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A short (non) fictitious story

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first
day as a bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’
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A short (non) fictitious story

Figure: Market implied volatilities for different strikes and maturities.
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A short (non) fictitious story

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first
day as a bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’
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A short (non) fictitious story

Figure: Sum of squared errors: 4.53061E-05
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A short (non) fictitious story

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first
day as a bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’

Boss: ‘Not good enough. Which initial point did you take?’
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A short (non) fictitious story

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first
day as a bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’

Boss: ‘Not good enough. Which initial point did you take?’

Me: ‘a1.’
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A short (non) fictitious story

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first
day as a bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’

Boss: ‘Not good enough. Which initial point did you take?’

Me: ‘a1.’

Boss: ‘Classic mistake!! You should take a2 instead.’
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A short (non) fictitious story

Figure: Sum of squared errors: 2.4856E-06
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A short (non) fictitious story

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first
day as a bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’

Boss: ‘Not good enough Which initial point did you take?’

Me: ‘a1.’

Boss: ‘No, you should take a2.’

Moral of the story:
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A short (non) fictitious story

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first
day as a bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’

Boss: ‘Not good enough Which initial point did you take?’

Me: ‘a1.’

Boss: ‘No, you should take a2.’

Moral of the story:

(i) I am not that bright, after all.
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A short (non) fictitious story

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first
day as a bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’

Boss: ‘Not good enough Which initial point did you take?’

Me: ‘a1.’

Boss: ‘No, you should take a2.’

Moral of the story:

(i) I am not that bright, after all.

(ii) My boss is really good.
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A short (non) fictitious story

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first
day as a bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’

Boss: ‘Not good enough Which initial point did you take?’

Me: ‘a1.’

Boss: ‘No, you should take a2.’

Moral of the story:

(i) I am not that bright, after all.

(ii) My boss is really good.

(iii) Should I really trust him blindfold?
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A short (non) fictitious story

I just finished my MSc (PhD) in Financial Mathematics from — and this is my first
day as a bright junior quant in a large bank. First day, first assignment.

Boss: ‘Calibrate model H (a) to market data.’

Me (10 minutes later): ‘Done.’

Boss: ‘Not good enough Which initial point did you take?’

Me: ‘a1.’

Boss: ‘No, you should take a2.’

Moral of the story:

(i) I am not that bright, after all.

(ii) My boss is really good.

(iii) Should I really trust him blindfold?

”Start every day off with a smile and get it over with.” (W.C. Fields)
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So let us start off with a smile (one maturity slice)
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So let us start off with a smile (one maturity slice)

Solid blue: x 7→ g (x) :=C−1
BS

(
F−1ℜ

{
f (x , z)φa (z)

})
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So let us start off with a smile (one maturity slice)

Solid blue: x 7→ g (x) :=C−1
BS

(
F−1ℜ

{
f (x , z)φa (z)

})

Dashed black: x 7→ ĝ (x) =αx2 + βx + γ
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So let us start off with a smile (one maturity slice)

Solid blue: x 7→ g (x) :=C−1
BS

(
F−1ℜ

{
f (x , z)φa (z)

})

Dashed black: x 7→ ĝ (x) =αx2 + βx + γ

Easier to calibrate ĝ than g .

Antoine Jacquier Calibrating affine stochastic volatility models with jumps



Introduction and preliminary tools
General results

Applications to ASVM
Examples

Extensions

Large deviations
Methodology

Motivation and goals

• Obtain closed-form formulae for the implied volatility under ASVM in the short
and in the large-maturity limits.

• Propose an accurate starting point for calibration purposes.

• Discuss conditions on jumps for a model to be usable in practice.

