\|_\infty \to 0$, then $(H^n \cdot S)_T \to 0$ in probability.
S is a good integrator if for every sequence \((H^n)_{n=1}^\infty\) satisfying \(\|H^n\|_\infty \to 0\), we have \((H^n \cdot S)_T \to 0\) in probability.
S is a good integrator if for every sequence \((H^n)_{n=1}^{\infty}\) satisfying \(\|H^n\|_\infty \to 0\), we have \((H^n \cdot S)_T \to 0\) in probability.

“little investment” → “little outcome”
S is a good integrator if for every sequence \((H^n)_{n=1}^{\infty}\) satisfying
\[\|H^n\|_\infty \to 0,\] we have \((H^n \cdot S)_T \to 0\) in probability.

“little investment” → “little outcome”

S satisfies NFLVR if for every sequence \((H^n)_{n=1}^{\infty}\) satisfying
\[\|(H^n \cdot S)^-\|_\infty \to 0,\] we have \((H^n \cdot S)_T \to 0\) in probability.
S is a good integrator if for every sequence \((H^n)_{n=1}^\infty\) satisfying \(\|H^n\|_\infty \to 0\), we have \((H^n \cdot S)_T \to 0\) in probability.

“little investment” → “little outcome”

S satisfies NFLVR if for every sequence \((H^n)_{n=1}^\infty\) satisfying \(\|(H^n \cdot S)^{-}\|_\infty \to 0\), we have \((H^n \cdot S)_T \to 0\) in probability.

“vanishing risk” → “little outcome”
S satisfies NFLVRLI if for every sequence \((H^n)_{n=1}^\infty\) satisfying
\[\|H^n\|_\infty \to 0\] and
\[\|(H^n \cdot S)^-\|_\infty \to 0\], we have
\[(H^n \cdot S)_T \to 0\]
in probability.
S satisfies NFLVRLI if for every sequence \((H^n)_{n=1}^{\infty}\) satisfying
\[\|H^n\|_{\infty} \to 0 \quad \text{and} \quad \|(H^n \cdot S)^-\|_{\infty} \to 0,\]
we have \((H^n \cdot S)_T \to 0\) in probability.

“little investment” and “vanishing risk” →, “little outcome”.
S satisfies NFLVRLI if for every sequence \((H^n)_{n=1}^\infty\) satisfying
\[\|H^n\|_\infty \to 0 \text{ and } \|(H^n \cdot S)^-\|_\infty \to 0,\]
we have \((H^n \cdot S)_T \to 0\) in probability.

“little investment” and “vanishing risk” → “little outcome”.

S is a good integrator → S satisfies NFLVRLI.
S satisfies NFLVRLI if for every sequence \((H^n)_{n=1}^\infty\) satisfying
\[\|H^n\|_\infty \to 0 \text{ and } \|(H^n \cdot S)^-_T\|_\infty \to 0,\]
we have \((H^n \cdot S)_T \to 0\) in probability.

“little investment” and “vanishing risk” \(\to\), “little outcome”.

S is a good integrator \(\to\) S satisfies NFLVRLI.

S satisfies NFLVR \(\to\) S satisfies NFLVRLI.
Theorem (Main Theorem)

Let S be locally bounded process. TFAE:

- S satisfies NFLVRLI.
- S is a semimartingale.
Assume $S_0 = 0$, $T = 1$.
Sketch of Proof

- Assume $S_0 = 0$, $T = 1$.

- Being a semimartingale is a local property, hence assume S is bounded. WLOG, $S \leq 1$.
Sketch of Proof

- Assume $S_0 = 0, \ T = 1$.
- Being a semimartingale is a local property, hence assume S is bounded. WLOG, $S \leq 1$.
- Consider $\mathcal{D}_n = \{0, \frac{1}{2^n}, \ldots, \frac{2^n-1}{2^n}, 1\}$ and S^n sampled on \mathcal{D}_n.

 Apply discrete Doob-Meyer to obtain $S_n = M_n + A_n$, where $(M_n^j)_{2^n} = 0$ is a martingale and $(A_n^j)_{2^n} = 0$ is predictable.
Assume $S_0 = 0$, $T = 1$.

Being a semimartingale is a local property, hence assume S is bounded. WLOG, $S \leq 1$.

Consider $\mathcal{D}_n = \{0, \frac{1}{2^n}, \ldots, \frac{2^n-1}{2^n}, 1\}$ and S^n sampled on \mathcal{D}_n.

