Work Effort, Consumption and Portfolio Choice: When the Occupational Decision Matters

Sascha Desmettre

Third SMAI European Summer School in Financial Mathematics
Paris, France, August 23-27, 2010
1. Introduction

2. Set-Up
 - Financial Market
 - Controls and Wealth Process
 - Stochastic Control Problem

3. Optimal Strategies
 - HJB Equation
 - Closed-Form Solution

4. Decision Problem

5. Illustration of Results

6. Outlook
1 Introduction

2 Set-Up
 - Financial Market
 - Controls and Wealth Process
 - Stochastic Control Problem

3 Optimal Strategies
 - HJB Equation
 - Closed-Form Solution

4 Decision Problem

5 Illustration of Results

6 Outlook
Motivation and Framework

- Observation: Highly-qualified individuals have often the choice between different career paths;

- Decision problem between two career paths:
 - Mid-level management position in a large company with a rather high salary
 - Executive position within a smaller listed company with less salary and the possibility to influence the company’s performance

- Modelling of the optimization and decision problem:
 - Studied from the point of view of a highly-qualified individual in a smaller company with the option to join a larger company
 - The individual can invest in the financial market including the share of the smaller listed company
 - Stochastic control problem
Motivation and Framework

- Observation: Highly-qualified individuals have often the choice between different career paths;

- Decision problem between two career paths:
 - Mid-level management position in a large company with a rather high salary
 - Executive position within a smaller listed company with less salary and the possibility to influence the company’s performance

- Modelling of the optimization and decision problem:
 - Studied from the point of view of a highly-qualified individual in a smaller company with the option to join a larger company
 - The individual can invest in the financial market including the share of the smaller listed company
 - Stochastic control problem
Motivation and Framework

- Observation: Highly-qualified individuals have often the choice between different career paths;

- Decision problem between two career paths:
 - Mid-level management position in a large company with a rather high salary
 - Executive position within a smaller listed company with less salary and the possibility to influence the company’s performance

- Modelling of the optimization and decision problem:
 - Studied from the point of view of a highly-qualified individual in a smaller company with the option to join a larger company
 - The individual can invest in the financial market including the share of the smaller listed company
 - Stochastic control problem
Framework

Utility-maximizing Individual

- The individual receives a constant salary rate δ proportional to her wealth.
 - **Gain** in utility from a higher salary rate.
- The individual’s initial wealth V_0 is invested in the money market account, a diversified market portfolio, and own company shares.
- The value of her own company’s stock is influenced via work effort:
 - **Gain** in utility from the increased value of her direct shareholding.
 - **Loss** in utility for her work effort \rightarrow disutility term.
- The individual consumes at a continuous rate k_t proportional to her wealth.
 - **Gain** in utility by the ability to consume.

Characterization of the Individual

- Utility function of wealth
- Utility function of consumption with time preference ρ
- Disutility function associated with time preference $\tilde{\rho}$ and work effectiveness parameters
 - Inverse work productivity κ
 - Disutility stress α
Framework

Utility-maximizing Individual

- The individual receives a constant salary rate δ proportional to her wealth.
 - Gain in utility from a higher salary rate.
- The individual’s initial wealth V_0 is invested in the money market account, a diversified market portfolio, and own company shares.
- The value of her own company’s stock is influenced via work effort:
 - Gain in utility from the increased value of her direct shareholding.
 - Loss in utility for her work effort \rightarrow disutility term.
- The individual consumes at a continuous rate k_t proportional to her wealth.
 - Gain in utility by the ability to consume.

Characterization of the Individual

- Utility function of wealth
- Utility function of consumption with time preference ρ
- Disutility function associated with time preference $\tilde{\rho}$ and work effectiveness parameters
 - Inverse work productivity κ
 - Disutility stress α
1 Introduction

2 Set-Up
 - Financial Market
 - Controls and Wealth Process
 - Stochastic Control Problem

3 Optimal Strategies
 - HJB Equation
 - Closed-Form Solution

4 Decision Problem

5 Illustration of Results

6 Outlook
Money Market Account:

\[dB_t = r B_t \, dt, \quad B_0 = 1, \]

Market Portfolio:

\[dP_t = P_t \left(\mu^P \, dt + \sigma^P \, dW^P_t \right), \quad P_0 \in \mathbb{R}^+, \]

Company’s share price process is a controlled diffusion with SDE

\[dS^\lambda_t = S^\lambda_t \left([r + \lambda_t \sigma] \, dt + \sigma \, dW_t + \beta \left[\frac{dP_t}{P_t} - r \, dt \right] \right), \quad S_0 \in \mathbb{R}^+, \]

where the Sharpe ratio \(\lambda_t = (\mu_t - r)/\sigma \) is controlled by the individual.