Definition: The implied volatility is the unique parameter σ ≥ 0 such that

CBS (S0,K ,T , σ) = Cobs (S0,K ,T ) .
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Large deviations theory
Lemma

The family of random variables (Zt)t≥1 satisfies the large deviations principle (LDP)
with the good rate function Λ∗ if for every Borel measurable set B in R

− inf
x∈Bo

Λ∗(x) ≤ lim inf
t→∞

1

t
log P (Zt ∈ B) ≤ lim sup

t→∞

1

t
log P (Zt ∈ B) ≤ − inf

x∈B

Λ∗(x),
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The Gärtner-Ellis theorem

Assumption A.1: For all u ∈ R, define the limiting cumulant generating function

Λ(u) := lim
t→∞

t−1 log E

(
e
utXt

)
= lim

t→∞
t−1Λt (ut)

as an extended real number. Denote DΛ := {u ∈ R : Λ(u) <∞}. Assume further that

(i) the origin belongs to D0
Λ;

(ii) Λ is essentially smooth.
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Large deviations
Methodology

The Gärtner-Ellis theorem

Assumption A.1: For all u ∈ R, define the limiting cumulant generating function

Λ(u) := lim
t→∞

t−1 log E

(
e
utXt

)
= lim

t→∞
t−1Λt (ut)

as an extended real number. Denote DΛ := {u ∈ R : Λ(u) <∞}. Assume further that

(i) the origin belongs to D0
Λ;

(ii) Λ is essentially smooth.

Theorem (Gärtner-Ellis) (special case of the general th. Dembo & Zeitouni)

Under Assumption A.1, the family of random variables (Xt)t≥0 satisfies the LDP with
rate function Λ∗, defined as the Fenchel-Legendre transform of Λ,

Λ∗(x) := sup
u∈R

{ux − Λ(u)}, for all x ∈ R.
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Methodology

Methodology overview (large-time)

• Let (St)t≥0 be a martingale share price process, and define Xt := log (St/S0).
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Large deviations
Methodology

Methodology overview (large-time)

• Let (St)t≥0 be a martingale share price process, and define Xt := log (St/S0).

• Find Λt (u) := log E
(
e
uXt

)
, and Λ (u) := lim

t→∞
t−1Λt (u).
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Large deviations
Methodology

Methodology overview (large-time)

• Let (St)t≥0 be a martingale share price process, and define Xt := log (St/S0).

• Find Λt (u) := log E
(
e
uXt

)
, and Λ (u) := lim

t→∞
t−1Λt (u).

• Check the smoothness conditions for Λ, in particular the set
DΛ := {u : Λ (u) <∞}.
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Large deviations
Methodology

Methodology overview (large-time)

• Let (St)t≥0 be a martingale share price process, and define Xt := log (St/S0).

• Find Λt (u) := log E
(
e
uXt

)
, and Λ (u) := lim

t→∞
t−1Λt (u).

• Check the smoothness conditions for Λ, in particular the set
DΛ := {u : Λ (u) <∞}.

• Conclude that (Xt/t)t>0 satisfies a full LDP with (good) rate function Λ∗.
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Large deviations
Methodology

Methodology overview (large-time)

• Let (St)t≥0 be a martingale share price process, and define Xt := log (St/S0).

• Find Λt (u) := log E
(
e
uXt

)
, and Λ (u) := lim

t→∞
t−1Λt (u).

• Check the smoothness conditions for Λ, in particular the set
DΛ := {u : Λ (u) <∞}.

• Conclude that (Xt/t)t>0 satisfies a full LDP with (good) rate function Λ∗.

• Translate the tail behaviour of X into an asymptotic behaviour of Call prices.
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Large deviations
Methodology

Methodology overview (large-time)

• Let (St)t≥0 be a martingale share price process, and define Xt := log (St/S0).

• Find Λt (u) := log E
(
e
uXt

)
, and Λ (u) := lim

t→∞
t−1Λt (u).

• Check the smoothness conditions for Λ, in particular the set
DΛ := {u : Λ (u) <∞}.

• Conclude that (Xt/t)t>0 satisfies a full LDP with (good) rate function Λ∗.

• Translate the tail behaviour of X into an asymptotic behaviour of Call prices.