Apply discrete Doob-Meyer to obtain $S^n = M^n + A^n$, where $(M^n_j)_{j=0}^{2^n}$ is a martingale and $(A^n_j)_{j=0}^{2^n}$ is predictable.
Lemma

Assume NFLVRLI. For $\varepsilon > 0$, there exist a constant $C > 0$ and a sequence of $\{\frac{j}{2^n}\}_{j=1}^{2^n} \cup \{\infty\}$-valued stopping times $(\varrho_n)_{n=1}^{\infty}$ such that $\mathbb{P}(\varrho_n < \infty) < \varepsilon$ and

$$TV(A^n,\varrho_n) = \sum_{j=1}^{2^n(\varrho_n \wedge 1)} \left| A^n_{\frac{j}{2^n}} - A^n_{\frac{j-1}{2^n}} \right| \leq C,$$ \hspace{1cm} (1)

$$\|M^n_{1,\varrho_n}\|_{L^2(\Omega)}^2 = \|M^n_{\varrho_n \wedge 1}\|_{L^2(\Omega)}^2 \leq C.$$ \hspace{1cm} (2)
Lemma

Assume NFLVRLI. For $\varepsilon > 0$, there exist a constant $C > 0$ and a sequence of $\{\frac{j}{2^n}\}_{j=1}^{2^n} \cup \{\infty\}$-valued stopping times $(\varrho_n)_{n=1}^{\infty}$ such that $\mathbb{P}(\varrho_n < \infty) < \varepsilon$ and

$$TV(A^n, \varrho_n) = \sum_{j=1}^{2^n(\varrho_n \wedge 1)} \left| A^n_{\frac{j}{2^n}} - A^n_{\frac{j-1}{2^n}} \right| \leq C, \quad (1)$$

$$\| M_1^{n, \varrho_n} \|_{L^2(\Omega)}^2 = \| M_{\varrho_n \wedge 1}^n \|_{L^2(\Omega)}^2 \leq C. \quad (2)$$

Idea:

$$H_t^n = -2 \sum_{j=1}^{2^n} S_j \mathbb{1}_{[\frac{j-1}{2^n}, \frac{j}{2^n}]}(t) \Rightarrow \| M_1^{n, \varrho_n} \|_{L^2(\Omega)}^2 \leq (H^n \cdot S)_T.$$
Lemma

Assume NFLVRLI. For $\varepsilon > 0$, there exist a constant $C > 0$ and a sequence of $\{\frac{j}{2^n}\}_{j=1}^{2^n} \cup \{\infty\}$-valued stopping times $(\varrho_n)_{n=1}^{\infty}$ such that $\mathbb{P}(\varrho_n < \infty) < \varepsilon$ and

$$TV(A^n_{\varrho_n}) = \sum_{j=1}^{2^n(\varrho_n \wedge 1)} \left| A^n_{\frac{j}{2^n}} - A^n_{\frac{j-1}{2^n}} \right| \leq C, \quad (1)$$

$$\| M^n_{1, \varrho_n} \|_{L^2(\Omega)}^2 = \| M^n_{\varrho_n \wedge 1} \|_{L^2(\Omega)}^2 \leq C. \quad (2)$$

Idea:

$H^n_t = -2 \sum_{j=1}^{2^n} S_{\frac{j-1}{2^n}} \mathbb{1}_{[\frac{j-1}{2^n}, \frac{j}{2^n}]}(t) \Rightarrow \| M^n_{1, \varrho_n} \|_{L^2(\Omega)}^2 \leq (H^n \cdot S)_T.$

$H^n_t = \sum_{j=1}^{2^n} \text{sign} \left(A^n_{\frac{j}{2^n}} - A^n_{\frac{j-1}{2^n}} \right) \mathbb{1}_{[\frac{j-1}{2^n}, \frac{j}{2^n}]}(t) \Rightarrow TV(A^n) \leq (H^n \cdot S)_T.$
We want to pass to the limits
We want to pass to the limits

- $\varrho_n \to \varrho$ and
We want to pass to the limits

- $\varrho_n \to \varrho$ and

- $A^n \to A$ and $M^n \to M$ on $[0, \varrho]$.

$S = A + M$ on $[0, \varrho]$. Since ϵ was arbitrary, S is a semimartingale.