Individual influences the own company’s share price.

\(\hat{=} \) Gain in utility from the increased value of her direct shareholding.

Remark

\(W^P \) and \(W \) are two independent standard Brownian motions, but the instantaneous correlation between \(S^\lambda_t \) and \(P_t \) is

\[\rho_t = \beta \sigma^P / \sqrt{\sigma^2 + (\beta \sigma^P)}. \]
Money Market Account:

\[dB_t = r B_t \, dt , \quad B_0 = 1 , \]

Market Portfolio:

\[dP_t = P_t (\mu^P \, dt + \sigma^P \, dW^P_t) , \quad P_0 \in \mathbb{R}^+ , \]

Company’s share price process is a controlled diffusion with SDE

\[dS_t^\lambda = S_t^\lambda \left([r + \lambda_t \sigma] \, dt + \sigma \, dW_t + \beta \left[\frac{dP_t}{P_t} - r \, dt \right] \right) , \quad S_0 \in \mathbb{R}^+ , \]

where the Sharpe ratio \(\lambda_t = (\mu_t - r)/\sigma \) is controlled by the individual.

\[\hat{=} \text{Gain in utility from the increased value of her direct shareholding.} \]

\[\text{Remark} \]

\(W^P \) and \(W \) are two independent standard Brownian motions, but the instantaneous correlation between \(S_t^\lambda \) and \(P_t \) is \(\rho_t = \beta \sigma^P / \sqrt{\sigma^2 + (\beta \sigma^P)} \).
Money Market Account:

\[dB_t = r B_t \, dt, \quad B_0 = 1, \]

Market Portfolio:

\[dP_t = P_t (\mu^P \, dt + \sigma^P \, dW^P_t), \quad P_0 \in \mathbb{R}^+, \]

Company’s share price process is a controlled diffusion with SDE

\[dS^\lambda_t = S^\lambda_t \left([r + \lambda_t \, \sigma] \, dt + \sigma \, dW_t + \beta \left(\frac{dP_t}{P_t} - r \, dt \right) \right), \quad S_0 \in \mathbb{R}^+, \]

where the Sharpe ratio \(\lambda_t = (\mu_t - r)/\sigma \) is controlled by the individual.

Individual influences the own company’s share price.

\(\triangleq \) Gain in utility from the increased value of her direct shareholding.

Remark

\(W^P \) and \(W \) are two independent standard Brownian motions, but the instantaneous correlation between \(S^\lambda_t \) and \(P_t \) is \(\rho_t = \beta \sigma^P / \sqrt{\sigma^2 + (\beta \sigma P)} \).
Highly-qualified individual

- Endowed with initial wealth $V_0 > 0$.
- Salary rate δ proportional to her current wealth.
- Seeks to maximize total utility for a given time horizon $T > 0$ by controlling
 - the portfolio holdings π^P and π^S,
 - the consumption k,
 - the work effort λ.

\Rightarrow All controls are collected in the vector process $u = (\pi^P, \pi^S, k, \lambda)$.

For a fixed salary rate, control strategy $u = (\pi^P, \pi^S, k, \lambda)$ and initial wealth $V_0 > 0$, the wealth process is given by:

$$dV_t^u = V_t^u [(1 - \pi_t^P - \pi_t^S) dB_t/B_t + \pi_t^P dP_t/P_t + \pi_t^S dS_t^\lambda/S_t^\lambda + \delta dt - k_t dt]. \quad (4)$$
Highly-qualified individual

- Endowed with initial wealth $V_0 > 0$.
- Salary rate δ proportional to her current wealth.
- Seeks to maximize total utility for a given time horizon $T > 0$ by controlling
 - the portfolio holdings π^P and π^S,
 - the consumption k,
 - the work effort λ.