• Translate these Call price asymptotics into implied volatility asymptotics.
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Option price asymptotics
Implied volatility asymptotics

Option price and Share measure

Define the Share measure P̃ by P̃ (A) := E ((Xt − X0) 11A).
A European call option price reads

E

(
e
Xt − e

x
)

+
= E

((
e
Xt − e

x
)

11Xt≥x

)

= E

(
e
Xt 11Xt≥x

)
− e

x
P (Xt ≥ x)

= P̃ (Xt ≥ x) − e
x
P (Xt ≥ x).

Denote Λ̃ and Λ̃∗ the corresponding limiting cgf and Fenchel-Legendre transform
under P̃. They satisfy the following relations:

Λ̃ (u) = Λ (u + 1), if (1 + u) ∈ DΛ, and Λ̃∗(x) = Λ∗(x) − x, for all x ∈ R.
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Option price asymptotics
Implied volatility asymptotics

Theorem

Let x be a fixed real number.

(i) If (Xt/t)t≥1 satisfies a full LDP under the measure P with the good rate function
Λ∗, the asymptotic behaviour of a put option with strike exp (xt) reads

lim
t→∞

t−1 log E

[(
e
xt − e

Xt

)

+

]
=

{
x − Λ∗ (x) if x ≤ Λ′ (0) ,
x if x > Λ′ (0) .

(ii) If (Xt/t)t≥1 satisfies a full LDP under the measure P̃ with the good rate function

Λ̃∗, the asymptotic behaviour of a call option struck at e
xt is given by the formula

lim
t→∞

t−1 log E

[(
e
Xt − e

xt
)

+

]
=

{
x − Λ∗ (x) if x ≥ Λ′ (1) ,
0 if x < Λ′ (1) ,

(iii) If (Xt/t)t≥1 satisfies a full LDP under P and P̃ with good rate functions Λ∗ and

Λ̃∗, the covered call option with payoff e
Xt −

(
e
Xt − e

xt
)
+

satisfies

lim
t→∞

t−1 log

(
1 − E

[(
e
Xt − e

xt
)

+

])
= x − Λ∗ (x) if x ∈

[
Λ′ (0) ,Λ′ (1)

]
.
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Idea of the proof

The following inequalities hold for all t ≥ 1 and ε > 0:

e
xt

(
1 − e

−ε
)
11{Xt/t<x−ε} ≤

(
e
xt − e

Xt

)

+
≤ e

xt 11{Xt/t<x}.

Taking expectations, logarithms, dividing by t and applying the LDP for (Xt/t)t≥1

x − inf
y<x−ε

Λ∗(y) ≤ lim inf
t→∞

1

t
log E

[(
e
xt − e

Xt

)

+

]

≤ lim sup
t→∞

1

t
log E

[(
e
xt − e

Xt

)

+

]
≤ x − inf

y≤x
Λ∗(y).

Antoine Jacquier Calibrating affine stochastic volatility models with jumps



Introduction and preliminary tools
General results

Applications to ASVM
Examples

Extensions

Option price asymptotics
Implied volatility asymptotics

Black-Scholes intermezzo

Consider the Black-Scholes model: dXt = −Σ2/2 dt + ΣdWt , with Σ > 0. Then

ΛBS(u) = u (u − 1) Σ2/2, for all u ∈ R,

Λ∗
BS

(x ,Σ) :=
(
x + Σ2/2

)2
/

(
2Σ2

)
, for all x ∈ R, Σ ∈ R∗

+,

Lemma

Under the Black-Scholes model, we have the following option price asymptotics.

lim
t→∞

t−1 log E

(
e
xt − e

Xt

)

+
=

{
x − Λ∗

BS
(x) if x ≤ −Σ2/2,

x if x > −Σ2/2,

lim
t→∞

t−1 log E

(
e
Xt − e

xt
)

+
=

{
x − Λ∗

BS
(x) if x ≥ Σ2/2,

0 if x < Σ2/2,

lim
t→∞

t−1 log

(
1 − E

(
e
Xt − e

xt
)

+

)
= x − Λ∗

BS
(x) if x ∈

[
−Σ2/2,Σ2/2

]
.
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Implied volatility asymptotics

Define the function σ̂2
∞ : R → R+ by

σ̂2
∞(x) := 2

(
2Λ∗(x) − x + 2I (x)

√
Λ∗(x) (Λ∗(x) − x)

)
,

where
I (x) =

(
11x∈(Λ′(0),Λ′(1)) − 11x∈R\(Λ′(0),Λ′(1))

)
.