Lemma (Komlos L^2-version)

Let $(f_n)_{n \geq 1}$ be a sequence of measurable functions on a probability space (Ω, \mathcal{F}, P) such that $\sup_{n \geq 1} \|f_n\|_2 < \infty$. Then, there exist functions $g_n \in \text{conv}(f_n, f_n+1, \ldots)$ such that $(g_n)_{n \geq 1}$ converges almost surely and in $\|\cdot\|_{L^2(\Omega)}$.

$R_T = 1_{[0,\varrho]} \to R_T$ using Komlos. R_T is a good enough substitute for ϱ.

Using Komlos again, $A^n \to A$ and $M^n \to M$ on $[0,\varrho]$.
We want to pass to the limits

- $\varrho_n \to \varrho$ and
- $A^n \to A$ and $M^n \to M$ on $[0, \varrho]$.
- $S = A + M$ on $[0, \varrho]$. Since ε was arbitrary, S is a semimartingale.
We want to pass to the limits

- $\varrho_n \to \varrho$ and
- $A^n \to A$ and $M^n \to M$ on $[0, \varrho]$.
- $S = A + M$ on $[0, \varrho]$. Since ε was arbitrary, S is a semimartingale.

Lemma (Komlos L^2-version)

Let $(f_n)_{n \geq 1}$ be a sequence of measurable functions on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\sup_{n \geq 1} \|f_n\|_2 < \infty$. Then, there exist functions $g_n \in \text{conv}(f_n, f_{n+1}, \ldots)$ such that $(g_n)_{n \geq 1}$ converges almost surely and in $\|\cdot\|_{L^2(\Omega)}$.

$\varrho_T = 1_{[0,\varrho]} \to \varrho_T$ using Komlos. ϱ_T is a good enough substitute for ϱ.

Using Komlos again, $A^n \to A$ and $M^n \to M$ on $[0, \varrho]$.

We want to pass to the limits

- $\rho_n \to \rho$ and
- $A^n \to A$ and $M^n \to M$ on $[0, \rho]$.
- $S = A + M$ on $[0, \rho]$. Since ε was arbitrary, S is a semimartingale.

Lemma (Komlos L^2-version)

Let $(f_n)_{n \geq 1}$ be a sequence of measurable functions on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\sup_{n \geq 1} \|f_n\|_2 < \infty$. Then, there exist functions $g_n \in \text{conv}(f_n, f_{n+1}, \ldots)$ such that $(g_n)_{n \geq 1}$ converges almost surely and in $\| \cdot \|_{L^2(\Omega)}$.

- $R^n_T = \mathbb{1}_{[0, \rho_n]} \to R_T$ using Komlos.
We want to pass to the limits

- \(\varrho_n \to \varrho \) and
- \(A^n \to A \) and \(M^n \to M \) on \([0, \varrho]\).
- \(S = A + M \) on \([0, \varrho]\). Since \(\varepsilon \) was arbitrary, \(S \) is a semimartingale.

Lemma (Komlos \(L^2 \)-version)

Let \((f_n)_{n \geq 1}\) be a sequence of measurable functions on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) such that \(\sup_{n \geq 1} \|f_n\|_2 < \infty\). Then, there exist functions \(g_n \in \text{conv}(f_n, f_{n+1}, \ldots)\) such that \((g_n)_{n \geq 1}\) converges almost surely and in \(\|\cdot\|_{L^2(\Omega)}\).

- \(R_T^n = 1_{[0, \varrho_n]} \to R_T\) using Komlos.
- \(R_T\) is a good enough substitute for \(\varrho\).
We want to pass to the limits

- $\varrho_n \to \varrho$ and
- $A^n \to A$ and $M^n \to M$ on $[0, \varrho]$.
- $S = A + M$ on $[0, \varrho]$. Since ε was arbitrary, S is a semimartingale.

Lemma (Komlos L^2-version)

Let $(f_n)_{n \geq 1}$ be a sequence of measurable functions on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\sup_{n \geq 1} \|f_n\|_2 < \infty$. Then, there exist functions $g_n \in \text{conv}(f_n, f_{n+1}, \ldots)$ such that $(g_n)_{n \geq 1}$ converges almost surely and in $\|\cdot\|_{L^2(\Omega)}$.

- $R_T^n = 1_{[0, \varrho_n]} \to R_T$ using Komlos.
- R_T is a good enough substitute for ϱ.
- Using Komlos again, $A^n \to A$ and $M^n \to M$ on $[0, \varrho]$.