⇒ All controls are collected in the vector process $u = (\pi^P, \pi^S, k, \lambda)$.

For a fixed salary rate, control strategy $u = (\pi^P, \pi^S, k, \lambda)$ and initial wealth $V_0 > 0$, the wealth process is given by:

$$
\frac{dV_t^u}{V_t^u} = \left[(1 - \pi_t^P - \pi_t^S) \frac{dB_t}{B_t} + \pi_t^P \frac{dP_t}{P_t} + \pi_t^S \frac{dS_t^\lambda}{S_t^\lambda} + \delta dt - k_t dt \right].
$$

(4)
Utility of Wealth and Consumption

- The utility from final wealth at time T is represented by a utility function U_1.
- The utility from consumption over the period $[t, T]$ is represented by a utility function U_2.

Work Effort Choice and Disutility

The individual’s instantaneous disutility of work effort is represented by a Markovian disutility rate (cost function) $C(t, v, \lambda_t)$ for control strategy (λ_t), where $c : [0, T] \times \mathbb{R}^+ \times [r, \infty) \times \mathbb{R}^+ \rightarrow \mathbb{R}_0^+$. (5)

\Rightarrow The optimal investment and consumption control decision including work effort is the solution of

$$
\Phi(t, v) = \sup_{u \in A(t,v)} \mathbb{E}^{t,v} \left[U_1(V^u_T) + \int_t^T U_2(s, V^u_s, k_s) ds - \int_t^T C(s, V^u_s, \lambda_s) ds \right],
$$

where $(t, v) \in [0, T] \times \mathbb{R}^+$. (5)
Utility of Wealth and Consumption

- The utility from final wealth at time T is represented by a utility function U_1.
- The utility from consumption over the period $[t, T]$ is represented by a utility function U_2.

Work Effort Choice and Disutility

The individual’s instantaneous disutility of work effort is represented by a Markovian disutility rate (cost function) $C(t, v, \lambda_t)$ for control strategy (λ_t), where $c : [0, T] \times \mathbb{R}^+ \times [r, \infty) \times \mathbb{R}^+ \rightarrow \mathbb{R}_0^+$.

\Rightarrow The optimal investment and consumption control decision including work effort is the solution of

$$
\Phi(t, v) = \sup_{u \in A(t, v)} \mathbb{E}^{t, v} \left[U_1(V^u_T) + \int_t^T U_2(s, V^u_s, k_s)ds - \int_t^T C(s, V^u_s, \lambda_s)ds \right],
$$

where $(t, v) \in [0, T] \times \mathbb{R}^+$.

(5)

Sascha Desmettre The Occupational Decision
Introduction

Set-Up
- Financial Market
- Controls and Wealth Process
- Stochastic Control Problem

Optimal Strategies
- HJB Equation
- Closed-Form Solution

Decision Problem

Illustration of Results

Outlook
0 = \sup_{u \in \mathbb{R}^2 \times [0, \infty)^2} \Phi_t(t, v) + \Phi_v(t, v) v (r + \pi^S \lambda \sigma + [\pi^P + \beta \pi^S](\mu^P - r) + \delta - k_t) \\
+ \frac{1}{2} \Phi_{vv}(t, v) v^2 ([\pi^S \sigma]^2 + [\pi^P \sigma^P + \beta \pi^S \sigma_P]^2) + U_2(t, k_t, v) - C(t, v, \lambda)

where \((t, v) \in [0, T) \times \mathbb{R}^+\), and \(U_1(v) = \Phi(T, v)\), for \(v \in \mathbb{R}^+\).