Note that Λ∗ (Λ′(0)) = 0 and Λ∗ (Λ′(1)) = Λ′(1) (equivalently Λ̃∗ (Λ′(1)) = 0).

Theorem

If the random variable (Xt/t)t≥1 satisfies a full large deviations principle under P and

P̃, then the function σ̂∞ is continuous on the whole real line and is the uniform limit
of σ̂t as t tends to infinity.
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ASVM
Continuous case
Large-time
Lévy processes
Small-time

Affine stochastic volatility models

Let (St)t≥0 represent a share price process and a martingale. Define Xt := log St and

assume that (Xt ,Vt)t≥0 is a stochastically continuous, time-homogeneous Markov
process satisfying

Φt (u,w) := log E

(
e
uXt+wVt

∣∣∣ X0,V0

)
= φ (t, u,w) + ψ (t, u,w) V0 + uX0,

for all t, u,w ∈ R+ × C2 such that the expectation exists.
Define F (u,w) := ∂tφ (t, u,w)|t=0+ , and R (u,w) := ∂tψ (t, u,w)|t=0+ . Then

F (u,w) =

〈
a

2

(
u

w

)
+ b,

(
u

w

)〉
+

∫

D\{0}

(
e
xu+yw − 1 −

〈
ωF (x , y),

(
u

w

)〉)
m (dx ,dy) ,

R(u,w) =

〈
α

2

(
u

w

)
+ β,

(
u

w

)〉
+

∫

D\{0}

(
e
xu+yw − 1 −

〈
ωR(x , y),

(
u

w

)〉)
µ (dx ,dy) ,

where D := R × R+, and ωF and ωR are truncation functions.
See Duffie, Filipović, Schachermayer (2003) and Keller-Ressel (2009).
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Continuous case
Large-time
Lévy processes
Small-time

Why this class of models?

• They feature most market characteristics: jumps, stochastic volatility, . . .

• Their analytic properties are known (Duffie, Filipović & Schachermayer).

• They are tractable and pricing can be performed using Carr-Madan or Lewis
inverse Fourier transform method.

• Most models used in practice fall into this category: Heston, Bates, exponential
Lévy models (VG, CGMY), pure jump process (Merton, Kou), Barndorff-Nielsen
& Shephard, . . .
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Continuous case
Large-time
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Small-time

Continuous case

dXt = − 1
2

(a + Vt) dt + ρ
√

Vt dWt +
√

a + (1 − ρ2) Vt dZt , X0 = x ∈ R,

dVt = (b + βVt) dt +
√
αVt dWt , V0 = v ∈ (0,∞),

with a ≥ 0, b ≥ 0, α > 0, β ∈ R, and ρ ∈ [−1, 1].
In the Heston model: a = 0, b = κθ > 0, β = −κ < 0, α = σ2.

Theorem

Λ (u) = − b

α
(χ (u) + γ (u)) +

a

2
u (u − 1) for all u ∈ DΛ,

where χ (u) := β + uρ
√
α and γ (u) :=

(
χ (u)2 + αu (1 − u)

)1/2
and

(i) If χ (0) ≤ 0,

(a) if χ (1) ≤ 0 then DΛ = [u−, u+];
(b) if χ (1) > 0 then DΛ = [u−, 1].