\(\Rightarrow\) Maximizers \(\pi^{P*}, \pi^{S*}, \lambda^*\) and \(k^*\) of (6) by establishing the FOCs:

\[
\pi^{P*}(t, v) = -\frac{\mu^P - r}{v \sigma^2} \frac{\Phi_v(t, v)}{\Phi_{vv}(t, v)} - \beta \pi^{S*}(t, v),
\]

\[
\pi^{S*}(t, v) = -\frac{\lambda^*(t, v)}{v \sigma} \frac{\Phi_v(t, v)}{\Phi_{vv}(t, v)}
\]

where \(\lambda^*\) is the solution of the implicit equation

\[
\lambda \frac{\Phi^2_v(t, v)}{\Phi_{vv}(t, v)} + \frac{\partial C}{\partial \lambda}(t, v, \lambda) = 0 \quad \text{for all } (t, v) \in [0, T] \times \mathbb{R}^+,
\]

and \(k^*\) is the solution of the equation

\[
\frac{\partial U_2}{\partial k}(t, k, v) - v \Phi_v(t, v) = 0.
\]

Sascha Desmettre The Occupational Decision
\[0 = \sup_{u \in \mathbb{R}^2 \times [0, \infty)^2} \Phi_t(t, v) + \Phi_v(t, v) v (r + \pi_S \lambda \sigma + [\pi_P + \beta \pi_S](\mu^P - r) + \delta - k_t) \]
\[+ \frac{1}{2} \Phi_{vv}(t, v) v^2 ([\pi_S \sigma]^2 + [\pi_P \sigma^P + \beta \pi_S \sigma_P]^2) + U_2(t, k_t, v) - C(t, v, \lambda) \]
where \((t, v) \in [0, T) \times \mathbb{R}^+, \) and \(U_1(v) = \Phi(T, v), \) for \(v \in \mathbb{R}^+.\) (6)

\[\Rightarrow \] Maximizers \(\pi_P^*, \pi_S^*, \lambda^* \) and \(k^*\) of (6) by establishing the FOCs:
\[\pi_P^*(t, v) = -\frac{1}{v(\sigma^P)^2} \frac{\Phi_v(t, v)}{\Phi_{vv}(t, v)} - \beta \pi_S^*(t, v) , \]
\[\pi_S^*(t, v) = -\frac{\lambda^*(t, v)}{v \sigma} \frac{\Phi_v(t, v)}{\Phi_{vv}(t, v)} , \] (7)

where \(\lambda^*\) is the solution of the implicit equation
\[\lambda \frac{\Phi_v^2(t, v)}{\Phi_{vv}(t, v)} + \frac{\partial C}{\partial \lambda}(t, v, \lambda) = 0 \quad \text{for all} \quad (t, v) \in [0, T] \times \mathbb{R}^+, \] (8)

and \(k^*\) is the solution of the equation
\[\frac{\partial U_2}{\partial k}(t, k, v) - v \Phi_v(t, v) = 0. \] (9)
Substituting the maximizers (7) in the HJB (6) then yields:

$$
\Phi_t(t, v) + \Phi_v(t, v) v \left(r + \delta - k^*(t, v) \right) - \frac{1}{2} \left(\lambda^*(t, v) \right)^2 \frac{\Phi^2_v(t, v)}{\Phi_{vv}(t, v)}
$$

$$
- \frac{1}{2} \left(\lambda_P \right)^2 \frac{\Phi^2_v(t, v)}{\Phi_{vv}(t, v)} + U_2(t, k^*(t, v)) - C(t, v, \lambda^*(t, v)) = 0,
$$

where $\lambda_P := \frac{\mu_P - r}{\sigma_P}$.

→

Goal:

Solve equation (10) for a special choice of the utility function of wealth, the utility function of consumption and the disutility function.
Substituting the maximizers (7) in the HJB (6) then yields:

\[
\Phi_t(t, \nu) + \Phi_\nu(t, \nu) \nu (r + \delta - k^*(t, \nu)) - \frac{1}{2} (\lambda^*(t, \nu))^2 \frac{\Phi^2_\nu(t, \nu)}{\Phi_{\nu\nu}(t, \nu)} \\
- \frac{1}{2} (\lambda_P)^2 \frac{\Phi^2_\nu(t, \nu)}{\Phi_{\nu\nu}(t, \nu)} + U_2(t, k^*(t, \nu)) - C(t, \nu, \lambda^*(t, \nu)) = 0,
\]

where \(\lambda_P := \frac{\mu_P - r}{\sigma_P}\).

\[\rightarrow\]

Goal:

Solve equation (10) for a special choice of the utility function of wealth, the utility function of consumption and the disutility function.
Utility and Disutility Functions

The utility function U_1 of wealth satisfies:

$$U_1(v) = K \log(v), \quad \text{for } v \in \mathbb{R}^+,$$

for a constant $K > 0$.

The utility function U_2 of consumption satisfies:

$$U_2(t, k, v) = e^{-\rho t} \log(v k), \quad \text{for } (t, v, k) \in [0, T] \times \mathbb{R}^+ \times \mathbb{R}_0^+,$$

where $\rho \in \mathbb{R}^+$ is the time preference of consumption.

And the disutility of control (i.e. work effort) C satisfies:

$$C(t, v, \lambda) = e^{-\tilde{\rho} t} \kappa \frac{\lambda^\alpha}{\alpha}, \quad \text{for } (t, v, \lambda) \in [0, T] \times \mathbb{R}^+ \times \mathbb{R}_0^+,$$

where $\kappa =$ inverse work productivity and $\alpha =$ disutility stress and $\tilde{\rho} \in \mathbb{R}^-$ is the time preference for the work effort.
Utility and Disutility Functions

The utility function U_1 of wealth satisfies:

$$U_1(v) = K \log(v), \quad \text{for } v \in \mathbb{R}^+, \quad (11)$$

for a constant $K > 0$.

The utility function U_2 of consumption satisfies:

$$U_2(t, k, v) = e^{-\rho t} \log(v k), \quad \text{for } (t, v, k) \in [0, T] \times \mathbb{R}^+ \times \mathbb{R}_0^+, \quad (12)$$

where $\rho \in \mathbb{R}^+$ is the time preference of consumption.

And the disutility of control (i.e. work effort) C satisfies:

$$C(t, v, \lambda) = e^{-\tilde{\rho} t} \kappa \frac{\lambda^\alpha}{\alpha}, \quad \text{for } (t, v, \lambda) \in [0, T] \times \mathbb{R}^+ \times \mathbb{R}_0^+, \quad (13)$$

where $\kappa = \text{inverse work productivity}$ and $\alpha = \text{disutility stress}$ and $\tilde{\rho} \in \mathbb{R}^-$ is the time preference for the work effort.
Utility and Disutility Functions

The utility function U_1 of wealth satisfies:

$$U_1(v) = K \log(v), \quad \text{for } v \in \mathbb{R}^+,$$

for a constant $K > 0$.

The utility function U_2 of consumption satisfies:

$$U_2(t, k, v) = e^{-\rho t} \log(v k), \quad \text{for } (t, v, k) \in [0, T] \times \mathbb{R}^+ \times \mathbb{R}_0^+,$$

where $\rho \in \mathbb{R}^+$ is the time preference of consumption.

And the disutility of control (i.e. work effort) C satisfies:

$$C(t, v, \lambda) = e^{-\tilde{\rho} t} \kappa \frac{\lambda^\alpha}{\alpha}, \quad \text{for } (t, v, \lambda) \in [0, T] \times \mathbb{R}^+ \times \mathbb{R}_0^+,$$

where $\kappa = \text{inverse work productivity}$ and $\alpha = \text{disutility stress}$ and $\tilde{\rho} \in \mathbb{R}^-$ is the time preference for the work effort.
Knowing the utility and disutility functions now, we can solve the FOCs (8) and (9):

\[\lambda^* = \left(\frac{e^{\tilde{\rho}t} \Phi_v^2}{\kappa - \Phi_{vv}} \right)^{\frac{1}{\alpha - 2}} \quad \text{and} \quad k^* = \frac{e^{-\rho t}}{\nu \Phi_v}. \]

Substituting this into (10) yields the following simplified equation:

\[0 = \Phi_t + \Phi_v \nu (r + \delta) + \frac{1}{2} \frac{\Phi_v^2}{\kappa - \Phi_{vv}} \left(\lambda^* \right)^2 + \frac{\alpha - 2}{2\alpha} \kappa - \frac{2}{\alpha - 2} \left(\frac{\Phi_v^2}{\kappa - \Phi_{vv}} \right)^{\frac{\alpha}{\alpha - 2}} - e^{-\rho t} - \rho t e^{-\rho t} - e^{-\rho t} \log(\Phi_v). \]