(ii) If χ (0) > 0,
(a) if χ (1) ≤ 0 then DΛ = [0, u+];
(b) if χ (1) > 0 then DΛ = [0, 1].

u− and u+ are explicit and u− ≤ 0 and u+ ≥ 1.
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ASVM
Continuous case
Large-time
Lévy processes
Small-time

(a) Case (i)(a) (b) Case (i)(b) (c) Case (ii)(a) (d) Case (ii)(b)

(e) Case (i)(a) (f) Case (i)(b) (g) Case (ii)(a) (h) Case (ii)(b)
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Continuous case
Large-time
Lévy processes
Small-time

Implied volatility asymptotics

Case (i)(a): ”Extended” (a 6= 0) Heston model with κ− ρσ > 0
Λ is essentially smooth on DΛ hence the theorems apply and (after some
rearrangements and changes of variables):

σ̂2
∞ (x) = σ̂2

SVI
(x) =

ω1

2

(
1 + ω2ρx +

√
(ω2x + ρ)2 + 1 − ρ2

)
, for all x ∈ R,

i.e. Jim Gatheral’s SVI parameterisation is the genuine limit of the Heston smile.
Note that (Xt/t) converges weakly to a Normal Inverse Gaussian.

Case (i)(b): ”Extended” (a 6= 0) Heston model with κ− ρσ ≤ 0
· 0 ∈ Do

Λ but 0 ∈ Do

Λ̃
· Λ is steep at u− but not at 1.
The implied volatility formula holds for x ≤ Λ′ (0).

Other cases:
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ASVM
Continuous case
Large-time
Lévy processes
Small-time

Implied volatility asymptotics

Case (i)(a): ”Extended” (a 6= 0) Heston model with κ− ρσ > 0
Λ is essentially smooth on DΛ hence the theorems apply and (after some
rearrangements and changes of variables):

σ̂2
∞ (x) = σ̂2

SVI
(x) =

ω1

2

(
1 + ω2ρx +

√
(ω2x + ρ)2 + 1 − ρ2

)
, for all x ∈ R,

i.e. Jim Gatheral’s SVI parameterisation is the genuine limit of the Heston smile.
Note that (Xt/t) converges weakly to a Normal Inverse Gaussian.

Case (i)(b): ”Extended” (a 6= 0) Heston model with κ− ρσ ≤ 0
· 0 ∈ Do

Λ but 0 ∈ Do

Λ̃
· Λ is steep at u− but not at 1.
The implied volatility formula holds for x ≤ Λ′ (0).

Other cases: all the problems occur. Work in progress...
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ASVM
Continuous case
Large-time
Lévy processes
Small-time

Jump case

Recall that Λt (u,w) := φ (t, u,w) +ψ (t, u,w)V0. We are interested in the behaviour
of lim

t→∞
t−1Λt (u, 0).

Define the function χ : R → R by χ(u) := ∂wR(u,w)|w=0, assume that

χ (0) < 0 and χ (1) < 0.

Lemma (Keller-Ressel, 2009)

There exist an interval I ⊂ R and a unique function w ∈ C (I) ∩ C1 (I◦) such
that R (u,w (u)) = 0, for all u ∈ I with w (0) = w (1) = 0. Define the set
J := {u ∈ I : F (u,w (u)) <∞} and the function Λ (u) := F (u,w (u)) on J , then

lim
t→∞

t−1Λt (u, 0) = lim
t→∞

t−1φ (t, u, 0) = Λ (u) , for all u ∈ J ,

lim
t→∞

ψ (t, u, 0) = w (u) , for all u ∈ I.

For convenience, we shall write Λt (u) in place of Λt (u, 0).
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Lévy processes
Small-time

Properties and issues

• Can we have a limiting effective domain DΛ = J larger than [0, 1]? Yes.
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Properties and issues

• Can we have a limiting effective domain DΛ = J larger than [0, 1]? Yes.

• Is Λ essentially smooth? Not necessarily, but we can find necessary and sufficient
conditions.
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ASVM
Continuous case
Large-time
Lévy processes
Small-time

Properties and issues

• Can we have a limiting effective domain DΛ = J larger than [0, 1]? Yes.

• Is Λ essentially smooth? Not necessarily, but we can find necessary and sufficient
conditions.