Now, the solution \(\Phi \) can be derived by assuming an ansatz of the form

\[\Phi(t, \nu) = \log(\nu) f(t) + g(t) \quad \text{with} \quad f(T) = 1 \quad \text{and} \quad g(T) = 0. \]
Deriving the Solution

Knowing the utility and disutility functions now, we can solve the FOCs (8) and (9):

\[\lambda^* = \left(\frac{e^{\tilde{\rho} t} \Phi_v^2}{\kappa - \Phi_{vv}} \right)^{\frac{1}{\alpha-2}} \quad \text{and} \quad k^* = \frac{e^{-\rho t}}{\nu \Phi_v}. \]

Substituting this into (10) yields the following simplified equation:

\[0 = \Phi_t + \Phi_v \nu (r + \delta) + \frac{1}{2} \frac{\Phi_v^2}{-\Phi_{vv}} \left(\lambda^* \right)^2 + \frac{\alpha - 2}{2 \alpha} \kappa - \frac{2}{\alpha-2} \left(\frac{\Phi_v^2}{-\Phi_{vv}} \right)^{\frac{\alpha}{\alpha-2}} \]
\[- e^{-\rho t} - \rho t e^{-\rho t} - e^{-\rho t} \log(\Phi_v). \] (14)

Now, the solution \(\Phi \) can be derived by assuming an ansatz of the form

\[\Phi(t, \nu) = \log(\nu) f(t) + g(t) \quad \text{with} \quad f(T) = 1 \quad \text{and} \quad g(T) = 0. \]
Deriving the Solution

Knowing the utility and disutility functions now, we can solve the FOCs (8) and (9):

\[\lambda^* = \left(\frac{e^{\tilde{\rho} t} \Phi_v^2}{\kappa - \Phi_{vv}} \right)^{\frac{1}{\alpha-2}} \]

and

\[k^* = \frac{e^{-\rho t}}{v \Phi_v}. \]

Substituting this into (10) yields the following simplified equation:

\[0 = \Phi_t + \Phi_v \nu (r + \delta) + \frac{1}{2} \frac{\Phi_v^2}{\kappa - \Phi_{vv}} (\lambda^P)^2 + \frac{\alpha - 2}{2 \alpha} \kappa \Phi_v^2 \left(\frac{\Phi_v^2}{\alpha-2} \right) \]

\[- e^{-\rho t} - \rho t e^{-\rho t} - e^{-\rho t} \log(\Phi_v). \]

(14)

Now, the solution \(\Phi \) can be derived by assuming an ansatz of the form

\[\Phi(t, \nu) = \log(\nu) f(t) + g(t) \quad \text{with} \quad f(T) = 1 \quad \text{and} \quad g(T) = 0. \]
Substituting this approach in (14) produces a easily solvable ODE, which yields the following solutions:

\[\pi^P(t, v) = \frac{\mu^P - r}{(\sigma^P)^2} - \beta \pi^S(t, v), \quad \text{and} \quad \pi^S(t, v) = \frac{\lambda^*(t, v)}{\sigma}, \]

(15)

\[\lambda^*(t, v) = \left(\frac{e^{\tilde{\rho} t}}{\kappa} f(t) \right)^{\frac{1}{\alpha-2}}, \quad \text{and} \quad k^*(t, v) = \frac{e^{-\rho t}}{f(t)}, \]

and value function

\[\phi(t, v) = f(t) \log(v) + g(t), \]

with

\[f(t) = \begin{cases}
K + \frac{e^{-\rho t} - e^{-\rho T}}{\rho}, & \text{for } \rho \neq 0, \\
K + T - t, & \text{for } \rho = 0,
\end{cases} \]

(16)

and

\[g(t) = \left(r + \delta + \frac{1}{2} \lambda_P^2 \right) \int_t^T f(s) \, ds + \frac{\alpha - 2}{2 \alpha} \int_t^T \left(\frac{e^{\tilde{\rho} s}}{\kappa} \right)^{\frac{2}{\alpha-2}} f(s) \frac{\alpha}{\alpha-2} \, ds \]

\[- \int_t^T (1 + \rho s) e^{-\rho s} \, ds - \int_t^T e^{-\rho s} \log(f(s)) \, ds. \]

(17)
1 Introduction

2 Set-Up
 - Financial Market
 - Controls and Wealth Process
 - Stochastic Control Problem

3 Optimal Strategies
 - HJB Equation
 - Closed-Form Solution

4 Decision Problem

5 Illustration of Results

6 Outlook
Career Path 1: Job Offer from the smaller listed Company

- Contract offered by the principal at \(t = 0 \) with a constant salary rate \(\delta \).
- Ability of controlling the Sharpe ratio by spending work effort \(\rightarrow \) higher utility from an increased expected return.

\(\Rightarrow \) Value function:

\[
\Phi(0, v, \delta) = \left(K + \frac{1 - e^{-\rho T}}{\rho} \right) \log(v) + \frac{\alpha - 2}{2\alpha} \int_0^T \left(\frac{e^{\bar{\rho} s}}{\kappa} \right)^{\frac{2}{\alpha - 2}} f(s) \frac{\alpha}{\alpha - 2} ds \\
+ \left(r + \delta + \frac{1}{2} \lambda^2_{\bar{\rho}} \right) \left(K T + \frac{1}{\rho^2} \left[1 - e^{-\rho T} (1 + \rho T) \right] \right) - \frac{1}{\rho} \left(1 - e^{-\rho T} \right) \\
+ T e^{-\rho T} + K \log(K) - \log \left(K + \frac{1}{\rho} \left[1 - e^{-\rho T} \right] \right) \left(K + \frac{1}{\rho} \left[1 - e^{-\rho T} \right] \right).
\]

Career Path 2: Outside Option

- Contract offered with a constant salary rate \(\delta_0 \) from a larger company.
- No ability of controlling the Sharpe ratio!

\(\Rightarrow \) Value function:

\[
\Phi^0(0, v, \delta_0) = \Phi(0, v, \delta_0) - \frac{\alpha - 2}{2\alpha} \int_t^T \left(\frac{e^{\bar{\rho} s}}{\kappa} \right)^{\frac{2}{\alpha - 2}} f(s) \frac{\alpha}{\alpha - 2} ds.
\]
Career Path 1: Job Offer from the smaller listed Company

- Contract offered by the principal at \(t = 0 \) with a constant salary rate \(\delta \).
- Ability of controlling the Sharpe ratio by spending work effort \(\rightarrow \) higher utility from an increased expected return.

\[\Phi(0, v, \delta) = \left(K + \frac{1 - e^{-\rho T}}{\rho} \right) \log(v) + \frac{\alpha - 2}{2 \alpha} \int_0^T \left(\frac{e^{\tilde{s}_\rho s}}{\kappa} \right)^{\frac{2}{\alpha-2}} f(s) \frac{\alpha}{\alpha-2} \, ds \]

\[+ \left(r + \delta + \frac{1}{2} \lambda^2 \rho \right) \left(K T + \frac{1}{\rho^2} \left[1 - e^{-\rho T} (1 + \rho T) \right] \right) \frac{1}{\rho} \left(1 - e^{-\rho T} \right) \]

\[+ T e^{-\rho T} + K \log(K) - \log \left(K + \frac{1}{\rho} \left[1 - e^{-\rho T} \right] \right) \left(K + \frac{1}{\rho} \left[1 - e^{-\rho T} \right] \right) . \]

Career Path 2: Outside Option

- Contract offered with a constant salary rate \(\delta_0 \) from a larger company.
- No ability of controlling the Sharpe ratio!

\[\Phi^0(0, v, \delta_0) = \Phi(0, v, \delta_0) - \frac{\alpha - 2}{2 \alpha} \int_t^T \left(\frac{e^{\tilde{s}_\rho s}}{\kappa} \right)^{\frac{2}{\alpha-2}} f(s) \frac{\alpha}{\alpha-2} \, ds . \]
Appropriate Salary Rate

Participation Constraint

Utility by accepting the contract $>\text{utility of the outside option, i.e. } \Phi(\delta) > \Phi^0(\delta_0)$.