• What happens when the assumption χ (0) < 0 and χ (1) < 0 fails? Good
question.
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Large-time
Lévy processes
Small-time

One-dimensional Lévy processes

Let (Xt)t ≥ 0 be a Lévy process with triplet (σ, η, ν). The standard Lévy assumptions
as well as the martingale condition impose ν ({0}) = 0 and

∫

R

(
x2 ∧ 1

)
ν (dx) <∞,

∫

|x|≥1
e
xν (dx) <∞,

σ2

2
+

∫

R

(
e
x − 1 − x11|x|≤1

)
ν (dx) = −η.

Now, Φt (u, 0) = exp (tφX (u)). Hence

F (u, 0) = φX (u) and R (u, 0) = 0.

The conditions χ (1) < 0 and χ (0) < 0 fail. But clearly Λ ≡ φX holds.
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ASVM
Continuous case
Large-time
Lévy processes
Small-time

One-dimensional Lévy processes

Let (Xt)t ≥ 0 be a Lévy process with triplet (σ, η, ν). The standard Lévy assumptions
as well as the martingale condition impose ν ({0}) = 0 and

∫

R

(
x2 ∧ 1

)
ν (dx) <∞,

∫

|x|≥1
e
xν (dx) <∞,

σ2

2
+

∫

R

(
e
x − 1 − x11|x|≤1

)
ν (dx) = −η.

Now, Φt (u, 0) = exp (tφX (u)). Hence

F (u, 0) = φX (u) and R (u, 0) = 0.

The conditions χ (1) < 0 and χ (0) < 0 fail. But clearly Λ ≡ φX holds.

· If DΛ is open and {0, 1} ∈ Do
Λ then Λ is essentially smooth.
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ASVM
Continuous case
Large-time
Lévy processes
Small-time

One-dimensional Lévy processes

Let (Xt)t ≥ 0 be a Lévy process with triplet (σ, η, ν). The standard Lévy assumptions
as well as the martingale condition impose ν ({0}) = 0 and

∫

R

(
x2 ∧ 1

)
ν (dx) <∞,

∫

|x|≥1
e
xν (dx) <∞,

σ2

2
+

∫

R

(
e
x − 1 − x11|x|≤1

)
ν (dx) = −η.

Now, Φt (u, 0) = exp (tφX (u)). Hence

F (u, 0) = φX (u) and R (u, 0) = 0.

The conditions χ (1) < 0 and χ (0) < 0 fail. But clearly Λ ≡ φX holds.

· If DΛ is open and {0, 1} ∈ Do
Λ then Λ is essentially smooth.

· If DΛ is not open then Λ is not necessarily essentially smooth.
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ASVM
Continuous case
Large-time
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Small-time

One-dimensional Lévy processes

Let (Xt)t ≥ 0 be a Lévy process with triplet (σ, η, ν). The standard Lévy assumptions
as well as the martingale condition impose ν ({0}) = 0 and

∫

R

(
x2 ∧ 1

)
ν (dx) <∞,

∫

|x|≥1
e
xν (dx) <∞,

σ2

2
+

∫

R

(
e
x − 1 − x11|x|≤1

)
ν (dx) = −η.

Now, Φt (u, 0) = exp (tφX (u)). Hence

F (u, 0) = φX (u) and R (u, 0) = 0.

The conditions χ (1) < 0 and χ (0) < 0 fail. But clearly Λ ≡ φX holds.

· If DΛ is open and {0, 1} ∈ Do
Λ then Λ is essentially smooth.

· If DΛ is not open then Λ is not necessarily essentially smooth.

Example: ΛVG (u) =

(
ab

(a − u) (b + u)

)c

, and DΛ = (−b, a) .
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Small-time asymptotics

We are interested in determining

λ (u) := lim
t→0

tΦt (u/t, 0) = lim
t→0

(
tφ (t, u/t, 0) + v0tψ (t, u/t, 0)

)
, for all u ∈ Dλ.

Let us define the Fenchel-Legendre transform λ∗ : R → R+ ∪ {+∞} of λ by

λ∗ (x) := sup
u∈R

{ux − λ (u)} , for all x ∈ R.
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ASVM
Continuous case
Large-time
Lévy processes
Small-time

Small-time asymptotics

We are interested in determining

λ (u) := lim
t→0

tΦt (u/t, 0) = lim
t→0

(
tφ (t, u/t, 0) + v0tψ (t, u/t, 0)

)
, for all u ∈ Dλ.