Requiring that $\Phi(0, \nu, \delta) = \Phi^0(0, \nu, \delta_0)$, we get the minimal appropriate salary rate:

$$\delta = \begin{cases}
\delta_0 - \frac{(\alpha-2)}{2 \alpha} \left(\frac{\int_0^T \left(\frac{e^{\tilde{\rho} s}}{\kappa} \right)^{\frac{2}{\alpha-2}} f(s) \frac{\alpha}{\alpha-2} \, ds}{K T + \frac{1}{\rho^2} \left[1 - e^{-\tilde{\rho} T(1+\rho T)}\right]} \right), & \text{for } \rho \neq 0, \\
\delta_0 - \frac{(\alpha-2)}{2 \alpha} \left(\frac{\int_0^T \left(\frac{e^{\tilde{\rho} s}}{\kappa} \right)^{\frac{2}{\alpha-2}} f(s) \frac{\alpha}{\alpha-2} \, ds}{K T + \frac{1}{2} T^2} \right), & \text{for } \rho = 0.
\end{cases}$$

- If the principal of the smaller listed company offers at least the salary rate δ, then the individual accepts the contract.
- Note: $\delta \leq \delta_0$ (due to the ability of improve the smaller listed company’s performance).
1 Introduction

2 Set-Up
 - Financial Market
 - Controls and Wealth Process
 - Stochastic Control Problem

3 Optimal Strategies
 - HJB Equation
 - Closed-Form Solution

4 Decision Problem

5 Illustration of Results

6 Outlook
Optimal Effort λ^* w.r.t. $1/\kappa$ and t

Figure: Optimal work effort λ^* w.r.t. work productivity $1/\kappa$ and time t for fixed disutility stress $\alpha = 5$, time preferences $\rho = 0.11$ and $\bar{\rho} = -0.09$ and time horizon $T = 10$ years.
Optimal Effort λ^* w.r.t. α and t

Figure: Optimal work effort λ^* w.r.t. disutility stress α and time t for fixed work productivity $1/\tilde{\kappa} = 100$, time preferences $\rho = 0.11$ and $\tilde{\rho} = -0.09$ and time horizon $T = 10$ years.
Figure: Appropriate salary rate δ w.r.t. disutility stress α and work productivity $1/\kappa$ given outside salary rate $\delta_0 = 0.2$, time horizon $T = 5$ years and time preferences $\rho = 0.11$, $\bar{\rho} = -0.09$, respectively.
Introduction

Set-Up
- Financial Market
- Controls and Wealth Process
- Stochastic Control Problem

Optimal Strategies
- HJB Equation
- Closed-Form Solution

Decision Problem

Illustration of Results

Outlook
Towards optimal option portfolios:

- Pay the individual calls on the own-company’s stock (or ESOs).
- Individual invests in the options instead of the own-company’s shares.
- Derive optimal option portfolios for this investment problem.

Towards the “constrained individual”:

- Develop dynamic “game” with company determining the individual’s own-company shareholding and the individual controlling work effort, the left investment decisions and the consumption rate;
- Economic equilibrium game with company taking first step (Stackelberg game).
- Determine optimal mixed compensation (cash, shares, and options);
Towards optimal option portfolios:
- Pay the individual calls on the own-company’s stock (or ESOs).
- Individual invests in the options instead of the own-company’s shares.
- Derive optimal option portfolios for this investment problem.

Towards the “constrained individual”:
- Develop dynamic “game” with company determining the individual’s own-company shareholding and the individual controlling work effort, the left investment decisions and the consumption rate;
- Economic equilibrium game with company taking first step (Stackelberg game).
- Determine optimal mixed compensation (cash, shares, and options);
References

Desmettre, S., Gould, J. and Szimayer, A.
Own-Company Shareholding and Work Effort Preferences of an Unconstrained Executive.
Accepted in Mathematical Methods of Operations Research, 2010.

Cadenillas, A., Cvitanić, J. and Zapatero, F.
Leverage Decision and Manager Compensation with Choice of Effort and Volatility.

Desmettre, S., Szimayer, A.
Work Effort, Consumption and Portfolio Selection: When the Occupational Choice Matters.

Holmstrom, B.
Moral hazard and observability.
Bell Journal of Economics, 10, 1979.

Long, N. V., Sorger, G.
A dynamic principal-agent problem as a feedback stackelberg differential game.
Working Paper, University of Vienna, 2009.