Let us define the Fenchel-Legendre transform λ∗ : R → R+ ∪ {+∞} of λ by

λ∗ (x) := sup
u∈R

{ux − λ (u)} , for all x ∈ R.

Proposition

If (Xt − X0)t≥0 satisfies a full LDP with rate λ∗ as t tends to zero. The small-time
implied volatility reads

σ0 (x) := lim
t→0

σt (x) =
|x |√

2λ∗ (x)
, for all x ∈ R

∗,

and σ0 is a continuous function on R.
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Small-time for continuous affine SV models

Assume that the process has continuous paths, i.e. µ ≡ 0 and m ≡ 0. Define

λ0 (u) := lim
t→0

tψ (t, u/t, 0) , for all u ∈ Dλ0
.

Lemma

λ0 (u) = α−1
22

(
−α12u + ζu tan

(
ζu/2 + arctan (α12/ζ)

))
and Dλ0

= (u−, u+) ,

where u± := ζ−1 (±π − 2 arctan (α12/ζ)) ∈ R± and ζ := det (α)1/2 > 0. Therefore
we obtain

λ (u) = λ0 (u) + a11u
2/2.
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ASVM
Continuous case
Large-time
Lévy processes
Small-time

Small-time for continuous affine SV models

Assume that the process has continuous paths, i.e. µ ≡ 0 and m ≡ 0. Define

λ0 (u) := lim
t→0

tψ (t, u/t, 0) , for all u ∈ Dλ0
.

Lemma

λ0 (u) = α−1
22

(
−α12u + ζu tan

(
ζu/2 + arctan (α12/ζ)

))
and Dλ0

= (u−, u+) ,

where u± := ζ−1 (±π − 2 arctan (α12/ζ)) ∈ R± and ζ := det (α)1/2 > 0. Therefore
we obtain

λ (u) = λ0 (u) + a11u
2/2.

• Everything works fine when there are no jumps, and λ is known in closed-form.

• Jump case: proper scaling needed: Nutz & Muhle-Karbe (2010), Rosenbaum &
Tankov (2010): in progress.
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Heston
BNS

Heston with jumps I

Consider the Heston model

dXt =

(
δ − 1

2
Vt

)
dt +

√
Vt dWt + dJt , X0 = x0 ∈ R,

dVt = κ (θ − Vt) dt + ξ
√

Vt dZt , V0 = v0 > 0,

d 〈W ,Z〉t = ρdt,

where J := (Jt)t≥0 is a pure-jump Lévy process independent of (Wt)t≥0. Assume

χ (1) = ρσ − κ < 0

It is clear that
Λt (u) := log E

(
e
u(Xt−x0)

)
= Λh

t (u) + Λ
J
(u) t,

with Λ
J
(u) := ΛJ (u) − uΛJ (1) (martingale condition). This means

F (u,w) = κθw + Λ
J
(u) , and R (u,w) =

u

2
(u − 1) +

ξ2

2
w2 − κw + ρξuw .
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Heston with jumps II

We know that, for all u ∈
[
uh
−, u

h
+

]

Λh (u) := lim
t→∞

t−1Λh
t (u) =

κθ

ξ2

(
κ− ρξu −

√
(κ− ρξu)2 − ξ2u (u − 1)

)
,

so that

Λ (u) := lim
t→∞

t−1Λt (u) = Λh (u) + Λ
J
(u) , for all u ∈

[
uh
− ∨ uJ

−, u
h
+ ∧ uJ

+

]
.

and
Λ∗ (x) = sup

u∈
[
uh
−
∨uJ

−
,uh

+∧uJ
+

] {ux − Λ (u)} , for all x ∈ R.
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Heston with jumps III

Consider Normal Inverse Gaussian jumps, i.e.
J is an independent Normal Inverse Gaussian process with parameters (α, β, µ, δ) and
Lévy exponent

ΛNIG(u) = µu + δ

(√
α2 − β2 −

√
α2 − (β + u)2

)
.

Then uNIG
± = −β ± α.
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Numerical example: Heston without jumps

Strike
2,000 3,000 4,000 5,000 6,000

Im
pl

ie
d 

vo
la

til
ity

0.21

0.22

0.23

0.24

0.25

Implied volatility smiles, maturity 9 years

Heston (without jumps) calibrated on the Eurostoxx 50 on February, 15th, 2006, and then

generated for T = 9 years. κ = 1.7609, θ = 0.0494, σ = 0.4086, v0 = 0.0464, ρ = −0.5195.
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Numerical example: Heston with NIG jumps

Same parameters as before for Heston and the following for NIG: α = 7.104, β = −3.3,

δ = 0.193 and µ = 0.092. Heston (with jumps) calibrated on the Eurostoxx 50.
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Barndorff-Nielsen & Shephard (2001) I

dXt = −
(
γk (ρ) +

1

2
Vt

)
dt +

√
Vt dWt + ρ dJγt , X0 = x0 ∈ R,

dVt = −γVtdt + dJγt , V0 = v0 > 0,

where γ > 0, ρ < 0 and (Jt)t≥0 is a Lévy subordinator where the cgf of J1 is given by

ΛJ (u) = log E
(
e
uJ1

)
. DΛ = (u−, u+), where

u± :=
1

2
− ργ ±

√
1

4
− (2k∗ − ρ) γ + ρ2γ2.

with k∗ := sup {u > 0 : k (u) <∞}. We deduce the two functions F and R,

R (u, 0) =
1

2

(
u2 − u

)
, and F (u, 0) = γk (ρu) − uγk (ρ) .

Consider the Γ-BNS model, where the subordinator is Γ(a, b)-distributed with a,

b > 0. Hence kΓ (u) = (b − u)−1 au, and uΓ
± := 1

2
− ργ ±

√(
1
2
− ργ

)2
+ 2bγ ∈ R±.
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Barndorff-Nielsen & Shephard II

Γ-BNS model with a = 1.4338, b = 11.6641, v0 = 0.0145, γ = 0.5783, (Schoutens)
Solid line: asymptotic smile. Dotted and dashed: 5, 10 and 20 years generated smile.
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One step beyond

For more accurate results, it might be interesting to go one step beyond:

σ̂t (x) = σ̂∞ (x) + 1
t
â (x) + o (1/t) , as t → ∞

σt (x) = σ0 (x) + a (x) t + o (t) , as t → 0.

However large deviations do not provide the first-order term.
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Complex saddlepoint methods (Heston)

From Lee (2004), we have, for any α ∈ R,

1

S0
E(St − K)+ = Residues +

1

2π

∫ +∞−iα

−∞−iα
e
−izx φt(z − i)

iz − z2
dz,

where x := log (K/S0) and φt is the Heston characteristic function. The methodology
is the following (for the large-time):

• approximate φt (z) ∼ e
−λ(z)tφ (z). The integrand reads

exp {(−izx − λ (z)) t} f (z). Find the saddlepoint of this function.

• Deform the integration contour through this saddlepoint using the steepest
descent method.

• ‘Equate’ the Black-Scholes expansion with the model expansion.

• Back out the implied volatility.
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Infinity is closer than what we think

Figure: Same parameters for the Heston model in the large-time regime, with t = 5 years.
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Zero is even closer

Figure: Same parameters for the Heston model in the small-time regime, with t = 0.2 years.
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Conclusion

Summary:

• Closed-form formulae for affine stochastic volatility models with jumps for large
maturities.

• Closed-form formulae for continuous affine stochastic volatility models for small
maturities.

Future research:

• What happens when 0 is not in the interior of DΛ?

• Remove the conditions χ(0) < 0 and χ(1) < 0.

• What happens precisely in the small-time when jumps are added?

• Determine the higher-order correction terms (in t or t−1).

• Statistical and numerical tests to assess the calibration efficiency.
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